Let H be a finite-dimensional Hopf algebra over a field k, H^* the dual Hopf algebra of H, and B a right H^*-Galois and Hirata separable extension of B^H. Then B is characterized in terms of the commutator subring $V_B(B^H)$ of B^H in B and the smash product $V_B(B^H)#H$. A sufficient condition is also given for B to be an H^*-Galois Azumaya extension of B^H.

2000 Mathematics Subject Classification: 16W30, 16H05.

1. Introduction. Let H be a finite-dimensional Hopf algebra over a field k, H^* the dual Hopf algebra of H, and B a right H^*-Galois extension of B^H. In [3], the class of H^*-Galois Azumaya extensions was investigated and in [8], it was shown that B is a Hirata separable extension of B^H if and only if the commutator subring $V_B(B^H)$ of B^H in B is a left H-Galois extension of C, where C is the center of B (see [8, Lemma 2.1, Theorem 2.6]). The purpose of the present paper is to characterize a right H^*-Galois and Hirata separable extension B of B^H in terms of the commutator subring $V_B(B^H)$ and the smash product $V_B(B^H)#H$. Let B be a right H^*-Galois extension of B^H such that $B^H = B^{H^*}$. Then the following statements are equivalent:

1. B is a Hirata separable extension of B^H,
2. $V_B(B^H)$ is an Azumaya C-algebra and $V_B(V_B(B^H)) = B^H$,
3. $V_B(B^H)$ is a right H^*-Galois extension of C and a direct summand of $V_B(B^H)#H$ as a $V_B(B^H)$-bimodule,
4. $V_B(B^H)$ is a right H^*-Galois extension of C and $V_B(B^H)#H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

Moreover, an equivalent condition is given for a right H^*-Galois and Hirata separable extension B of B^H to be an H^*-Galois Azumaya extension which was studied in [3, 7]. Also, let B be a right H^*-Galois and Hirata separable extension of B^H and A a subalgebra of B^H over C such that B^H is a projective Hirata separable extension of A containing A as a direct summand as an A-bimodule. Then $V_{B^H}(A)$ is a separable subalgebra of B^H over C, and there exists an H-submodule algebra D in B which is separable over C such that $D^H = V_{B^H}(A)$ and $D \equiv V_{B^H}(A) \otimes_Z F$ as Azumaya Z-algebras, where Z is the center of D and F is an Azumaya Z-algebra in D.
2. Basic definitions and notations. Throughout, H denotes a finite-dimensional Hopf algebra over a field k with comultiplication Δ and counit ε, H^* the dual Hopf algebra of H. B is a left H-module algebra, C the center of B. $B^H = \{ b \in B \mid hb = \varepsilon(h)b \text{ for all } h \in H \}$ which is called the H-invariants of B, and $B \# H$ the smash product of B with H, where $B \# H = B \otimes_k H$ such that for all $b \# h$ and $b' \# h'$ in $B \# H$, $(b \# h)(b' \# h') = \sum b(h_1 b')\# h_2 h'$, where $\Delta(h) = \sum h_1 \otimes h_2$. The ring B is called a right H^*-Galois extension of B^H if B is a right H^*-comodule algebra with structure map $\rho : B \to B \otimes_k H^*$ such that $\beta : B \otimes_{B^H} B \to B \otimes_k H^*$ is a bijection, where $\beta(a \otimes b) = (a \otimes 1)\rho(b)$.

For a subring A of B with the same identity 1, we denote the commutator subring of A in B by $V_B(A)$. We call B a separable extension of A if there exist $\{a_i, b_i \}$ in B, $i = 1, 2, \ldots, m$, for some integer m such that $\sum a_i b_i = 1$ and $\sum b_i a_i = \sum a_i b_i b$ for all b in B, where \otimes is over A. An Azumaya algebra is a separable extension of its center. B is a left Hopf A-module. A is called an H^*-Galois extension, if B is separable over B^H which is an A-Azumaya algebra over C^H. A right H^*-Galois extension B of B^H is called an H^*-Galois Hirata extension if B is also a Hirata separable extension of B^H. Throughout, an H^*-Galois extension of B^H means a right H^*-Galois extension unless it is stated otherwise.

