ON A THIN SET OF INTEGERS INVOLVING
THE LARGEST PRIME FACTOR
FUNCTION

JEAN-MARIE DE KONINCK and NICOLAS DOYON

Received 22 April 2002

For each integer \(n \geq 2 \), let \(P(n) \) denote its largest prime factor. Let \(S := \{ n \geq 2 : n \text{ does not divide } P(n)! \} \) and \(S(x) := \# \{ n \leq x : n \in S \} \). Erdős (1991) conjectured that \(S \) is a set of zero density. This was proved by Kastanas (1994) who established that \(S(x) = O(x/\log x) \). Recently, Akbik (1999) proved that \(S(x) = O(x^{\exp\{-(1/4)\sqrt{\log x}\}}) \). In this paper, we show that \(S(x) = x^{\exp\{-2 + o(1)\}\times\sqrt{\log x/\log\log x}} \). We also investigate small and large gaps among the elements of \(S \) and state some conjectures.

2000 Mathematics Subject Classification: 11B05, 11N25.

1. Introduction. For each integer \(n \geq 2 \), let \(P(n) \) denote its largest prime factor and let

\[
S := \{ n \geq 2 : n \text{ does not divide } P(n)! \}, \quad S(x) := \# \{ n \leq x : n \in S \}. \tag{1.1}
\]

Thus, the first 25 elements of \(S \) are

\[
4, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 45, 48, 49, 50, 54, 64, 72, 75, 80, 81, 90, 96, 98, 100, \tag{1.2}
\]

while using a computer, we easily obtain that \(S(10) = 3, S(100) = 25, S(1000) = 127, S(10^4) = 593, S(10^5) = 2806, S(10^6) = 13567, S(10^7) = 67252, \) and \(S(10^8) = 342022 \).

In 1991, Erdős [2] challenged his readers to prove that \(S \) is a set of zero density. In 1994, Kastanas [4] proved that result, while K. Ford (see [4]) observed that \(S(x) = O(x/\log x) \). In 1999, Akbik [1] proved that \(S(x) = O(x^{\exp\{-(1/4)\sqrt{\log x}\}}) \).

Our main goal here is to prove that

\[
S(x) = x^{\exp\{-2 + o(1)\}\times\sqrt{\log x/\log\log x}}. \tag{1.3}
\]
In order to prove (1.3), we establish the following two bounds valid for each fixed \(\delta > 0 \):

\[
S(x) \gg x \exp \left\{ -2(1 + \delta) \sqrt{\log x \log \log x} \right\}, \tag{1.4}
\]

\[
S(x) \ll x \exp \left\{ -2(1 - \delta) \sqrt{\log x \log \log x} \right\}. \tag{1.5}
\]

Finally, we investigate small and large gaps among the elements of \(S \) and state some conjectures.

2. The lower bound for \(S(x) \). Let \(\delta > 0 \) be small and fixed. Since every integer \(n \geq 2 \) divisible by the square of its largest prime factor must belong to \(S \), we have that

\[
S(x) \geq \sum_{p \leq \sqrt{x}} \sum_{m p^2 \leq x \atop P(m) \leq p} 1 = \sum_{p \leq \sqrt{x}} \sum_{m \leq x/p^2 \atop P(m) \leq p} 1 = \sum_{p \leq \sqrt{x}} \Psi \left(\frac{x}{p^2}, p \right), \tag{2.1}
\]

where \(\Psi(x, y) := \# \{ n \leq x : P(n) \leq y \} \).

Setting \(u = \log x / \log y \), we recall Hildebrand’s estimate \[3\]

\[
\Psi(x, y) = x \rho(u) \left\{ 1 + O \left(\frac{\log(u + 1)}{\log y} \right) \right\}, \tag{2.2}
\]

which holds for

\[
\exp \left\{ (\log \log x)^{5/3 + \epsilon} \right\} \leq y \leq x, \tag{2.3}
\]

where \(\epsilon > 0 \) is any fixed real number, and where \(\rho \) stands for Dickman’s function whose asymptotic behaviour is given by

\[
\rho(u) = \exp \left\{ -u \left(\log u + \log \log u - 1 + O \left(\frac{\log \log u}{\log u} \right) \right) \right\} (u \to \infty). \tag{2.4}
\]

It follows from this last estimate that if \(u \) is sufficiently large, then

\[
\log \rho(u) \geq -(1 + \delta) u \log u. \tag{2.5}
\]

