EXISTENCE OF SOLUTIONS FOR A NONLINEAR HYPERBOLIC-PARABOLIC EQUATION IN A NON-CYLINDER DOMAIN

MARCONDES RODRIGUES CLARK

Universidade Federal Da Paraíba,
Departamento De Matemáticas E Estatística
Campus II - 58.109-970 - Campina Grande - PB - Brazil
E-MAIL: DME@BRUPB2.BITNET

(Received June 18, 1993 and in revised form December 1, 1993)

ABSTRACT. In this paper, we study the existence of global weak solutions for the equation

\[k_2(x)u'' + k_1(x)u' + A(t)u + u \int u f(t) = 0 \]

in the non-cylinder domain \(Q \) in \(\mathbb{R}^{n+1} \); \(k_1 \) and \(k_2 \) are bounded real functions, \(A(t) \) is the symmetric operator \(a_{ij}(x,t) = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x,t) \frac{\partial}{\partial x_j} \right) \)

where \(a_{ij} \) and \(f \) are real functions given in \(Q \). For the proof of existence of global weak solutions we use the Faedo-Galerkin method, compactness arguments and penalization.

KEY WORDS AND PHRASES. Existence of weak solutions, Faedo-Galerkin method, compactness arguments.

1991 AMS SUBJECT CLASSIFICATION CODE. 35150.

INTRODUCTION AND TERMINOLOGY.

Let \(T \geq 0 \) be a positive real number, \(O \) a bounded open set of \(\mathbb{R}^n \) and \(Q \subset O \times [0,T) \) a non-cylindrical domain in \(\mathbb{R}^{n+1} \).

In the cylinder \(\Omega \times (0,T) \), where \(\Omega \subset \mathbb{R}^n \) is a bounded open set, Bensoussan et al. [1] and Lions [7] have studied the homogenization for the following Cauchy problem:

\[k_2(x)u'' + k_1(x)u' + \Delta u = f \text{ in } \Omega \]
\[u(x,0) = u_0(x) \text{ and } k_2(x)u'(x,0) = k_1^{1/2}(x)u(x), x \in \Omega \]

Many authors have been investigating the solvability of solution for the nonlinear equations associated with problem (I) see: Larkin [4], Lima [5], Medeiros [9], Medeiros [10], Medeiros [11], Melo [12], Maciel [13], Neves [14] and Vagrov [16].

In the non-cylindrical domain \(Q \), Lions, J.L. [8] studied the existence and uniqueness of global weak solutions for nonlinear equations associated with problem (II) with nonlinearity of type \(|u|^{\alpha}u \).

Let \(\Omega_t = Q \cap \{ t = s \} \) be a plane in \(\mathbb{R}^{n+1} \). Analogously \(\Omega_0 = Q \cap \{ t = 0 \} \) and \(\Omega_T = Q \cap \{ t = T \} \); \(\partial Q = \Gamma \) the boundary of \(Q \); \(\Gamma_s = \partial Q \cap \{ t = s \} \) the boundary of \(\Omega_s \) and \(\Sigma = \bigcup_{0 \leq s \leq T} \Gamma_s \) lateral boundary of \(Q \). Therefore \(Q \) is a subset of \(O \times (0,T) \) whose boundary is \(\Omega_0 \cap \Sigma \cap \Omega_T \).

Let’s denote by \(\langle \cdot, \cdot \rangle \) and \(| \cdot | \) the inner product and the norm in \(L^2(\Omega) \) and by \((\cdot, \cdot) \) and
We use Faedo-Galerkin’s method and compactness arguments, see Lions, J.L. [7]

1. Assumptions and main result.

If we assume the following hypothesis:

(H.1) Let \(\Omega_t^* \) be the projection of the \(\Omega_t \) on the hyperplane \(t = 0 \). We may assume \(\Omega_t^* \subseteq \Omega_t^* \) if \(t \leq s \).

(H.2) For each \(t \in [0, T] \), \(\Omega_t \) has the following regularity: If \(u \in H^1_0(\Omega) \) and \(u = 0 \) a.e. on \(\Omega \), then the restriction of \(u \) to \(\Omega_t \) belongs to \(H^1_0(\Omega_t) \).