3. The H^*-Galois Hirata extensions. In this section, we will characterize an H^*-Galois Hirata extension B of B^H in terms of the commutator subring $V_B(B^H)$ of B^H in B and the smash product $V_B(B^H) \# H$. A relationship between an H^*-Galois Hirata extension and an H^*-Galois Azumaya extension is also given. We begin with some properties of an H^*-Galois Hirata extension B of B^H. Throughout, we assume $B^H = B^{H^*}$.

Lemma 3.1. If A_1 and A_2 are H^*-Galois extensions such that $A_1^H = A_2^H$ and $A_1 \subset A_2$, then $A_1 = A_2$.

Proof. By [3, Theorem 5.1], there exist $\{x_i, y_i \in A_1 \mid i = 1, 2, \ldots, n\}$ for some integer n such that, for all $h \in H$, $\sum x_i(h y_i) = T(h)1_{A_1}$, where $T \in \mathbb{I}_{H^*}$, the set of right integrals in H^*. Let $t \in \mathbb{I}_H$ be left integrals in H, such that $T(t) = 1$, then $\{x_i, f_i = t(y_i) \mid i = 1, 2, \ldots, n\}$ is a dual basis of the finitely generated and projective right module A_1 over A_1^H. Since $A_1 \subset A_2$ such that $A_1^H = A_2^H$, $\{x_i, f_i \mid i = 1, 2, \ldots, n\}$ is also a dual basis of the finitely generated and projective right module A_2 over A_2^H. This implies that $A_1 = A_2$. \qed

Lemma 3.2. If B is an H^*-Galois Hirata extension of B^H, then B^H is a direct summand of B as a B^H-bimodule.

Proof. We use the argument as given in [2]. Since B is an H^*-Galois and a Hirata separable extension of B^H, $V_B(B^H)$ is a left H-Galois extension of C (see [8, Lemma 2.1, Theorem 2.6]). Hence, $V_B(B^H)$ is a finitely generated and
projective module over \(C \) (see [3, Theorem 2.2]). Let \(\Omega = \text{Hom}_C(\mathcal{V}_B(B^H), \mathcal{V}_B(B^H)) \). Since \(C \) is commutative, \(\mathcal{V}_B(B^H) \) is a pre-generator of \(C \). Thus, \(B \) is a right \(\Omega \)-module such that \(B \cong \mathcal{V}_B(B^H) \otimes_C \text{Hom}_\Omega(\mathcal{V}_B(B^H), B) \cong \mathcal{V}_B(B^H) \otimes_C B^{H*} \) as \(C \)-algebras, where \(f(1) \in B^{H*} \) for each \(f \in \text{Hom}_\Omega(\mathcal{V}_B(B^H), B) \) by the proof of [2, Lemma 2.8]. But \(\mathcal{V}_B(B^H) = B^H \) (see [2, Lemma 2.5]), so \(B \cong \mathcal{V}_B(B^H) \otimes_C B^H \). This implies that \(\mathcal{V}_B(B^H) \) is an \(h^*-\)Galois extension of \(C \) (see [2, Lemma 2.8]); and so \(C \) is a direct summand of \(\mathcal{V}_B(B^H) \) as a \(C \)-bimodule (see [2, Corollaries 1.9 and 1.10]). Therefore, \(B^H \) is a direct summand of \(B \) as a \(B^H \)-bimodule.

By the proof of Lemma 3.2, \(\mathcal{V}_B(B^H) \) is an \(h^*-\)Galois extension of \(C \).