Hence, if we choose \(r \) sufficiently large, say \(r \geq r_0 \geq 2 \), then for each \(y \leq x^{1/r} \), we have \(u = \log x / \log y \geq r \), thereby guaranteeing the validity of (2.5).
Therefore, it follows from (2.4) and (2.5) that, with \(u = \log(x/p^2)/\log p = \log x/\log p - 2 \),

\[
\log \rho(u) \geq -(1 + \delta) \frac{\log x}{\log p} \log \log x \quad (u \geq r_0) \tag{2.6}
\]

and hence (2.1) and (2.2) yield

\[
S(x) \gg x \sum_{e(x^{1/2} \leq p \leq x^{1/r}} \frac{1}{p^2 e((1+\delta)(\log x/\log p) \log \log x)}
\]

\[
= x \int_{e(\log x^{5/3+\varepsilon})}^{x^{1/r}} \frac{d\pi(t)}{t^2 \cdot e^{((1+\delta)(\log x/\log t) \log \log x}}
\tag{2.7}
\]

where \(\pi(t) \) stands for the number of primes not exceeding \(t \). Now, set

\[
L_\delta(x) := \sqrt{(1 + \delta) \log x \log \log x} \quad (x \geq 3) \tag{2.8}
\]

so that, for any \(\delta_1 > 0 \), we have, for \(x \) sufficiently large,

\[
[L_\delta(x), (1 + \delta_1)L_\delta(x)] \subset \left[(\log \log x)^{5/3+\varepsilon}, \frac{1}{r} \log x \right]. \tag{2.9}
\]

Using this, it follows from (2.7) that setting \(J(x) := [eL_\delta(x), e((1+\delta_1)L_\delta(x))], \)

\[
S(x) \gg x \int_{t \in J(x)} \frac{d\pi(t)}{t^2 \cdot e^{((1+\delta)(\log x/\log t) \log \log x}}
\]

\[
> x \min_{t \in J(x)} \left(\frac{1}{t^2 \cdot e^{((1+\delta)(\log x/\log t) \log \log x}} \right) \int_{t \in J(x)} d\pi(t). \tag{2.10}
\]

Now, observe that since \(t/\log t < \pi(t) < 2(t/\log t) \) for \(t \geq 11 \), we have that

\[
\int_{t \in J(x)} d\pi(t) = \pi(e^{(1+\delta_1)L_\delta(x)}) - \pi(e^{L_\delta(x)})
\]

\[
> \frac{e^{(1+\delta_1)L_\delta(x)}}{(1 + \delta_1)L_\delta(x)} - \frac{e^{L_\delta(x)}}{L_\delta(x)} \tag{2.11}
\]

\[
\gg \frac{e^{(1+\delta_1)L_\delta(x)}}{(1 + \delta_1)L_\delta(x)}. \]
On the other hand, setting \(v = \log t \) and afterwards \(w = v/L_\delta(x) \), we have

\[
\min_{t \in J(x)} \left(\frac{1}{t^2} e^{(1+\delta)(\log x/\log t) \log \log x} \right)
\]

\[
= \min_{1 \leq w \leq 1+\delta_1} \left(\frac{1}{e^{2wL_\delta(x)}(1+\delta)(\log x/wL_\delta(x)) \log \log x} \right)
\]

\[
\geq \frac{1}{e^{(3+2\delta_1)L_\delta(x)}}
\]

(2.12)

since \(2w + 1/w \leq 2 + 2\delta_1 + 1 = 3 + 2\delta_1 \) for each \(w \in [1, 1+\delta_1] \).

Hence, using (2.11) and (2.12), it follows from (2.10) that

\[
S(x) \gg x e^{(1+\delta_1)L_\delta(x)} \cdot \frac{1}{(1+\delta_1)L_\delta(x)} \cdot \frac{1}{e^{(3+2\delta_1)L_\delta(x)}}
\]

\[
\geq x e^{-2(1+\delta_1)L_\delta(x)},
\]

(2.13)

which establishes (1.4) by taking \(\delta_1 \) sufficiently small.

