KY FAN INEQUALITY AND BOUNDS FOR DIFFERENCES OF MEANS

PENG GAO

Received 23 July 2002

We prove an equivalent relation between Ky Fan-type inequalities and certain bounds for the differences of means. We also generalize a result of Alzer et al. (2001).

2000 Mathematics Subject Classification: 26D15, 26D20.

1. Introduction. Let \(P_{n,r}(x) \) be the generalized weighted power means:
\[
P_{n,r}(x) = \left(\sum_{i=1}^{n} \omega_i x_i^r \right)^{1/r},
\]
where \(\omega_i > 0 \), \(1 \leq i \leq n \) with \(\sum_{i=1}^{n} \omega_i = 1 \) and \(x = (x_1, x_2, \ldots, x_n) \). Here, \(P_{n,0}(x) = \prod_{i=1}^{n} x_i^{\omega_i} \) denotes the limit of \(P_{n,r}(x) \) as \(r \to 0^+ \), which can be proved by noting that if \(p(r) = \ln \left(\sum_{i=1}^{n} \omega_i x_i^r \right) \), then \(p'(0) = \ln(\prod_{i=1}^{n} x_i^{\omega_i}) = \ln(P_{n,0}(x)) \). We write \(P_{n,r} \) for \(P_{n,r}(x) \) when there is no risk of confusion.

In this paper, we assume that \(0 < x_1 \leq x_2 \leq \cdots \leq x_n \). With any given \(x \), we associate \(x' = (1 - x_1, 1 - x_2, \ldots, 1 - x_n) \) and write \(A_n = P_{n,1}, \ G_n = P_{n,0}, \) and \(H_n = P_{n,-1} \). When \(1 - x_i \geq 0 \) for all \(i \), we define \(A'_n = P_{n,1}(x') \) and similarly for \(G'_n \) and \(H'_n \). We also let \(\sigma_n = \sum_{i=1}^{n} \omega_i [x_i - A_n]^2 \).

The following counterpart of the arithmetic mean-geometric mean inequality, due to Ky Fan, was first published by Beckenbach and Bellman [7].

Theorem 1.1. For \(x_i \in (0, 1/2) \),
\[
\frac{A'_n}{G'_n} \leq \frac{A_n}{G_n}
\]
with equality holding if and only if \(x_1 = \cdots = x_n \).

In this paper, we consider the validity of the following additive Ky Fan-type inequalities (with \(x_1 < x_n < 1 \)):
\[
\frac{x_1}{1 - x_1} < \frac{P_{n,r} - P_{n,s}}{P_{n,r} - P_{n,s}} < \frac{x_n}{1 - x_n}.
\]
(1.2)

Note that by a change of variables \(x_i - 1 - x_i \), the left-hand side inequality is equivalent to the right-hand side inequality in (1.2). We can deduce (see [9]) **Theorem 1.1** from the case \(r = 1, s = 0 \), and \(x_n \leq 1/2 \) in (1.2), which is a result
of Alzer [5]. Gao [9] later proved the validity of (1.2) for \(r = 1, -1 \leq s < 1 \), and \(x_n \leq 1/2 \).

What is worth mentioning is a nice result of Mercer [12] who showed that the validity of \(r = 1 \) and \(s = 0 \) in (1.2) is a consequence of a result of Cartwright and Field [8] who established the validity of \(r = 1 \) and \(s = 0 \) for the following bounds for the differences between power means \((r > s) \):

\[
\frac{r-s}{2x_1}\sigma_n \geq P_{n,r} - P_{n,s} \geq \frac{r-s}{2x_n}\sigma_n,
\]

where the constant \((r-s)/2\) is the best possible (see [10]).

We point out that inequalities (1.2) and (1.3) do not hold for all \(r > s \). We refer the reader to the survey article [2] and the references therein for an account of Ky Fan’s inequality, and to [4, 5, 10, 11] for other interesting refinements and extensions of (1.3).

Mercer’s result reveals a close relation between (1.3) and (1.2), and it is our main goal in the paper to prove that the validities of (1.3) and (1.2) are equivalent for fixed \(r \) and \(s \). As a consequence of this result, we give a characterization of the validity of (1.3) for \(r = 1 \) or \(s = 1 \). A solution of an open problem from [11] is also given.

