Let B be a Galois algebra with Galois group G, $J_g = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ for each $g \in G$, and $BJ_g = Be_g$ for a central idempotent e_g, B_a the Boolean algebra generated by $\{0, e_g \mid g \in G\}$, e a nonzero element in B_a, and $He = \{ g \in G \mid ee_g = e \}$. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

2000 Mathematics Subject Classification: 16S35, 16W20.

1. Introduction. The Boolean algebra of central idempotents in a commutative Galois algebra plays an important role for the commutative Galois theory (see [1, 3, 6]). Let B be a Galois algebra with Galois group G, C the center of B, and $J_g = \{ b \in B \mid bx = g(x)b \text{ for all } x \in B \}$ for each $g \in G$. In [2], it was shown that $BJ_g = Be_g$ for some idempotent e_g of C. Let Ba be the Boolean algebra generated by $\{0, e_g \mid g \in G\}$. Then in [5], by using Ba, the following structure theorem for B was given. There exist $\{e_i \in B_a \mid i = 1, 2, \ldots, m\}$ and some subgroups H_i of G such that $B = \oplus \sum_{i=1}^m Be_i \oplus Bf$ where $f = 1 - \sum_{i=1}^m e_i$, Be_i is a central Galois algebra with Galois group H_i for each $i = 1, 2, \ldots, m$, and $Bf = Cf$ which is a Galois algebra with Galois group induced by and isomorphic with G in case $1 \neq \sum_{i=1}^m e_i$. In [4], let K be a subgroup of G. Then, K is called a nonzero subgroup of G if $\prod_{k \in K} e_k \neq 0$ in B_a, and K is called a maximal nonzero subgroup of G if $K \subset K'$, where K' is a nonzero subgroup of G such that $\prod_{k \in K} e_k = \prod_{k \in K'} e_k$, then $K = K'$. We note that any nonzero subgroup is contained in a unique maximal nonzero subgroup of G. In [4], it was shown that there exists a one-to-one correspondence between the set of nonzero monomials in B_a and the set of maximal nonzero subgroups of G. For a nonzero monomial e in B_a such that $He \neq \{1\}$, Be is a central Galois algebra with Galois group He, if and only if e is a minimal nonzero monomial in B_a. The purpose of the present paper is to characterize a monomial e in B_a in terms of the maximal nonzero subgroups of G. Then, the Galois extension Be, generated by a nonzero idempotent e and by a monomial e with Galois group He, is investigated, respectively. Let $G(e) = \{ g \in G \mid g(e) = e \}$ for each $e \neq 0$ in B_a. We will show that (1) He is a normal subgroup of $G(e)$, and (2) Be is a Galois extension of $(Be)^{He}$ with Galois group He and $(Be)^{He}$ is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)/He$. In particular, when e is a monomial, $G(e) = N(He)$ (the normalizer
of H_e), and when e is an atom (a minimal nonzero element) of B_a, Be is a central Galois algebra over Ce with Galois group H_e and Ce is a commutative Galois algebra with Galois group $G(e)/H_e$. This generalizes and improves the result of the components of B in [5, Theorem 3.8] for a Galois algebra.

2. Definitions and notations. Let B be a ring with 1, C the center of B, G an automorphism group of B of order n for some integer n, and B^G the set of elements in B, fixed under each element in G. B is called a Galois extension of B^G with Galois group G if there exist elements $\{a_i, b_i \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{i=1}^m a_i g(b_i) = \delta_{1,g}$ for each $g \in G$. B is called a Galois algebra over R if B is a Galois extension of R which is contained in C, and B is called a central Galois extension if B is a Galois extension of C. In this paper, we assume that B is a Galois algebra with Galois group G. Let $f_g = \{b \in B \mid b x = g(x) b \text{ for all } x \in B\}$. In [2], it was shown that $Bf_g = B e_g$ for some central idempotent e_g of B. We denote $(B_a; +, \cdot)$, the Boolean algebra generated by $\{0, e_g \mid g \in G\}$, where $e \cdot e' = e e'$ and $e + e' = e + e' - e e'$ for any e and e' in B_a. An order relation \leq is defined as usual, that is, $e \leq e'$ in B_a if $e \cdot e' = e$. Throughout, $e + e'$, for $e, e' \in B_a$, means the sum in the Boolean algebra $(B_a; +, \cdot), H_e = \{g \in G \mid e \leq e_g\}$ for an $e \neq 0$ in B_a, and a monomial e in B_a is $\prod_{g \in S} e_g \neq 0$ for some $S \subset G$.