Corollary 3.3. If \(B \) is an \(h^*-\)Galois Hirata extension of \(B^H \), then \(\mathcal{V}_B(B^H) \) is an \(h^*-\)Galois extension of \(C \).

Corollary 3.4. If \(B \) is an \(h^*-\)Galois Hirata extension of \(B^H \), then \(B = B^H \cdot \mathcal{V}_B(B^H) \) and the centers of \(B \), \(B^H \), and \(\mathcal{V}_B(B^H) \) are the same \(C \).

Proof. By Corollary 3.3, \(\mathcal{V}_B(B^H) \) is an \(h^*-\)Galois extension of \(C \), so \(B^H \cdot \mathcal{V}_B(B^H) \) is also an \(h^*-\)Galois extension of \(B^H \) (\(= (B^H \cdot \mathcal{V}_B(B^H))^H \)) with the same Galois system as \(\mathcal{V}_B(B^H) \) (see [3, Theorem 5.1]). Noting that \(B^H \cdot \mathcal{V}_B(B^H) \subset B \), we conclude that \(B = B^H \cdot \mathcal{V}_B(B^H) \) by Lemma 3.1. Moreover, \(\mathcal{V}_B(\mathcal{V}_B(B^H)) = B^H \) (see [8, Lemma 2.5]), so the centers of \(B^H \), \(\mathcal{V}_B(B^H) \), and \(B \) are the same \(C \).}

Theorem 3.5. Let \(B \) be an \(h^*-\)Galois extension of \(B^H \). The following statements are equivalent:

1. \(B \) is a Hirata separable extension of \(B^H \),
2. \(\mathcal{V}_B(B^H) \) is an \(h^*-\)Galois extension of \(C \) and a direct summand of \(\mathcal{V}_B(B^H) \# H \) as a \(\mathcal{V}_B(B^H) \)-bimodule,
3. \(\mathcal{V}_B(B^H) \) is an Azumaya \(C \)-algebra and \(\mathcal{V}_B(\mathcal{V}_B(B^H)) = B^H \),
4. \(\mathcal{V}_B(B^H) \) is an \(h^*-\)Galois extension of \(C \) and \(\mathcal{V}_B(B^H) \# H \) is a direct summand of a finite direct sum of \(\mathcal{V}_B(B^H) \) as a bimodule over \(\mathcal{V}_B(B^H) \).

Proof. (1)\(\Rightarrow\)(3). Since \(B \) is an \(h^*-\)Galois and a Hirata separable extension of \(B^H \), by Lemma 3.2, \(B^H \) is a direct summand of \(B \) as a \(B^H \)-bimodule. Thus, \(\mathcal{V}_B(\mathcal{V}_B(B^H)) = B^H \) and \(\mathcal{V}_B(B^H) \) is a separable \(C \)-algebra (see [4, Propositions 1.3 and 1.4]). But the center of \(\mathcal{V}_B(B^H) \) is \(C \) by Corollary 3.4, so \(\mathcal{V}_B(B^H) \) is an Azumaya \(C \)-algebra.

(3)\(\Rightarrow\)(1). Since \(\mathcal{V}_B(B^H) \) is an Azumaya \(C \)-algebra and \(B \) is a bimodule over \(\mathcal{V}_B(B^H) \), \(B \cong \mathcal{V}_B(B^H) \otimes_C \mathcal{V}_B(\mathcal{V}_B(\mathcal{V}_B(B^H))) = \mathcal{V}_B(B^H) \otimes_C B^H \) as a bimodule over \(\mathcal{V}_B(B^H) \) (see [1, Corollary 3.6, page 54]). Noting that \(B \cong \mathcal{V}_B(B^H) \otimes_C B^H \) is also an isomorphism as \(C \)-algebras and that \(\mathcal{V}_B(B^H) \) is an Azumaya \(C \)-algebra, we conclude that \(\mathcal{V}_B(B^H) \otimes_C B^H \) is a Hirata separable extension of \(B^H \); and so \(B \) is a Hirata separable extension of \(B^H \).