Among the numerous sharpenings of Ky Fan’s inequality in the literature, we have the following inequalities connecting the three classical means (with \(\omega_i = 1/n \) here):

\[
\left(\frac{H_n}{H_n'} \right)^{n-1} A_n A'_n \leq \left(\frac{G_n}{G_n'} \right)^n \leq \left(\frac{A_n}{A_n'} \right)^{n-1} H_n H'_n.
\]

The right-hand side inequality of (1.4) is due to W. L. Wang and P. F. Wang [14] and the left-hand side inequality was recently proved by Alzer et al. [6].

It is natural to ask whether we can extend the above inequality to the weighted case, and using the same idea as in [6], we show that this is indeed true in Section 5.

2. The main theorem

Theorem 2.1. For fixed \(r > s \), the following inequalities are equivalent: (i) inequality (1.2) for \(x_n \leq 1/2 \); (ii) inequality (1.2); (iii) inequality (1.3).

Proof. (iii)⇒(ii) follows from a similar argument as given in [12], (ii)⇒(i) is trivial, so it suffices to show that (i)⇒(iii).

Fix \(r > s \) assuming that (1.2) holds for \(x_n \leq 1/2 \). Without loss of generality, we can assume that \(x_1 < x_n \). For a given \(x = (x_1, x_2, \ldots, x_n) \), let \(y = (\varepsilon x_1, \varepsilon x_2, \ldots, \varepsilon x_n) \). We can choose \(\varepsilon \) small so that \(\varepsilon x_n \leq 1/2 \). Now, applying the right-hand side inequality (1.2) for \(y \), we get

\[
x_n (P_{n,r}(x) - P_{n,s}(x)) > \frac{1 - \varepsilon x_n}{\varepsilon^2} (P_{n,r}(y') - P_{n,s}(y')).
\]

(2.1)
Let $f(\epsilon) = P_{n,r}(y') - P_{n,s}(y')$, then $f'(0) = 0$ and $f''(0) = (r-s)\sigma_n$. Thus, by letting ϵ tend to 0, it is easy to verify that the limit of the expression on the right-hand side of (2.1) is $(r-s)\sigma_n/2$. We can consider the left-hand side of (1.2) by a similar argument and this completes the proof.

3. An application of Theorem 2.1

Lemma 3.1. If inequality (1.3) holds for $r > s$, then $0 \leq r + s \leq 3$.

Proof. Let $n = 2$, and write $\omega_1 = 1 - q$, $\omega_2 = q$, $x_1 = 1$, and $x_2 = 1 + t$ with $t \geq -1$. Let

$$D(t;r,s,q) = \frac{r-s}{2} \sum_{i=1}^{2} w_i [x_i - A_2]^2 - P_{2,r} + P_{2,s}. \quad (3.1)$$

For $t \geq 0$, $D(t;r,s,q) \geq 0$ implies the validity of the left-hand side inequality of (1.3) while for $-1 \leq t \leq 0$, $D(t;r,s,q) \leq 0$ implies the validity of the right-hand side inequality of (1.3).

Using the Taylor series expansion of $D(t;r,s,q)$ around $t = 0$, it is readily seen that $D(0;r,s,q) = D^{(1)}(0;r,s,q) = D^{(2)}(0;r,s,q) = 0$. Thus, by the Lagrangian remainder term of the Taylor expansion,

$$D(t;r,s,q) = \frac{D^{(3)}(\theta t;r,s,q)}{3!} t^3. \quad (3.2)$$

with $0 < \theta < 1$.

Since

$$\lim_{t \to 0^+} D^{(3)}(\theta t;r,s,q) = D^{(3)}(0;r,s,q), \quad (3.3)$$

a necessary condition for (1.3) to hold is $D^{(3)}(0;r,s,q) \geq 0$ for $0 \leq q \leq 1$. The calculation yields

$$D^{(3)}(0;r,s,q) = (r-s)q(q-1)((3-2r-2s)q - (3-r-s)). \quad (3.4)$$

It is easy to check that this is equivalent to $0 \leq r + s \leq 3$.

Theorem 3.2. Let $r > s$. If $r = 1$, inequality (1.3) holds if and only if $-1 \leq s < 1$. If $s = 1$, inequality (1.3) holds if and only if $1 < r \leq 2$.

