RIESZ BASES AND POSITIVE OPERATORS
ON HILBERT SPACE

JAMES R. HOLUB

Received 2 February 2002

It is shown that a normalized Riesz basis for a Hilbert space \(H \) (i.e., the isomorphic image of an orthonormal basis in \(H \)) induces in a natural way a new, but equivalent, inner product on \(H \) in which it is an orthonormal basis, thereby extending the sense in which Riesz bases and orthonormal bases are thought of as being the same. A consequence of the method of proof of this result yields a series representation for all positive isomorphisms on a Hilbert space.

2000 Mathematics Subject Classification: 46B15, 46C05, 47B65.

1. Introduction. Let \(H \) denote a Hilbert space (assumed real, for notational convenience) with inner product \((\cdot, \cdot)\) and let \(\{x_i\} \) be a basis for \(H \) having coefficient functionals \(\{f_i\} \) denoted by \(\{x_i, f_i\} \). We say that \(\{x_i, f_i\} \) is a Riesz basis for \(H \) if it has the property that \(\sum a_i x_i \) converges in \(H \) if and only if \(\{a_i\} \) is in the sequence space \(l^2 \). Equivalently, \(\{x_i, f_i\} \) is a Riesz basis for \(H \) if and only if there is an isomorphism \(U \) on \(H \) and some orthonormal basis \(\{\phi_i\} \) for \(H \) so that \(U \phi_i = x_i \) for all \(i \), implying that Riesz bases and orthonormal bases are the "same" in linear-topological terms, but differ in geometrical ones due to the additional orthogonality relations between basis vectors in an orthonormal basis that is lacking in a Riesz basis. The result below (Theorem 2.1) shows that this is, in a sense, an artificial distinction by showing that every Riesz basis, in fact, is an orthonormal basis for \(H \) under a different, but equivalent, inner product.

2. Main results

Theorem 2.1. Let \(\{x_i, f_i\} \) be a normalized Riesz basis for a Hilbert space \(H \). Then there is an equivalent inner product on \(H \) in which \(\{x_i\} \) is an orthonormal basis for \(H \) under the norm induced by this inner product.

Proof. If \(x \) and \(y \) are any two vectors in \(H \), then the sequences \(\{(f_i, x)\} \) and \(\{(f_i, y)\} \) are in \(l^2 \), implying that \(\sum (f_i, x)(f_i, y) \) converges. Clearly, the bilinear form on \(H \times H \), defined by \(\langle x, y \rangle = \sum (f_i, x)(f_i, y) \), is then an inner product on \(H \) for which \(\langle x_i, x_j \rangle = d_{ij} \) for all \(i \) and \(j \), in which \(\{x_i\} \) is an orthonormal set that is also complete, since if \(\langle x_n, x \rangle = 0 \) for all \(n \), then \(0 = \sum (f_i, x_n)(f_i, x) = (f_n, x) \) for all \(n \); that is, \(0 = \sum (f_i, x_n)(f_i, x) \) by definition of the new inner product for all \(n \), implying that \((f_n, x) = 0 \) for all \(n \), and hence that \(x = 0 \).
As usual, the inner product $\langle \cdot, \cdot \rangle$ defines a norm $\| \cdot \|_1$ on H by $\|x\|_1^2 = \langle x, x \rangle = \sum |(f_i, x)|^2$. Since $\{x_i\}$ is a Riesz basis, there is an isomorphism U on H that maps each vector ϕ_i in an orthonormal basis $\{\phi_i\}$ for H to the vector x_i, implying that the isomorphism $V = (U^*)^{-1}U^{-1}$ on H maps x_i to f_i for all i. Since, for any x in H, $\langle x, x \rangle = \sum (f_i, x)(f_i, x) = (\sum (f_i, x)(Vx_i, x)) = \sum (f_i, x)(Vx_i, x) = (V[\sum (f_i, x)x_i], x) = (Vx, x)$, we see that $(Vx, x) = \sum |(f_i, x)|^2 = \|x\|_1^2$ for all x in H, so V is a positive operator. If we let W denote the positive square root of V, then W is also an isomorphism on H so that, for any x in H, we have $\|x\|_1^2 = (Vx, x) = (Wx, Wx) = \|Wx\|^2 \leq \|w\|^2 \|x\|^2$. In the same way, we see that $\|x\|_1^2 \leq \|W^{-1}\|^2 \|x\|^2$, and it follows that the new norm $\| \cdot \|_1$ is equivalent to the original norm on H. In particular, H is then complete under the new norm, hence a Hilbert space, in which $\{x_i\}$ is then an orthonormal basis, being an orthonormal set, that is complete in the new inner product.

3. Positive operators. In the proof above we used the fact that if $\{x_i, f_i\}$ is a Riesz basis for a Hilbert space H, then the operator U on H, mapping x_i to f_i, is a positive isomorphism on H. It is interesting to note that, in fact, every positive isomorphism on H is such an operator for some Riesz basis in H, thereby providing a representation for all positive isomorphisms U on a Hilbert space.

Theorem 3.1. An operator U on a Hilbert space H is a positive isomorphism if and only if U is of the form $U = \sum f_i \otimes f_i$ for some Riesz basis $\{x_i, f_i\}$ for H (i.e., $Ux_i = f_i$ for all i).

Proof. If $U = \sum f_i \otimes f_i$ for some Riesz basis $\{x_i, f_i\}$ for H, $\{\phi_i\}$ is an orthonormal basis for H, and T is the isomorphism on H mapping ϕ_i to f_i for all i, then $U = \sum T\phi_i \otimes T\phi_i = TT^*$, a positive isomorphism on H.

Conversely, if U is any positive isomorphism on H, then W, the positive square root of U, is also an isomorphism on H. If we set $f_i = W\phi_i$ for some orthonormal basis $\{\phi_i\}$, then $\{f_i\}$ is a Riesz basis for H so that, for any x in H, we have $Ux = W^2x = W[\sum (f_i, x)f_i] = W[\sum (W\phi_i, x)\phi_i] = \sum (f_i, x)W\phi_i = \sum (f_i, x)f_i$. That is, $U = \sum f_i \otimes f_i$ and the proof is complete. \qed

James R. Holub: Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0123, USA

E-mail address: holubj@math.vt.edu