(3)\(\Rightarrow\)(2). By the proof of (3)\(\Rightarrow\)(1), \(B \cong \mathcal{V}_B(B^H) \otimes_C B^H \) such that \(\mathcal{V}_B(B^H) \) is a finitely generated and projective module over \(C \), so \(\mathcal{V}_B(B^H) \) is an \(h^*-\)Galois extension of \(C \) (see [2, Lemma 2.8]). Moreover, since \(\mathcal{V}_B(B^H) \) is an Azumaya
C-algebra, $V_B(B^H)$ is a direct summand of $V_B(B^H) \otimes_C (V_B(B^H))^\ast$ as a $V_B(B^H)$-bimodule, where $(V_B(B^H))^\ast$ is the opposite algebra of $V_B(B^H)$. But $V_B(B^H) \otimes_C (V_B(B^H))^\ast \cong \text{Hom}_C(V_B(B^H), V_B(B^H)) \cong V_B(B^H)\#H$ (see [3, Theorem 2.2]), so $V_B(B^H)$ is a direct summand of $V_B(B^H)\#H$ as a $V_B(B^H)$-bimodule.

(2)\Rightarrow(3). Since $V_B(B^H)$ is an H^\ast-Galois extension of C, $B^H \cdot V_B(B^H)$ is an H^\ast-Galois extension of $(B^H \cdot V_B(B^H))\#H$. But $(B^H \cdot V_B(B^H))\#H = B^H$, so $B^H \cdot V_B(B^H)$ and B are H^\ast-Galois extensions of B^H such that $B^H \cdot V_B(B^H) \subset B$. Hence, $B^H \cdot V_B(B^H) = B$ by Lemma 3.1. Thus, the centers of B and $V_B(B^H)$ are the same C. Moreover, $V_B(B^H)$ is a direct summand of $V_B(B^H)\#H$ as a $V_B(B^H)$-bimodule by hypothesis, so it is a separable C-algebra (see [3, Theorem 2.3]). Thus, $V_B(B^H)$ is an Azumaya C-algebra. But then $B \cong V_B(B^H) \otimes_C V_B(B^H)$). On the other hand, by hypothesis, $V_B(B^H)$ is an H^\ast-Galois extension of C, so $B \cong V_B(B^H) \otimes_C V_B(B^H)$ (see [2, Lemma 2.8]). Therefore, $V_B(V_B(B^H)) = B^H$.

(3)\Leftrightarrow(4). Since $V_B(B^H)$ is an H^\ast-Galois extension of C, it is a finitely generated and projective module over C and $\text{Hom}_C(V_B(B^H), V_B(B^H)) \cong V_B(B^H)\#H$ (see [3, Theorem 2.2]). But then $V_B(B^H)$ is a Hirata separable extension of C if and only if $V_B(B^H)\#H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$ (see [5, Corollary 3]). Thus, $V_B(B^H)$ is an Azumaya C-algebra if and only if $V_B(B^H)$ is an H^\ast-Galois extension of C and $V_B(B^H)\#H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

By Theorem 3.5, we can obtain a relationship between the class of H^\ast-Galois Hirata extensions and the class of H^\ast-Galois Azumaya extensions which were studied in [3, 7].

Corollary 3.6. Let B be an H^\ast-Galois Azumaya extension of B^H. Then B is an H^\ast-Galois Hirata extension of B^H if and only if $C = C^H$.

Proof. (\Rightarrow) Since B is an H^\ast-Galois Hirata extension of B^H, $V_B(B^H)$ is an Azumaya algebra over C and a left H-Galois extension of C (see [8, Theorem 2.6]). Hence, $V_B(V_B(B^H)) = B^H$ (see [8, Lemma 2.5]). Thus, $C \subset B^H$; and so $C = C^H$.