3. The Boolean algebra. In this section, we will characterize a monomial e in B_a in terms of the maximal nonzero subgroups of G. We begin with several lemmas.

Lemma 3.1. Let $\{e_i, f \mid i = 1, 2, \ldots, m\}$ be given in [5, Theorem 3.8]. Then,

1. $\{e_i, f \mid i = 1, 2, \ldots, m\}$ is the set of all minimal elements of B_a in case $f \neq 0$,
2. for each $e \neq 0$ in B_a, there exists a unique subset Z_e of the set $\{1, 2, \ldots, m\}$ such that $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$.

Proof. (1) By the proof of [5, Theorem 3.8], either $e_i = \prod_{g \in H_t} e_g$, where H_t is a maximum subset (subgroup) of G such that $\prod_{g \in H_t} e_g \neq 0$, or $e_i = (1 - \sum_{j=1}^t e_j) \prod_{g \in H_t} e_g$ for some $t < i$, where H_t is a maximum subset (subgroup) of G such that $(1 - \sum_{j=1}^t e_j) \prod_{g \in H_t} e_g \neq 0$; so, either e_i is a minimal element of B_a or e_i is a minimal element of $(1 - \sum_{j=1}^t e_j) B_a$. Noting that any minimal element in $(1 - \sum_{j=1}^t e_j) B_a$ is also a minimal element in B_a, we conclude that each e_i is a minimal element in B_a. Next, we show that f is also a minimal element of B_a in case $f \neq 0$. In fact, by the proof of [5, Theorem 3.8], $e_g f = 0$ for any $g \neq 1$ in G; so, for any $e \in B_a$, $e f = 0$ or $e f = f$. This implies that f is a minimal element of B_a in case $f \neq 0$. Moreover, $\sum_{i=1}^m e_i + f = 1$; so, $\{e_i, f \mid i = 1, 2, \ldots, m\}$ is the set of all minimal elements of B_a in case $f \neq 0$.

(2) Since $1 = \sum_{i=1}^m e_i + f$, a sum of all minimal elements of B_a, the statement is immediate.

\[\Box\]
LEMMA 3.2. Let e be a nonzero element in B_a. Then,
(1) there exists a monomial e' of B_a such that $e \leq e'$ and $H_e = H_{e'}$,
(2) H_e is a maximal nonzero subgroup of G.

PROOF. (1) For any nonzero element e in B_a, let $e' = \prod_{g \in H_e} e_g$. We claim that $e \leq e'$ and $H_e = H_{e'}$. In fact, for any $h \in H_e$, $e \leq e_h$; so, $e \leq \prod_{h \in H_e} e_h = e'$. Moreover, for any $h \in H_e$, $e_h \geq \prod_{g \in H_e} e_g = e'$; so, $h \in H_{e'}$. Hence, $H_e \subseteq H_{e'}$. On the other hand, for any $h \in H_{e'}$, $e_h \geq \prod_{g \in H_e} e_g \geq e$; so, $h \in H_e$. Thus, $H_{e'} \subseteq H_e$. Therefore, $H_e = H_{e'}$.

(2) By [4, Theorem 3.2], $H_{e'}$ is a maximal nonzero subgroup of G for e' is a monomial. Hence, $H_e (= H_{e'})$ is a maximal nonzero subgroup of G. \hfill \Box

Next is an expression of H_e for a nonzero $e \in B_a$.

THEOREM 3.3. For any $e \neq 0$ in B_a, $H_e = \cap_{i \in Z_e} H_{e_i}$ or H_1, where $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$ as given in Lemma 3.1(2).