Proof. A result of Gao [9] shows the validity of (1.2) for $r = 1$, $-1 \leq s < 1$, $x_n \leq 1/2$, and a similar result of his [10] shows the validity of (1.2) for $s = 1$, $1 < r \leq 2$, $x_n \leq 1/2$. Thus, it follows from Theorem 2.1 that (1.3) holds for $r = 1$, $-1 \leq s < 1$, and $s = 1, 1 < r \leq 2$. This proves the “if” part of the statement, and the “only if” part follows from the previous lemma.

\[\square\]
We note here that a special case of Theorem 3.2 answers an open problem of Mercer [11], namely, we have shown that

\[
\frac{1}{x_1} \sigma_n \geq A_n - H_n \geq \frac{1}{x_n} \sigma_n. \tag{3.5}
\]

4. Two lemmas

Lemma 4.1. Let \(x, b, u, \) and \(v\) be real numbers with \(0 < x \leq b, u \geq 1, v \geq 0, \) and \(u + v \geq 2, \) then

\[
f(u, v, x, b) = \frac{u + v - 1}{ux + vb} + \frac{1}{x^2(u/x + v/b)} - \frac{1}{x} - \frac{u + v - 2}{b^2(u + v)^2} v(x - b) \tag{4.1}
\]

with equality holding if and only if \(x = b\) or \(v = 0\) or \(u = v = 1.\)

Proof. Let \(x < b, u > 1,\) and \(v > 1.\) We have

\[
f(u, v, x, b) = v(b - x) \left(-\frac{(u - 1)b + (v - 1)x}{xb + ux} \right) + \frac{(u - 1) + (v - 1)}{b^2(u + v)^2} (u/x + v/b) - 1 - \frac{u + v - 2}{b^2(u + v)^2} v(x - b) \tag{4.2}
\]

since \(b^2(u + v)^2 > (bv + ux)(bu + vx).\) Thus, we conclude that \(f(u, v, x, b) \leq 0\) for \(0 < x \leq b, u \geq 1, v \geq 0,\) and \(u + v \geq 2.\)

Lemma 4.2. Let \(x, a, b, u, v,\) and \(s\) be real numbers with \(0 < x \leq a \leq b, u \geq 1, v \geq 1, u + v \geq 3,\) and \(0 \leq s \leq v,\) then

\[
\frac{u + v - 1}{ux + sa + (v - s)b} + \frac{1}{x^2(u/x + s/a + (v - s)/b)} - \frac{1}{x} - \frac{u + v - 2}{b^2(u + v)^2} (s(x - a) + (v - s)(x - b)) \leq 0 \tag{4.3}
\]

with equality holding if and only if one of the following cases is true: (1) \(x = a = b;\) (2) \(s = 0\) and \(x = b;\) (3) \(s = v\) and \(x = a.\)

Proof. Let \(M = \{(s, a) \in \mathbb{R}^2 | 0 \leq s \leq v, x \leq a \leq b\}.\) Furthermore, we define \(H(s, a)\) as the expression on the left-hand side of (4.3), where \((s, a) \in M.\) It suffices to show that \(H(s, a) < 0.\) We denote the absolute minimum of \(H\) by \(m = (s_0, a_0).\) If \(m\) is an interior point of \(M,\) then we obtain

\[
0 = \frac{1}{s} \frac{\partial H}{\partial a} - \frac{1}{a - b} \frac{\partial H}{\partial s} \bigg|_{(s, a) = (s_0, a_0)} = \frac{b - a}{x^4 a^2 b(u/x + s/a + (v - s)/b)^2} > 0. \tag{4.4}
\]
Hence, \(m \) is a boundary point of \(M \), so we get
\[
m \in \{(s_0,x),(s_0,b),(0,a_0),(v,a_0)\}.
\]
(4.5)

Using Lemma 4.1, we obtain
\[
\begin{align*}
H(s_0,x) &= f(u+s_0,v-s_0,x,b) \leq 0, \\
H(s_0,b) &= H(0,a_0) = f(u,v,x,b) \leq 0, \\
H(v,a_0) &= f(u,v,x,a_0) - \frac{v(u+v-2)(a_0-x)(b^2-a_0^2)}{a_0^2b^2(u+v)^2} \leq 0.
\end{align*}
\]
(4.6)

Thus, we get that if \((s,a) \in M\), then \(H(s,a) \leq 0\). The conditions for equality can be easily checked using Lemma 4.1.