(\Leftarrow) Since B is an H^\ast-Galois Azumaya extension of B^H, $V_B(B^H)$ is separable over C^H (see [3, Lemma 4.1]). Since B is an H^\ast-Galois Azumaya extension of B^H again, $V_B(B^H)$ is an H^\ast-Galois extension of $(V_B(B^H))\#H$ (see [3, Lemma 4.1]), so both $B^H \cdot V_B(B^H)$ and B are H^\ast-Galois extensions of B^H such that $B^H \cdot V_B(B^H) \subset B$. Hence, $B^H \cdot V_B(B^H) = B$ by Lemma 3.1. This implies that the center of $V_B(B^H)$ is C. But by hypothesis, $C = C^H$, so $V_B(B^H)$ is an Azumaya C-algebra. Hence, $V_B(B^H)$ is a Hirata separable extension of C. But $B = B^H \cdot V_B(B^H) \cong B^H \otimes_C V_B(B^H)$ as Azumaya C-algebras, so B is a Hirata separable extension of B^H. Thus, B is an H^\ast-Galois Hirata extension of B^H.

Corollary 3.7. Let B be an H^\ast-Galois Hirata extension of B^H. Then B is an H^\ast-Galois Azumaya extension of B^H if and only if B is an Azumaya C^H-algebra.
Proof. \((\Rightarrow)\) Since \(B\) is an \(H^*-\text{Galois Azumaya extension of } BH\), \(BH\) is an Azumaya \(C^H\)-algebra and \(B\) is separable over \(BH\) (see [3, Theorem 3.4]). Hence, \(B\) is separable over \(C^H\) by the transitivity of separable extensions. But \(B\) is an \(H^*-\text{Galois Azumaya extension of } BH\) and an \(H^*-\text{Galois Hirata extension of } BH\) by hypothesis, so \(C = C^H\) by Corollary 3.6. This implies that \(B\) is an Azumaya \(C^H\)-algebra.

\((\Leftarrow)\) By hypothesis, \(B\) is an Azumaya \(C^H\)-algebra. Hence, \(C = C^H\). But \(B\) is an \(H^*-\text{Galois Hirata extension of } BH\) again, \(B\) is a Hirata separable extension of \(BH\) and a finitely generated and projective module over \(BH\). Thus, \(V_B(V_B(BH)) = BH\) (see [8, Lemma 2.5]); and so \(BH = V_B(V_B(BH))\) is an Azumaya subalgebra of \(B\) over \(C^H\) by the commutator theorem for Azumaya algebras (see [1, Theorem 4.3, page 57]). This proves that \(B\) is an \(H^*-\text{Galois Azumaya extension of } BH\).

4. Invariant subalgebras. For an \(H^*-\text{Galois Hirata extension } B\) as given in Theorem 3.5, let \(A\) be a subalgebra of \(BH\) over \(C\) such that \(BH\) is a projective Hirata separable extension of \(A\) and contains \(A\) as a direct summand as an \(A\)-bimodule. In this section, we show that \(V_B(A)\) is an \(H\)-invariant subalgebra of a separable subalgebra \(D\) in \(B\) over \(C\), that is, \(D^H = V_B(A)\). We denote by \(\mathcal{F}\) the set \(\{A \mid A\text{ is an }\mathcal{H}\text{-subalgebra of } BH\text{ over } C\}\) such that \(V_B(A)\) is a separable \(C\)-algebra (see Corollary 3.4 and [6, Theorem 1]).

Lemma 4.1. Let \(B\) be an \(H^*-\text{Galois Hirata extension of } BH\). For any \(A \in \mathcal{F}\), \(V_B(A)\) is an \(H\)-submodule algebra of \(B\) and separable over \(C\), and \((V_B(A))^H = V_B(A)\) which is a separable \(C\)-algebra.