3. The upper bound for \(S(x) \). First, we establish that

\[
S(x) < \sum_{2 \leq r < \log x/\log 2} \sum_{p < x^{1/r}} \frac{\Psi(x/p^r, p^r)}{p^r}
\]

(3.1)

Actually, this inequality is based on a very simple observation; namely, the fact that if \(n \in S \), then there exist a prime \(p \) and an integer \(r \geq 2 \) such that \(p^r \) divides \(n \) but does not divide \(P(n)! \), in which case \(P(n) < p r \). Hence, writing \(n = p^r m \), we have that \(P(m) \leq P(n) < p r \). These conditions imply that if \(n \in S \) and \(n \leq x \), then we have \(r < \log x/\log 2, p < x^{1/r}, m < x/p^r, \) and \(P(m) < p r \), thus proving (3.1).

We now move to find an upper bound for the inner sum on the right-hand side of (3.1); namely, \(\sum_{p < x^{1/r}} \Psi(x/p^r, p^r) \), uniformly for all \(r \geq 2 \). For this purpose, we fix \(r \geq 2 \) and separate this sum on \(p \) into three distinct sums as follows:

\[
\sum_{p < x^{1/r}} \Psi\left(\frac{x}{p^r}, p^r\right) = S_1(x) + S_2(x) + S_3(x),
\]

(3.2)
where the sums $S_1(x)$, $S_2(x)$, and $S_3(x)$ run, respectively, in the following ranges:

$$p \leq \exp \{(\log \log x)^2\},$$
$$\exp \{(\log \log x)^2\} < p \leq \exp \left\{ 2 \sqrt{\log x \log \log x} \right\},$$
$$\exp \left\{ 2 \sqrt{\log x \log \log x} \right\} < p < x^{1/r}.\tag{3.3}$$

The first sum is negligible since it is clear that, using the well-known estimate,

$$\Psi(X, Y) \ll X e^{-\frac{1}{2} \log X / \log Y} \quad (X \geq Y \geq 2) \tag{3.4}$$

(see, e.g., Tenenbaum [5, Chapter III.5, Theorem 1]), we get that

$$S_1(x) < \exp \{(\log \log x)^2\} \Psi \left(x^{\log x \log 2 / \log \log x} \exp \{(\log \log x)^2\} \right)$$
$$\ll x e^{(-1/2+o(1))(\log x/(\log \log x)^2)} \tag{3.5}.$$

The third one is also easily bounded since

$$S_3(x) < \sum_{\exp \left\{ 2 \sqrt{\log x \log \log x} \right\} < p < x^{1/r}} \frac{x}{p^r}$$
$$\ll x \sum_{p > \exp \left\{ 2 \sqrt{\log x \log \log x} \right\}} \frac{1}{p^2}$$
$$\ll x \exp \left\{ -2 \sqrt{\log x \log \log x} \right\}.\tag{3.6}$$

To estimate $S_2(x)$, we use essentially the same technique as in the proof of (1.4).

First, it follows from (2.4) that

$$\log \rho(u) \leq -u \log(u) \tag{3.7}$$

provided u is sufficiently large. Then, with the same approach as in the proof of (1.4), we get that, for each fixed integer $r \geq 2$,

$$S_2(x) \ll x \int_{1}^{2 \sqrt{\log x \log \log x}} \frac{dv}{v^{r-1} e^v + \log x \log \log x / v}. \tag{3.8}$$
Now, set \(f(v) = v + \log x \log \log x / v \). Since \(f'(v) = 1 - \log x \log \log x / v^2 \) and \(f'(v) = 0 \) when \(v = v_0 = \sqrt{\log x \log \log x} \), it is easy to see that \(v_0 \) is indeed a minimum for \(f \). From this, it follows that

\[
v + \frac{\log x \log \log x}{v} \geq f(v_0) = 2\sqrt{\log x \log \log x} \quad \text{for each} \quad v \in \left[1, 2\sqrt{\log x \log \log x}\right].
\]

(3.9)

Using this in (3.8), we conclude that

\[
S_2(x) \ll x \exp \left\{ -2\sqrt{\log x \log \log x} \right\} \int_1^{2\sqrt{\log x \log \log x}} \frac{dv}{v^{r-1}} \ll x \log \left(2\sqrt{\log x \log \log x}\right) \exp \left\{ -2\sqrt{\log x \log \log x} \right\}.
\]

(3.10)

Combining (3.1), (3.2), (3.5), (3.6), and (3.10), we get (1.5).