PROOF. We first show that for $e = e' + e''$ for some $e', e'' \neq 0$ in B_a, $H_e = H_{e'} \cap H_{e''}$. In fact, since $e \geq e'$ and $e \geq e''$, we have $H_e \subseteq H_{e'} \cap H_{e''}$. Conversely, for any $g \in H_{e'} \cap H_{e''}$, $e_g \geq e'$ and $e_g \geq e''$; so, $e_g \geq e' + e'' = e$. Hence, $g \in H_e$; so, $H_e = H_{e'} \cap H_{e''}$. Therefore, by induction, if $e = \sum_{i \in Z_e} e_i$, then $H_e = \cap_{i \in Z_e} H_{e_i}$. Now, by Lemma 3.1, for any $e \neq 0$ in B_a, $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$. Similarly, if $e = \sum_{i \in Z_e} e_i + f$, then $H_e = H(\sum_{i \in Z_e} e_i + f) = (\cap_{i \in Z_e} H_{e_i}) \cap H_f$. But, for $g \in G$ such that $e_g \neq 1$, $e_g f = 0$; so, $H_f = H_1$. Therefore, $H_e = (\cap_{i \in Z_e} H_{e_i}) \cap H_1 = H_1$ for $H_1 \subseteq H_{e_i}$ for each i. \hfill \Box

We observe that there exist some $e \neq 0$ such that $H_e = \cap_{i \in Z_e} H_{e_i}$ and $H_e \subset H_{e_j}$ for some $j \notin Z_e$, and that not all $e \neq 0$ are monomials. Next, we identify which element $e \neq 0$ in B_a is a monomial. Two characterizations are given. We begin with a definition.

DEFINITION 3.4. An $e \neq 0$ in B_a is called a maximal G-element if $H_e \neq H_1$ and, for any $e' \in B_a$ such that $e \leq e'$ and $H_e = H_{e'}$, $e = e'$.

LEMMA 3.5. (1) If $e \neq 0$ such that $e f = 0$, then $e = \sum_{i \in Z_e} e_i$.
(2) If e is a monomial, $e = \prod_{g \in S} e_g$ for some $S \subset G$, then $e = 1$ or $e = \sum_{i \in Z_e} e_i$.

PROOF. (1) By Lemma 3.1, $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$. If $e \neq \sum_{i \in Z_e} e_i$, then $e = \sum_{i \in Z_e} e_i + f$ and $f \neq 0$. But then, $f = (\sum_{i \in Z_e} e_i + f) - e f = 0$. This is a contradiction. Hence, $e = \sum_{i \in Z_e} e_i$.
(2) In case $e = 1$, we are done. In case $e \neq 1$. Since $e_g f = 0$ for each $g \in G$ such that $e_g \neq 1$, $e f = \prod_{g \in S} e_g f = 0$. Thus, by (1), $e = \sum_{i \in Z_e} e_i$. \hfill \Box

THEOREM 3.6. Keeping the notations of Lemma 3.1 for any $e \neq 0, 1$ in B_a, the following statements are equivalent:
(1) $e = \prod_{g \in S} e_g$ for some $S \subset G$, a monomial in B_a;
(2) e is a maximal G-element in B_a;
(3) \(e = \sum_{i \in Z_e} e_i \) where \(\{ e_i \mid i \in Z_e \} \) are all atoms such that \(H_e \subset H_{e_i} \) and \(H_e \neq H_1 \).

Proof. (1)⇒(2). Since \(e \) is a monomial and \(e \neq 1 \), \(e = \prod_{g \in H_e} e_g \) where \(e_g \neq 1 \) for some \(g \in H_e \). Thus, \(H_e \neq H_1 \). Next, for any \(e' \) such that \(e \leq e' \) and \(H_e = H_{e'} \),

\[
eq e' \leq \prod_{g \in H_e} e_g = \prod_{g \in H_e} e_g = e. \tag{3.1}
\]

Hence, \(e = e' \). This implies that \(e \) is a maximal \(G \)-element in \(B_\alpha \).

(2)⇒(1). Let \(e \) be a maximal \(G \)-element and \(e' = \prod_{g \in H_e} e_g \). Then, by Lemma 3.2, \(e \leq e' \) and \(H_e = H_{e'} \). But \(e \) is a maximal \(G \)-element; so, \(e = e' \) which is a monomial.