5. A sharpening of Ky Fan’s inequality. In this section, we prove the following theorem.

Theorem 5.1. For \(0 < x_1 \leq \cdots \leq x_n\), \(q = \min \{\omega_i\} \),
\[
\frac{1-2q}{2x_1^2} \sigma_n \geq (1-q) \ln A_n + q \ln H_n - \ln G_n \geq \frac{1-2q}{2x_n^2} \sigma_n,
\]
(5.1)
\[
\frac{1-2q}{2x_1^2} \sigma_n \geq \ln G_n - q \ln A_n - (1-q) \ln H_n \geq \frac{1-2q}{2x_n^2} \sigma_n
\]
(5.2)
with equality holding if and only if \(q = 1/2 \) or \(x_1 = \cdots = x_n \).

Proof. The proof uses the ideas in [6]. We prove the right-hand side inequality of (5.1); the proofs for other inequalities are similar. Fix \(0 < x = x_1, x_n = b\) with \(x_1 < x_n, n \geq 2 \); we define
\[
f_n(x_n,q) = (1-q) \ln A_n + q \ln H_n - \ln G_n - \frac{1-2q}{2x_n^2} \sigma_n,
\]
(5.3)
where we regard \(A_n, G_n, \) and \(H_n \) as functions of \(x_n = (x_1,\ldots,x_n) \).

We then have
\[
g_n(x_2,\ldots,x_{n-1}) := \frac{1}{\omega_1} \frac{\partial f_n}{\partial x_1} = \frac{1-q}{A_n} + \frac{qH_n}{x_1^2} - \frac{1}{x_1} - \frac{1-2q}{x_n^2} (x_1 - A_n).
\]
(5.4)
We want to show that \(g_n \leq 0 \). Let \(D = \{(x_2,\ldots,x_{n-1}) \in R^{n-2} | 0 < x \leq x_2 \leq \cdots \leq x_{n-1} \leq b\} \). Let \(a = (a_2,\ldots,a_{n-1}) \in D \) be the point in which the absolute minimum of \(g_n \) is reached. Next, we show that
\[
a = (x,\ldots,x,a,\ldots,a,b,\ldots,b) \quad \text{with} \quad x < a < b,
\]
(5.5)
where the numbers \(x, a, \) and \(b \) appear \(r, s, \) and \(t \) times, respectively, with \(r, s, t \geq 0 \) and \(r+s+t = n-2 \).
Suppose not, this implies that two components of \(\mathbf{a} \) have different values and are interior points of \(D \). We denote these values by \(a_k \) and \(a_l \). Partial differentiation leads to

\[
\frac{B}{a_i^2} + C = 0
\]

for \(i = k, l \), where

\[
B = q \frac{H_n^2}{x_1^2}, \quad C = -\frac{1-q}{A_n^2} + \frac{1-2q}{x_n^2}.
\]

Since \(z \to B/z^2 + C \) is strictly monotonic for \(z > 0 \), then (5.6) yields \(a_k = a_l \). This contradicts our assumption that \(a_k \neq a_l \). Thus, (5.5) is valid and it suffices to show that \(g_n \leq 0 \) for the case \(n = 2, 3 \).

When \(n = 2 \), by setting \(x_1 = x, x_2 = b, \omega_1/q = u, \) and \(\omega_2/q = v \), we can identify \(g_2 \) as (4.1), and the result follows from Lemma 4.1.

When \(n = 3 \), by setting \(x_1 = x, x_2 = a, x_3 = b, \omega_1/q = u, \omega_2/q = s, \) and \(\omega_3/q = v - s \), we can identify \(g_3 \) as (4.3), and the result follows from Lemma 4.2.

Thus, we have shown that \(g_n = (1/\omega_1)\partial f_n/\partial x_1 \leq 0 \) with equality holding if and only if \(n = 1 \) or \(n = 2, q = 1/2 \). By letting \(x_1 \) tend to \(x_2 \), we have

\[
f_n(x_n, q) \geq f_{n-1}(x_{n-1}, q) \geq f_{n-1}(x_{n-1}, q'),
\]

where \(x_{n-1} = (x_2, \ldots, x_n) \) with weights \(\omega_1 + \omega_2, \ldots, \omega_{n-1}, \omega_n \) and \(q' = \min\{\omega_1 + \omega_2, \ldots, \omega_n\} \). Here, we have used the following inequality, which is a consequence of (3.5) (see [9]):

\[
\ln A_n - \ln H_n \geq \frac{1}{x_n^2} \sigma_n.
\]

It then follows by induction that \(f_n \geq f_{n-1} \geq \cdots \geq f_2 = 0 \) when \(q = 1/2 \) in \(f_2 \) or else \(f_n \geq f_{n-1} \geq \cdots \geq f_1 = 0 \), and this completes the proof.

