BIHARMONIC CURVES IN MINKOWSKI 3-SPACE

JUN-ICHI INOGUCHI

Received 13 August 2002

We give a differential geometric interpretation for the classification of biharmonic curves in semi-Euclidean 3-space due to Chen and Ishikawa (1991).

2000 Mathematics Subject Classification: 53A04, 53C50.

1. Introduction. Chen and Ishikawa [1] classified biharmonic curves in semi-Euclidean space \(E^n_\nu \). They showed that every biharmonic curve lies in a 3-dimensional totally geodesic subspace. Thus, it suffices to classify biharmonic curves in semi-Euclidean 3-space.

In this note, we point out that every biharmonic Frenet curve in Minkowski 3-space \(E^3_1 \) is a helix whose curvature \(\kappa \) and torsion \(\tau \) satisfy \(\kappa^2 = \tau^2 \).

2. Preliminaries. Let \((M^3,h)\) be a time-oriented Lorentz 3-manifold. Let \(\gamma: I \to M \) be a unit speed curve. Namely, the velocity vector field \(\gamma' \) satisfies \(h(\gamma',\gamma') = \varepsilon_1 = \pm 1 \). The constant \(\varepsilon_1 \) is called the causal character of \(\gamma \). A unit speed curve is said to be spacelike or timelike if its causal character is 1 or \(-1\), respectively.

A unit speed curve \(\gamma \) is said to be a geodesic if \(\nabla \gamma' \gamma' = 0 \). Here, \(\nabla \) is the Levi-Civita connection of \((M,h)\).

A unit speed curve \(\gamma \) is said to be a Frenet curve if \(h(\gamma'',\gamma''') \neq 0 \). Like Euclidean geometry, every Frenet curve \(\gamma \) in \((M,h)\) admits a Frenet frame field along \(\gamma \). Here, a Frenet frame field \(P = (p_1,p_2,p_3) \) is an orthonormal frame field along \(\gamma \) such that \(p_1 = \gamma'(s) \) and \(P \) satisfies the following Frenet-Serret formula (cf. [2]; see also [4, 5]):

\[
\nabla_{\gamma'} P = P \begin{pmatrix}
0 & -\varepsilon_1 \kappa & 0 \\
\varepsilon_2 \kappa & 0 & \varepsilon_2 \tau \\
0 & -\varepsilon_3 \tau & 0
\end{pmatrix}.
\]

(2.1)

The functions \(\kappa \geq 0 \) and \(\tau \) are called the curvature and torsion, respectively. The vector fields \(p_1, p_2, \) and \(p_3 \) are called tangent vector field, principal normal vector field, and binormal vector field of \(\gamma \), respectively. The constants \(\varepsilon_2 \) and \(\varepsilon_3 \) defined by

\[
\varepsilon_i = h(p_i,p_i), \quad i = 2, 3
\]

(2.2)
are called second causal character and third causal character of γ, respectively. Note that $\varepsilon_3 = -\varepsilon_1 \cdot \varepsilon_2$.

As in the case of Riemannian geometry, a Frenet curve γ is a geodesic if and only if $\kappa = 0$.

A Frenet curve with constant curvature and zero torsion is called a pseudo-circle.

A helix is a Frenet curve whose curvature and torsion are constants. Pseu-docircles are regarded as degenerate helices. Helices, which are not circles, are frequently called proper helices.

The mean curvature vector field H of a unit speed curve γ is $H = \varepsilon_1 \nabla_{\gamma'} \gamma'$. If γ is a Frenet curve, then H is given by

$$H = -\varepsilon_3 \kappa p_2.$$ (2.3)

To close this section, we recall the notion of biharmonicity for unit speed curves.

Let $\gamma = \gamma(s)$ be a unit speed curve in a Lorentz 3-manifold (M, h) defined on an interval I. Denote by $\gamma^* TM$ the vector bundle over I obtained by pulling back the tangent bundle TM:

$$\gamma^* TM := \bigcup_{s \in I} T_{\gamma(s)} M.$$ (2.4)

The Laplace operator Δ acting on the space $\Gamma(\gamma^* TM)$ of all smooth sections of $\gamma^* TM$ is given explicitly by

$$\Delta = -\varepsilon_1 \nabla_{\gamma'} \nabla_{\gamma'}.$$ (2.5)

Definition 2.1. A unit speed curve $\gamma : I \to M$ in a Lorentz 3-manifold M is said to be biharmonic if $\Delta H = 0$.

If M is the semi-Euclidean 3-space, then γ is biharmonic if and only if $\Delta \Delta \gamma = 0$.

3. Biharmonic curves. Chen and Ishikawa classified biharmonic curves in semi-Euclidean 3-space. In particular, they showed that in Euclidean 3-space, there are no proper biharmonic curves (i.e., biharmonic curves which are not harmonic). On the other hand, in indefinite semi-Euclidean 3-space, there exist proper biharmonic curves. Here, we recall their classification theorem.

Theorem 3.1 (see [1]). Let γ be a spacelike curve in indefinite semi-Euclidean 3-space E^3_1. Then, γ is biharmonic if and only if γ is congruent to one of the following:

1. a spacelike line;
2. a spacelike curve $\gamma(s) = (as^3 + bs^2, as^3 + bs^2, s)$ in E^3_1, where a and b are constants such that $a^2 + b^2 \neq 0$;
(3) a spacelike curve \(\gamma(s) = (a^2 s^3/6, as^2/2, -a^2 s^3/6 + s) \) in \(E_3^1 \), where \(a \) is a nonzero constant;
(4) a spacelike curve \(\gamma(s) = (a^2 s^3/6, as^2/2, a^2 s^3/6 + s) \) in \(E_3^2 \), where \(a \) is a nonzero constant.