Proof. Since \(A \in \mathcal{F}\), \(BH\) is a projective Hirata separable extension of \(A\) and contains \(A\) as a direct summand as an \(A\)-bimodule. But \(B\) is an \(H^*-\text{Galois Hirata extension of } BH\), so \(B\) is a projective Hirata separable extension of \(BH\). Hence, by the transitivity property of projective Hirata separable extensions, \(B\) is a projective Hirata separable extension of \(A\). Also \(BH\) is a direct summand of \(B\) as a \(BH\)-bimodule by Lemma 3.2, so \(A\) is a direct summand of \(B\) as an \(A\)-bimodule. Thus, \(V_B(A)\) is a separable algebra over \(C\) (see [6, Theorem 1]). Moreover, it is clear that \((V_B(A))^H = V_B(A)\), so \(V_B(A)\) is a separable \(C\)-algebra (see Corollary 3.4 and [6, Theorem 1]).

Next we want to show which separable subalgebra of \(BH\) over \(C\) is an \(H\)-invariant subring of an \(H\)-submodule algebra in \(B\). Let \(\mathcal{T} = \{E \subset B \mid E\text{ is a separable }C\text{-subalgebra of } BH\text{ and satisfies the double centralizer property in } BH\text{ such that } V_B(E) \in \mathcal{F}\}\). Next we show that for any \(E \in \mathcal{T}\), \(E\) is the \(H\)-invariant subring of an \(H\)-submodule algebra \(D\) in \(B\) which is separable over \(C\).

Theorem 4.2. Let \(E\) be in \(\mathcal{T}\). Then there exists an \(H\)-submodule algebra \(D\) in \(B\) which is separable over \(C\) such that \(D^H = E\).
Proof. Since E is in \mathcal{F}, $V_B H(E)$ is in \mathcal{F} such that $V_B H(V_B H(E)) = E$. Now by Lemma 4.1, $V_B H(V_B H(E))$ is an H-submodule algebra of B and separable over C such that $(V_B H(V_B H(E)))^H = V_B H(V_B H(E))$. But $V_B H(V_B H(E)) = E$, so

$$(V_B H(V_B H(E)))^H = E.$$ (4.1)

Let $D = V_B H(V_B H(E))$. Then D satisfies the theorem.

By Theorem 4.2, we obtain an expression for the separable H-submodule algebra D for a given E in \mathcal{F}.

Corollary 4.3. By keeping the notations as given in Theorem 4.2, let Z be the center of E. Then $D \cong E \otimes_Z V_D(E)$ as Azumaya Z-algebras.

Proof. Since E satisfies the double centralizer property in B^H, $V_B H(V_B H(E)) = E$. Hence, the centers of E and $V_B H(E)$ are the same Z. Similarly as given in the proof of Lemma 4.1, since $V_B H(E)$ is in \mathcal{F}, $B (= B^H \cdot V_B H(B^H))$ is a projective Hirata separable extension of $V_B H(E)$ and contains $V_B H(E)$ as a direct summand as a $V_B H(E)$-bimodule by the transitivity property of projective Hirata separable extensions and the direct summand conditions. Thus, $V_B H(E)$ satisfies the double centralizer property in B, that is, $V_B (V_B (V_B H(E))) = V_B H(E)$. This implies that the centers of $V_B H(E)$ and $V_B (V_B H(E))$ are the same. Therefore, D and E have the same center Z. Noting that D and E are separable C-algebras by Theorem 4.2, we conclude that $E (= D^H)$ is an Azumaya subalgebra of D over Z; and so $D \cong E \otimes_Z V_D(E)$ as Azumaya Z-algebras (see [1, Theorem 4.3, page 57]).

Remark 4.4. When B is an H^*-Galois Azumaya extension of B^H, the correspondence $A \rightarrow V_B (A)$ as given in Lemma 4.1 recovers the one-to-one correspondence between the set of separable subalgebras of B^H and the set of H^*-Galois extensions in B containing $V_B (B^H)$ as given in [3].

Acknowledgments. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

References

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: lxue@hilltop.bradley.edu