PARA-f-LIE GROUPS

ANDREW BUCKI

Received 11 November 2002

Special para-f-structures on Lie groups are studied. It is shown that every para-f-Lie group G is the quotient of the product of an almost product Lie group and a Lie group with trivial para-f-structure by a discrete subgroup.

2000 Mathematics Subject Classification: 53C15, 22E15.

1. Para-f-structures. The notion of a para-f-structure on a differentiable manifold was introduced and studied in [2].

Let M be an n-dimensional differentiable manifold of class C^∞. The set of all vector fields on M will be denoted by $\mathfrak{X}(M)$ and the tangent space of M at a point $m \in M$ by T_mM.

Definition 1.1. Let M be an n-dimensional differentiable manifold. If φ is an endomorphism field of constant rank k on M satisfying

$$\varphi^3 - \varphi = 0,$$

then φ is called a **para-f-structure** on M and M is a para-f-manifold.

Definition 1.2. A para-f-structure φ on M is **integrable** if there exists a coordinate system in which φ has constant components

$$\begin{bmatrix}
I_p & 0 & 0 \\
0 & -I_q & 0 \\
0 & 0 & 0
\end{bmatrix},$$

where I is the unit matrix and $p + q = k$.

Proposition 1.3. A para-f-structure φ on M is integrable if and only if its Nijenhuis tensor field N_φ vanishes, that is,

$$N_\varphi(X,Y) = [\varphi X, \varphi Y] - \varphi[\varphi X,Y] - \varphi[X,\varphi Y] + \varphi^2[X,Y] = 0,$$

where $X,Y \in \mathfrak{X}(M)$.

For a para-f-structure φ on M, let
\begin{align}
\ker \varphi &= \bigcup_{m \in M} (\ker \varphi)_m, \\
\im \varphi &= \bigcup_{m \in M} (\im \varphi)_m
\end{align}
(1.4)
be the kernel and image of φ, respectively, where
\begin{align}
(\ker \varphi)_m &= \{X \in T_mM; \varphi_m(X) = 0\}, \\
(\im \varphi)_m &= \{Y \in T_mM; Y = \varphi_m(X) \text{ for some } X \in T_mM\}
\end{align}
(1.5)
are the kernel and image of φ at any point $m \in M$, respectively.

Proposition 1.4. If $(\ker \varphi)_m = \{0\}$ for a para-f-structure φ for all $m \in M$, then φ is an almost product structure on M, that is, $\varphi^2 = \Id$.

Proposition 1.5. If $(\im \varphi)_m = \{0\}$ for a para-f-structure φ for all $m \in M$, then φ is the trivial para-f-structure on M, that is, $\varphi = 0$.

Proposition 1.6. If φ is a para-f-structure on M, then
\[\ker \varphi \cap \im \varphi = \{0\}. \]
(1.6)

Proof. If $Z \in \ker \varphi \cap \im \varphi$, then $\varphi(Z) = 0$, and there exists X such that $\varphi(X) = Z$. Hence $\varphi^2(X) = 0$, and from Definition 1.1, we get $0 = \varphi^3(X) = \varphi(X) = Z$. \hfill \Box

Definition 1.7. Let φ_i be a para-f-structure on a para-f-manifold M_i with $i = 1, 2$. A diffeomorphism $h : M_1 \to M_2$ is called a para-f-map if
\[\varphi_2 \circ h_\ast = h_\ast \circ \varphi_1, \]
(1.7)
where h_\ast is the differential of h.

2. Para-f-Lie groups. In this section, the notion of a para-f-Lie group is introduced. Some properties of its Lie algebra are established. Finally, its special decomposition in terms of an almost product Lie group and a Lie group with trivial para-f-structure is proved.

Let G be a Lie group and \mathfrak{g} its Lie algebra. As usual, we define
\begin{align}
L_g : G &\to G \quad \text{(left multiplication by } g \in G), \\
R_g : G &\to G \quad \text{(right multiplication by } g \in G), \\
ad_g : G &\to G, \quad a \mapsto ad_g(a) = gag^{-1}, \\
\Ad_X : \mathfrak{g} &\to \mathfrak{g}, \quad Y \mapsto \Ad_X(Y) = [X,Y].
\end{align}
(2.1)

Definition 2.1. Let G be a Lie group with a para-f-structure φ. If both L_g and R_g are para-f-maps, then φ is said to be bi-invariant.
Definition 2.2. If \(G \) is a Lie group with an integrable bi-invariant para-f-structure \(\varphi \), then \(G \) is called a *para-f-Lie* group.