We note that the above theorem gives a sharpening of Sierpiński’s inequality [13], originally stated for the unweighted case (\(\omega_i = 1/n \)) as

\[
H_n^{n-1} A_n \leq G_n \leq A_n^{n-1} H_n.
\]

The following corollary gives refinements of (1.4).
Corollary 5.2. For $0 < x_1 \leq \cdots \leq x_n < 1$, $q = \min \{\omega_i\}$,

$$\left(\frac{A_n^{(1-q)} H_n^q}{G_n} \right)^{(1-x_1)^2/x_1^2} \geq \frac{A_n^{1-q} H_n^q}{G_n} \geq \left(\frac{A_n^{(1-q)} H_n^q}{G_n} \right)^{(1-x_n)^2/x_n^2} \geq 1,$$

$$\left(\frac{G_n'}{A_n^{q} H_n^{(1-q)}} \right)^{(1-x_1)^2/x_1^2} \geq \frac{G_n'}{A_n^{q} H_n^{(1-q)}} \geq \left(\frac{G_n'}{A_n^{q} H_n^{(1-q)}} \right)^{(1-x_n)^2/x_n^2} \geq 1,$$

with equality holding if and only if $x_1 = x_2 = \cdots = x_n$ or $q = 1/2$.

Proof. This is a direct consequence of Theorem 5.1, following from a similar argument as in [12].

6. Concluding remarks. We note that if for $x_n \leq 1/2$, we have

$$\left(\frac{x_1}{1-x_1} \right)^{\beta} \leq \frac{p_{n,r} - p_{n,s}}{p_{n,r} - p_{n,s}} \leq \left(\frac{x_n}{1-x_n} \right)^{\alpha},$$

then $\beta \geq 1$ and $\alpha \leq 1$; otherwise, by letting ϵ tend to 0 in (2.1), we get contradictions.

It was conjectured that an additive companion of (1.4) is true (see [1])

$$n(G_n - G_n') \leq (n - 1)(A_n - A_n') + H_n - H_n'.$$

(6.2)

In [3], Alzer asked if the above conjecture is true and whether there exists a weighted version. Based on what we have got in this paper, it is natural to give the following conjecture of the weighed version of (6.2).

Conjecture 6.1. For $0 < x_1 \leq \cdots \leq x_n \leq 1/2$ and $q = \min \{\omega_i\}$,

$$G_n - G_n' \leq (1 - q)(A_n - A_n') + q(H_n - H_n').$$

(6.3)

Recently, Alzer et al. [6] asked the following question: what is the largest number $\alpha = \alpha(n)$ and what is the smallest number $\beta = \beta(n)$ such that

$$\alpha(A_n - A_n') + (1 - \alpha)(H_n - H_n') \leq G_n - G_n' \leq \beta(A_n - A_n') + (1 - \beta)(H_n - H_n')$$

(6.4)

for all $x_i \in (0, 1/2]$ $(i = 1, \ldots, n)$?

We note here that $\alpha \leq 0$ since the left-hand side inequality above can be written as

$$\alpha A_n + (1 - \alpha)H_n - G_n \leq \alpha A_n' + (1 - \alpha)H_n' - G_n'.$$
By a similar argument as in the proof of Theorem 2.1, replacing \((x_1, \ldots, x_n)\) by \((\epsilon x_1, \ldots, \epsilon x_n)\) and letting \(\epsilon\) tend to 0 in (6.5), we find that (6.5) implies that
\[
\alpha A_n + (1 - \alpha)H_n - G_n \leq 0
\] (6.6)
for any \(x\). If we further let \(x_1\) tend to 0 in (6.6), we get
\[
\alpha A_n \leq 0
\] (6.7)
which implies that \(\alpha \leq 0\).

Acknowledgment. The author is grateful to the referees for their helpful comments and suggestions.

References

Peng Gao: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

E-mail address:penggao@umich.edu