4. Small and large gaps among elements of \(S \). We can easily show that there are infinitely many \(n \in S \) such that \(n + 1 \in S \). This follows from the fact that the Pell equation

\[
x^2 - 2y^2 = 1
\]

(4.1)

has infinitely many solutions. Indeed, if \((x, y)\) is a solution of (4.1), then by setting \(n = 2y^2 \) and \(n + 1 = x^2 \), we have that \(P(n)^2 \) and \(P(n + 1)^2 \), in which case \(n \) does not divide \(P(n)! \) and \(n + 1 \) does not divide \(P(n + 1)! \), which guarantees that \(n, n + 1 \in S \). In fact, if \(T_2 \) stands for the set of those \(n \in S \) such that \(n + 1 \in S \) and if \(T_2(x) = \# \{ n \leq x : n \in T_2 \} \), then it follows easily from the above that \(T_2(x) \gg \log x \). In fact, most certainly, the true order of \(T_2(x) \) is much larger than \(\log x \), but we could not prove it.

It seems strange that such twin elements of \(S \), that is, pairs of numbers \(n \) and \(n + 1 \) both in \(S \), are more difficult to count than pairs of numbers \(n \) and \(n + 4 \) both in \(S \). Indeed, if \(F_4 \) stands for the set of those \(n \in S \) such that \(n + 4 \in S \) and if \(F_4(x) = \# \{ n \leq x : n \in F_4 \} \), then we can show that

\[
F_4(x) \gg \frac{x^{1/4}}{\log x}.
\]

(4.2)

Indeed, observe that given any prime \(p \), then both numbers \(n = p^4 - 4p^2 = p^2(p^2 - 4) = p^2(p-2)(p+2) \) and \(n + 4 = p^4 - 4p^2 + 4 = (p^2 - 2)^2 \) belong to \(S \). Since there are at least \(\pi(x^{1/4}) \) such pairs up to \(x \), estimate (4.2) follows from
Chebychev’s inequality $\pi(y) \gg y/\log y$. Finally, note that $T_2(10^8) = 1175$, while $F_4(10^8) = 1261$.

More generally, we conjecture that given any positive $k \geq 3$, the set $T_k := \{n \in S : n + 1, n + 2, \ldots, n + k - 1 \in S\}$ is also an infinite set. We could not prove this to be true, even in the case where $k = 3$. Note that the only numbers less than 10^8 belonging to T_3 are 48, 118579, 629693, 1294298, 9841094, and 40692424.

As for large gaps among consecutive elements of S, it follows from the fact that S is a set of zero density that given any positive integer k, there are infinitely many integers n such that the intervals $[n, n + k]$ contain no element of S. Table 4.1 gives, for each positive integer k, the smallest integer $n = n(k) \in S$ such that both n and $n + 100k$ belong to S, while the open interval $(n, n + 100k)$ contains no element of S.

<table>
<thead>
<tr>
<th>$100k$</th>
<th>$n = n(k)$</th>
<th>$100k$</th>
<th>$n = n(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>21025</td>
<td>600</td>
<td>738606</td>
</tr>
<tr>
<td>200</td>
<td>78408</td>
<td>700</td>
<td>946832</td>
</tr>
<tr>
<td>300</td>
<td>369303</td>
<td>800</td>
<td>8000325</td>
</tr>
<tr>
<td>400</td>
<td>1250256</td>
<td>900</td>
<td>5382888</td>
</tr>
<tr>
<td>500</td>
<td>1639078</td>
<td>1000</td>
<td>5775000</td>
</tr>
</tbody>
</table>

It is quite easy to show that

$$n(k) \geq 2500k^2 - 100k + 1. \tag{4.3}$$

Indeed, since all perfect squares belong to S and since $(m + 1)^2 - m^2 = 2m + 1$, it follows that the interval $(n, n + 2m + 1)$ contains no element of S and, therefore, that $n \geq m^2$. Hence, given a positive integer k, choose m so that $100k = 2m + 2$, that is, $m = 50k - 1$. Then, clearly, we have that $n(k) \geq m^2 = (50k - 1)^2$, which proves (4.3).

It would also be interesting to obtain a decent upper bound for $n(k)$.

Acknowledgment. This research was supported in part by a grant from the Natural Sciences and Engineering Research Council (NSERC).

References

Jean-Marie De Koninck: Département de Mathématiques et de Statistique, Université Laval, Québec, Québec, Canada G1K 7P4
E-mail address: jmdk@mat.ulaval.ca

Nicolas Doyon: Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Québec, Canada H3C 3J7
E-mail address: doyon@dms.umontreal.ca