Proposition 2.3. If \(\varphi \) is a bi-invariant para-f-structure on a Lie group \(G \), then

\[
\varphi[X,Y] = [\varphi(X),Y]
\]

(2.2)

for all \(X,Y \in \mathfrak{g} \).

Proof. Since \(\varphi \circ (L_g)_* = (L_g)_* \circ \varphi \) and \(\varphi \circ (R_g)_* = (R_g)_* \circ \varphi \), we have \(\varphi \circ (\text{ad}_g)_* = (\text{ad}_g)_* \circ \varphi \) for all \(g \in G \). If \(g = \exp(tX) \), where \(t \in \mathbb{R} \), then \(\varphi \circ (\text{ad}_{\exp(tX)})_* = (\text{ad}_{\exp(tX)})_* \circ \varphi \). Hence, by a standard result in Lie groups,

\[
\varphi \circ e^{\text{Ad}_{tX}} = e^{\text{Ad}_{tX}} \circ \varphi,
\]

(2.3)

or, for any \(Y \in \mathfrak{g} \),

\[
\varphi\left(Y + t[X,Y] + \frac{t^2}{2!}[X,[X,Y]] + \cdots\right) = \varphi(Y) + t[X,\varphi(Y)] + \frac{t^2}{2!}[X,[X,\varphi(Y)]] + \cdots.
\]

(2.4)

Hence,

\[
\varphi[X,Y] + \frac{t}{2!}[X,[X,Y]] + \cdots = [X,\varphi(Y)] + \frac{t}{2!}[X,[X,\varphi(Y)]] + \cdots.
\]

(2.5)

Letting \(t \to 0 \) in (2.5) gives us the desired result.

Proposition 2.4. A bi-invariant para-f-structure \(\varphi \) on a Lie group \(G \) is integrable.

Proof. From Proposition 2.3, the Nijenhuis tensor of a bi-invariant para-f-structure \(\varphi \) must vanish at the unity \(e \) of \(G \).

Corollary 2.5. A Lie group \(G \) with a bi-invariant para-f-structure \(\varphi \) is a para-f-Lie group.

Example 2.6. Let \(G = \text{GL}(n,\mathbb{R}) \) be the group of all real nonsingular \(n \times n \) matrices. Let \(\varphi : G \to G, \ X \mapsto \varphi(X) = X - (1/n) \text{trace}(X)I \), where \(I \) is the unit matrix. Then \(\varphi \) is a bi-invariant para-f-structure on \(G \).

Proposition 2.7. Let \(G \) be a para-f-Lie group with a para-f-structure \(\varphi \). Then its Lie algebra \(\mathfrak{g} \) is expressed as

\[
\mathfrak{g} = V_k \oplus V_i,
\]

(2.6)

the direct sum (as a Lie algebra), where \(V_k = (\ker \varphi)_e \) and \(V_i = (\text{im} \varphi)_e \) are subalgebras of \(\mathfrak{g} \), and \(e \in G \) is the unity of \(G \).
Proof. From Proposition 1.6, \(V_k \cap V_i = \{0\} \). Therefore, \(g \) is the direct sum (as a vector space) of \(V_k \) and \(V_i \). It is clear, from Proposition 2.3, that both \(V_k \) and \(V_i \) are Lie subalgebras of \(g \). Furthermore, if \(X = \phi(Z) \in V_i \) and \(Y \in V_k \), then, again applying Proposition 2.3, \([X,Y] = \phi[Z,Y] = [Z,\phi(Y)] = 0 \). Hence, \(g = V_k \oplus V_i \) as a Lie algebra.

Theorem 2.8. Every para-f-Lie group \(G \) is the quotient of the product of an almost product Lie group and a Lie group with trivial para-f-structure by a discrete subgroup.

Proof. Let \(V_k \) and \(V_i \) be subalgebras (defined in Proposition 2.7) of the Lie algebra \(g \) of a para-f-Lie group \(G \). From Proposition 2.7, \(g \) is the Lie algebra direct sum of \(V_k \) and \(V_i \). Using Propositions 1.4 and 1.5, we obtain the theorem from [4].

Remark 2.9. Since a para-f-structure with parallelizable kernel [2] is an almost \(r \)-paracontact structure [1], some examples of almost \(r \)-paracontact structures are used in [3] to illustrate para-f-Lie groups.

References

Andrew Bucki: Department of Mathematics, Oklahoma School of Science and Mathematics, Oklahoma City, OK 73104, USA

E-mail address: abucki@crystal.math.ou.edu