To give a differential geometric interpretation of the above result, we need to start with the following general result (cf. [2]).

Theorem 3.2. Let \(\gamma : I \to M \) be a Frenet curve in a Lorentz 3-manifold \((M,h)\). Denote by \(\Delta \) the Laplace operator acting on \(\Gamma(\gamma^*TM) \). Then, \(\gamma \) satisfies \(\Delta H = \lambda H \) if and only if \(\gamma \) is a helix (including a geodesic). In this case, the eigenvalue \(\lambda \) is \(\lambda = -\varepsilon_3 (\varepsilon_1 \kappa^2 + \varepsilon_3 \tau^2) \).

Proof. Direct computation shows that
\[
\Delta H = -3\varepsilon_3 \kappa \kappa' \mathbf{p}_1 - \varepsilon_2 \{ \kappa'' - \varepsilon_2 \kappa (\varepsilon_1 \kappa^2 - \varepsilon_3 \tau^2) \} \mathbf{p}_2 - \varepsilon_1 (2\kappa' \tau + \kappa \tau') \mathbf{p}_3.
\] (3.1)
Thus, \(\Delta H = \lambda H \) if and only if
\[
\kappa \kappa' = 0, \quad 2\kappa' \tau + \kappa \tau = 0, \quad \kappa'' - \varepsilon_2 \kappa (\varepsilon_1 \kappa^2 + \varepsilon_3 \tau^2) = -\varepsilon_1 \lambda \kappa.
\] (3.2)
These formulae imply that \(\gamma \) is a spacelike or timelike helix whose curvature and torsion satisfy \(\lambda = -\varepsilon_3 (\varepsilon_1 \kappa^2 + \varepsilon_3 \tau^2) \).

Theorem 3.2 implies the following two results.

Corollary 3.3. Let \(\gamma \) be a Frenet curve in a Lorentz 3-manifold \((M,h)\). Then, \(\gamma \) is a nongeodesic biharmonic curve if and only if it is one of the following:
(1) \(\gamma \) is a spacelike helix with a spacelike principal normal such that \(\kappa = \pm \tau \);
(2) \(\gamma \) is a timelike helix such that \(\kappa = \pm \tau \).

Note that there exist no biharmonic spacelike curves in \(M \) with spacelike principal normals.

Corollary 3.4. Let \(\gamma \) be a Frenet curve in \((M,h)\). Then, \(\gamma \) is a helix if and only if
\[
\nabla_{\gamma'} \nabla_{\gamma'} \kappa H \gamma' = 0 \quad (3.3)
\] for some constant \(\mathcal{H} \). In this case, the constant \(\mathcal{H} \) equals \(-\varepsilon_2 (\varepsilon_1 \kappa^2 + \varepsilon_3 \tau^2) \).

Note that Ikawa obtained **Corollary 3.4** for timelike curves (see [3, Proposition 4.1]). Thus, we give here an analytic meaning of (3.3). Since we treat both spacelike and timelike curves in **Corollary 3.4**, we get a generalisation of [3, Proposition 4.1].

In the case where \(M \) is the Minkowski 3-space \(E_3^1 \), it is known that helices with \(\tau = \pm \kappa \neq 0 \) are cubic curves, and one can explicitly give the formula of such helices (see, e.g., Kobayashi [6]). Moreover, it is easy to check that such spacelike helices are congruent to the curves given in **Theorem 3.1**.
Now, we rephrase the classification due to Chen and Ishikawa. Since case (4) in Theorem 3.1 is the image of a timelike helix satisfying $\kappa^2 = \tau^2 = a^2$ under the following anti-isometry from \mathbb{E}_1^3 onto \mathbb{E}_2^3:

$$\mathbb{E}_1^3 \ni (u,v,w) \mapsto (w,v,u),$$

we may restrict our attention to curves in Minkowski 3-space \mathbb{E}_1^3.

Proposition 3.5. Let γ be a unit speed curve in Minkowski 3-space \mathbb{E}_1^3. Then, γ is biharmonic if and only if γ is congruent to one of the following:

1. a spacelike or timelike line;
2. a spacelike curve such that $h(\gamma'', \gamma'') = 0$ is given by

$$\gamma(s) = \left(as^3 + bs^2, as^3 + bs^2, s\right),$$

where a and b are constants such that $a^2 + b^2 \neq 0$;
3. a spacelike helix with a spacelike principal normal vector field satisfying $\kappa^2 = \tau^2 = a^2$;

$$\gamma(s) = \left(\frac{a^2 s^3}{6}, \frac{as^2}{2}, \frac{-a^2 s^3}{6} + s\right);$$

4. a timelike helix satisfying $\kappa^2 = \tau^2 = a^2$;

$$\gamma(s) = \left(\frac{a^2 s^3}{6} + s, \frac{as^2}{2}, \frac{a^2 s^3}{6}\right).$$

References

Jun-Ichi Inoguchi: Department of Mathematics Education, Faculty of Education, Utsunomiya University, Minemachi 350, Utsunomiya 321-8505, Japan

E-mail address: inoguchi@cc.utsunomiya-u.ac.jp