On the functions \(k_1, k_2 \) and \(a_{ij} \) we take:

(H.3) \(k_1, k_2 \in L^\infty(\Omega_t); k_1(x) \geq \beta > 0, \beta \in \mathbb{R}; k_2(x) \geq 0 \) for each \(t \in [0, T] \).

(H.4) \(a_{ij} = a_{ji} \in L^\infty(\Omega \times (0, T)) \) and \(a_{ij}' = \frac{\partial}{\partial x_j} a_{ij} \in L^\infty(\Omega \times (0, T)) \).

There is \(0 < \delta \in \mathbb{R} \) such that

\[
\sum_{i,j=1}^{n} a_{ij}(x,t) \xi_i \xi_j \geq \delta (|\xi_1|^2 + \cdots + |\xi_n|^2), \quad (x,t) \in \Omega \times (0, T), \quad \xi = (\xi_1, \cdots, \xi_n) \in \mathbb{R}^n
\]

Let \(a(t, u, v) \) denote the bilinear form associated to the operator \(A(t) \). From (H.4) and, using Cauchy-Schwartz, we obtain:

\[
a(t, u, v) \leq C \| u \| \cdot \| v \|, \quad \forall u, v \in H^1_0(\Omega);
\]

Also by Poincaré-Friedrichs inequality and of (H.4), there exists \(\alpha > 0 \), real, such that:

\[
a(t, u, v) \geq \alpha \| u \|^2, \quad \forall u \in H^1_0(\Omega)
\]

Therefore, from the above inequalities, we conclude that \(a(t, \cdot, \cdot) \) is continuous and coercive in \(H^1_0(\Omega) \times H^1_0(\Omega) \).

Now let's consider the main result.

Theorem 1. Suppose the hypothesis (H.1)-(H.4) are satisfied and that

\[
f \in L^2(\Omega) \quad (1.1)
\]

\[
u_0 \in H^1_0(\Omega_0) \quad (1.2)
\]

\[
u_1 \in L^2(\Omega_0) \text{ are given, with } 0 < \rho \leq \frac{4}{n-2} \quad (1.3)
\]

Then there exists a function \(u: \Omega \to \mathbb{R} \) such that

\[
u \in L^\infty(0, T; H^1_0(\Omega_t)) \quad (1.4)
\]

\[
u' \in L^\infty(0, T; L^2(\Omega_t)), \quad \sqrt{k_2(x)} \nu' \in L^\infty(0, T; L^2(\Omega_t)) \quad (1.5)
\]

\[
k_2(x) \nu'' \in L^p(0, T; H^{-1}(\Omega_t)) \text{ with } \frac{1}{p} + \frac{1}{p'} = 1, \quad p = \rho + 2 \text{ and } \rho \quad (1.6)
\]

is a solution (1) in the weak sense in \(\Omega \), i.e.,
\[
\frac{d}{dt}(k_2(x)u_t(t), v) + (k_1(x)u_t(t), v) + a(t, u(t), v) + (|u(t)|^p u(t), v) = (f(t), v),
\]
in \(D'(0, T), \forall v \in H_0^1(\Omega_t). \)
\[u(x, 0) = u_0(x); \quad k_2(x)u_t(x, 0) = \sqrt{k_2(x)}u_1 \text{ in } \Omega_0\]

PROOF. The idea is to transform the non-cylindrical problem in the cylindrical problem, through the penalization function, \(M \in L^\infty(O \times (0, T))\), that was introduced by J.L. Lions [8], given by:
\[
M(x, t) = \begin{cases}
0, & \text{in } Q \\
1, & \text{in } O \times (0, T) \setminus Q.
\end{cases}
\]

For each \(\epsilon > 0\), we will find \(U^\epsilon\) in the cylinder \(O \times (0, T)\), solution of the perturbed problem \((P_\epsilon)\) below
\[
\tilde{k}_2(x)U_{tt} + \tilde{k}_1(x)U_t + A(t)U^\epsilon + \frac{1}{\epsilon} MU^\epsilon + \|U^\epsilon\| U^\epsilon = \tilde{f}
\]
\[
U^\epsilon(0) = \tilde{u}_0
\]
\[
\tilde{k}_2U^\epsilon(0) = \sqrt{\tilde{k}_2(x)}\tilde{u}_1
\]
\[
U^\epsilon = 0 \text{ in the } \partial(O \times (0, T)) = \tilde{\Sigma}
\]
where \(\tilde{k}_2(x) = k_2(x) + \epsilon; U_t = \frac{\partial}{\partial t} U; U_{tt} = \frac{\partial^2}{\partial t^2} U; \quad \tilde{u}_0 = \begin{cases}
0, & \text{in } \Omega_0 \\
u_0, & \text{in } O \setminus \Omega_0
\end{cases}\)