(1)⇒(3). By Lemma 3.5, \(e = \sum_{i \in Z_e} e_i \). Now, let \(e_j \) be an atom such that \(H_e \subset H_{e_j} \). Then, \(e_j \leq \prod_{g \in H_{e_j}} e_g \leq \prod_{g \in H_e} e_g \). But, by hypothesis, \(e \) is a monomial; so, \(e = \prod_{g \in H_e} e_g \). Hence, \(e_j \leq e \). This implies that \(e_j \) is a term in \(e \). Thus, \(e = \sum_{i \in Z_e} e_i \) and \(\{ e_i \mid i \in Z_e \} \) are all atoms such that \(H_e \subset H_{e_i} \). Moreover, since \(e = \prod_{g \in S} e_g \neq 1 \), there exists \(g \in G \) such that \(e \leq e_g \neq 1 \). Thus, \(g \in H_e \) and \(g \notin H_1 \). Therefore, \(H_e \neq H_1 \).

(3)⇒(1). Let \(e' = \prod_{g \in H_e} e_g \). Then, by Lemma 3.2, \(e \leq e' \) and \(H_e = H_{e'} \). Since \(H_e \neq H_1 \), \(H_{e'} \neq H_1 \). Also, since \(e' \) is a monomial, \(e' = \sum_{j \in Z_{e'}} e_j \) by Lemma 3.5(2). Now, suppose that \(e \neq e' \). Then, there is a \(j \in Z_{e'} \) but \(j \notin Z_e \), that is, \(e_j \) is a term of \(e' = \sum_{j \in Z_{e'}} e_j \) but not a term of \(e = \sum_{i \in Z_e} e_i \). But then, \(H_e = H_{e'} = \cap_{j \in Z_{e'}} H_{e_j} \subset H_{e_j} \) such that \(j \notin Z_e \). This contradicts the hypothesis that \(e = \sum_{i \in Z_e} e_i \) where \(\{ e_i \mid i \in Z_e \} \) are all atoms such that \(H_e \subset H_{e_i} \). Thus, \(e = e' \) which is a monomial in \(B_\alpha \).

4. Galois extensions. In [5], it was shown that \(B_e \) is a central Galois algebra with Galois group \(H_e \) for any atom \(e \neq f \) of \(B_\alpha \). Also, for any \(e \neq 0 \) in \(B_\alpha \), \(B_e \) is a Galois extension of \((B_e)^e \) with Galois group \(G(e) \) where \(G(e) = \{ g \in G \mid g(e) = e \} \) (see [5, Lemma 3.7]). In this section, we are going to show that, for any \(e \neq 0 \) in \(B_\alpha \) (not necessary an atom), (1) \(H_e \) is a normal subgroup of \(G(e) \), and (2) \(B_e \) is a Galois extension of \((B_e)^H_e \) with Galois group \(H_e \) and \((B_e)^H_e \) is a Galois extension of \((B_e)^G(e) \) with Galois group \(G(e)/H_e \). This generalizes and improves the result for \(B_e \) when \(e \) is an atom of \(B_\alpha \) as given in [5, Theorem 3.8]. In particular, for a monomial \(e \), \(G(e) = N(H_e) \), the normalizer of \(H_e \) in \(G \).

Lemma 4.1. Let \(e \neq 0 \) in \(B_\alpha \). Then, \(H_e \) is a normal subgroup of \(G(e) \) where \(G(e) = \{ g \in G \mid g(e) = e \} \).

Proof. We first claim that \(H_e \subset G(e) \). In fact, by Lemma 3.1, for any \(e \neq 0 \) in \(B_\alpha \), there exists a unique subset \(Z_e \) of the set \(\{ 1, 2, \ldots, m \} \) such that \(e = \sum_{i \in Z_e} e_i \) or \(e = \sum_{i \in Z_e} e_i + f \) where \(e_i \) are given in Lemma 3.1. Moreover, for each \(i \),
\[e_i = \prod_{h \in H_{e_i}} e_h \text{ or } e_i = (1 - \sum_{j=1}^{t} e_j) \prod_{g \in H_{e_i}} e_g \text{ for some } t < i. \]
Noting that \(g \) permutes the set \(\{e_i \mid i = 1, 2, \ldots, t\} \) for each \(g \in G \) by the proof of [5, Theorem 3.8], we have, for each \(g \in G \),

\[g(e_i) = g\left(\prod_{h \in H_{e_i}} e_h \right) = \prod_{h \in H_{e_i}} e_{ghg^{-1}} \geq \prod_{h \in H_{e_i}} e_g e_h e_{g^{-1}} = e_g e_i e_{g^{-1}} \]

(4.1)

or

\[g(e_i) = g\left(\left(1 - \sum_{j=1}^{t} e_j\right) \prod_{h \in H_{e_i}} e_h \right) = \left(1 - \sum_{j=1}^{t} e_j\right) \prod_{h \in H_{e_i}} e_{ghg^{-1}} \]

\[\geq \left(1 - \sum_{j=1}^{t} e_j\right) \prod_{h \in H_{e_i}} e_g e_h e_{g^{-1}} \]

(4.2)

= \left(1 - \sum_{j=1}^{t} e_j\right) \prod_{h \in H_{e_i}} e_{h} e_{g^{-1}} = e_g e_i e_{g^{-1}}.

Now, in case \(e = \sum_{i \in Z_e} e_i \), for any \(h \in H_e \),

\[e = e_h e_i e_{h^{-1}} = \sum_{i \in Z_e} e_h e_i e_{h^{-1}} \leq \sum_{i \in Z_e} h(e_i) = h(e). \]

(4.3)

Thus, \(h(e) = e \) using Lemma 3.1(2). Noting that \(g \) permutes the set \(\{e_i \mid i = 1, 2, \ldots, m\} \) for each \(g \in G \), we have \(g(f) = f \) for each \(g \in G \). Thus, we have \(h(e) = e \) for each \(h \in H_e \) in case \(e = \sum_{i \in Z_e} e_i + f \). This proves that \(H_e \subset G(e) \).

Next, we show that \(H_e \) is a normal subgroup of \(G(e) \). Since for each \(g \in G \), \(g(e_i) \) is also an atom, \(g(e) = e \) (i.e., \(g \in G(e) \)) implies that \(g \) permutes the set \(\{e_i \mid i \in Z_e\} \). Therefore, for each \(i \in Z_e \), \(g(e_i) = e_j \) and \(gH_{e_i} g^{-1} = H_{e_j} \) for some \(j \in Z_e \). But, by Theorem 3.3, \(H_e = \cap_{i \in Z_e} H_{e_i} \) (or \(H_e = H_1 \) which is normal); so, for any \(g \in G(e) \), \(gH_{e_i} g^{-1} = g(\cap_{i \in Z_e} H_{e_i}) g^{-1} = \cap_{i \in Z_e} gH_{e_i} g^{-1} = \cap_{j \in Z_e} H_{e_j} = H_e \).

Therefore, \(H_e \) is a normal subgroup of \(G(e) \).

\[\Box \]

Theorem 4.2. Let \(e \) be a nonzero element in \(B_a \). Then,

1. \(Be \) is a Galois extension of \((Be)^{G(e)}\) with Galois group \(G(e) \),

2. \(Be \) is a Galois extension of \((Be)^{H_e}\) with Galois group \(H_e \) and \((Be)^{H_e}\) is a Galois extension of \((Be)^{G(e)}\) with Galois group \(G(e)/H_e \).

Proof. (1) Since \(B \) is a Galois algebra with Galois group \(G \), \(B \) is a Galois extension with Galois group \(G(e) \). But \(g(e) = e \) for each \(g \in G(e) \); so, by [5, Lemma 3.7], \(Be \) is a Galois extension of \((Be)^{G(e)}\) with Galois group \(G(e) \).

(2) Clearly, \(Be \) is a Galois extension of \((Be)^{H_e}\) with Galois group \(H_e \) by part (1). Next, we claim that \(|H_{e_1}| \), the order of \(H_{e_1} \), is a unit in \(Be \). In fact, by [5, Theorem 3.8], for each atom \(e_1 \) of \(B_a \), \(Be_1 \) is a central Galois algebra over \(Ce_1 \) with Galois group \(H_{e_1} \); so, \(|H_{e_1}| \), the order of \(H_{e_1} \), is a unit in \(Be_1 \) (see [2, Corollary 3]). Hence, \(|H_{e_1}| \) is a unit in \(Be \) if \(e = \sum_{i \in Z_e} e_i \). If \(e = \sum_{i \in Z_e} e_i + f \) and \(f \neq 0 \), then \(H_e = H_1 = \{g \in G \mid e_g = 1\} = \{g \in G \mid g(c) = c \text{ for each } c \in C\} \). Hence, by
Lemma 4.1 shows that, for any nonzero element \(e \) in \(B_\alpha \), \(G(e) \) is contained in (not necessarily equal to) the normalizer \(N(H_e) \) of \(H_e \) in \(G \). Next, we want to show that \(G(e) = N(H_e) \) when \(e \) is a monomial. Consequently, for any nonzero element \(e \) in \(B_\alpha \), \(Be \) is embedded in a Galois extension \(Be' \) with the same Galois group \(H_e \), and \((Be')^{H_e} \) is a Galois extension of \((Be')^{G(e')} \) with Galois group \(G(e')/H_e \) such that \(G(e') = N(H_e) \) for some monomial \(e' \) in \(B_\alpha \).

Lemma 4.3. Let \(e \) be a nonzero element in \(B_\alpha \). Then, there exists a monomial \(e' \) in \(B_\alpha \) such that \(e \leq e' \), \(H_e = H_e' \), and \(N(H_e) = G(e') \) where \(G(e') = \{ g \in G \mid g(e') = e' \} \) and \(N(H_e) \) is the normalizer of \(H_e \) in \(G \).

Proof. By Lemma 3.2, there exists a monomial \(e' \) in \(B_\alpha \) such that \(e \leq e' \) and \(H_e = H_e' \); so, it suffices to show that \(N(H_e) = G(e') \). For any \(g \in N(H_e) \), \(g \in N(H_e') \); so, by Theorem 3.3, \(H_e' = gH_e'g^{-1} = g(\cap_{i \in Z_e} H_{ei}^i)g^{-1} = \cap_{i \in Z_e} gH_{ei}^ig^{-1} = gH_{ei}g^{-1} = g \sum_{i \in Z_e} gH_{ei}g^{-1} = H_{g(e_i)} = H_{g(e')} \). Noting that \(e' \) is a monomial, we have \(g(e') = e' \) by Lemma 3.2, that is, \(g \in G(e') \). This implies that \(N(H_e) \subset G(e') \). Conversely, \(G(e') \subset N(H_e) \) by Lemma 4.1. But \(H_e = H_e' \); so, \(G(e') \subset N(H_e') \) is \(N(H_e) \). Therefore, \(N(H_e) = G(e') \).

Theorem 4.4. Let \(e \) be a nonzero element in \(B_\alpha \). Then, there exists a monomial \(e' \) in \(B_\alpha \) such that \(Be \) is embedded in \(Be' \), \(Be' \) is a Galois extension of \((Be')^{H_e} \) with Galois group \(H_e \), and \((Be')^{H_e} \) is a Galois extension of \((Be')^{N(H_e)} \) with Galois group \(N(H_e)/H_e \).

Proof. By Lemma 4.3, there exists a monomial \(e' \) in \(B_\alpha \) such that \(e \leq e' \), \(H_e \) is a normal subgroup of \(G(e') \), and \(N(H_e) = G(e') \). Hence, \(Be \subset Be' \). But \(Be' \) is a Galois extension of \((Be')^{H_e} \) with Galois group \(H_e \) and \((Be')^{H_e} \) is a Galois extension of \((Be')^{G(e')} \) with Galois group \(G(e')/H_e \) by Theorem 4.2; so, Theorem 4.4 holds.

Acknowledgments. This paper was written under the support of a Caterpillar Fellowship at Bradley University, and the authors would like to thank the Caterpillar Inc. for that support.

References

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA
E-mail address: lxue@hilltop.bradley.edu