Therefore, \(\tilde{u}_0 \in H_0^1(O)\). Analogously \(\tilde{u}_1 \in L^2(O)\);
\[
\tilde{f} = \begin{cases}
f, & \text{in } Q \\
0, & \text{in } O \times (0, T) \setminus Q
\end{cases}
\]

Therefore \(\tilde{f} \in L^2(O \times (0, T))\);
\[
\tilde{k}_1(x) = \begin{cases}
k_1(x), & \text{in } Q \\
\beta, & \text{in } O \times (0, T) \setminus Q
\end{cases}
\]
and \(\tilde{k}_2(x) = \begin{cases}
k_2(x), & \text{in } Q \\
0, & \text{in } O \times (0, T) \setminus Q
\end{cases}\)

So \(\tilde{k}_1\) and \(\tilde{k}_2 \in L^\infty(O \times (0, T))\).

The proof of Theorem 1 will be a consequence of the following Theorem:

THEOREM 2. For each \(\epsilon > 0\), there exists one function \(U^\epsilon: O \times (0, T) \rightarrow \mathbb{R}\), solution of the problem \((P_\epsilon)\), such that:
\[
U^\epsilon \in L^\infty(0, T; H_0^1(O))
\]
\[
U^\epsilon \in L^\infty(0, T; L^2(O)), \sqrt{\tilde{k}_2(x)}U^\epsilon_t \in L^\infty(0, T; L^2(O))
\]
\[
\tilde{k}_2(x)U^\epsilon_{tt} \in L^p(0, T; H^{-1}(O))
\]
with \(\frac{1}{p} + \frac{1}{p'} = 1\) and \(p = \rho + 2\)
\[
\tilde{k}_2(x)U^\epsilon_{tt} + \tilde{k}_1(x)U^\epsilon_t + A(t)U^\epsilon + \frac{1}{\epsilon} MU^\epsilon + |U^\epsilon| U^\epsilon = \tilde{f}
\]
in the weak sense in \(O \times (0, T)\).
\[
U^\epsilon(x, 0) = \tilde{u}_0(x)
\]
\[
\tilde{k}_2(x)U^\epsilon_t(x, 0) = \sqrt{\tilde{k}_2(x)}\tilde{u}_1(x)
\]
REMARK 1. The condition \(U' = 0 \) in \(\hat{\Sigma} \) is a consequence of the fact that \(U' \) in
\(L^2(0,T; H^1_0(\Omega)) \).

REMARK 2. For the proof of Theorem 1 it is sufficient to prove that the solution \(U' \) in
Theorem 2 converges for \(U \) in the weak sense when \(\epsilon \to 0 \) and that the restriction of \(U \) to \(Q \) satisfies all the assertions of Theorem 1.

In this part, we use a result due to W.A. Strauss see [15].

PROOF OF THEOREM 2.

(i) Approximate Problem. It will be done by the Faedo-Galerkin method. Let \(\{w_i\}_{i=1}^\infty \subset H^1(\Omega) \) be a basis of \(H^1(\Omega) \) and \(V_m \) the subspace spanned by the \(m \) first vectors
\(w_1, w_2, \ldots, w_m \). Let \(U_m' \) be the function
\[
U_m'(x,t) = \sum_{j=1}^m g_{jm}(t)w_j(x)
\]
defined by the system
\[
(\hat{k}_2(x) \frac{\partial^2}{\partial t^2} U_m'(x,t), w_j) + (\hat{k}_1(x) \frac{\partial}{\partial t} U_m'(x,t), w_j) + a(t, U_m'(x,t), w_j) \\
+ \frac{1}{2} M \left(\frac{\partial}{\partial t} U_m'(x,t), w_j \right) + (|U_m'(x,t)|^p, w_j) = (f(t), w_j), \quad \forall j = 1, \ldots, m
\]
(1.19)
\[
U_m'(0) = U_{0m} = \sum_{j=1}^m \alpha_j w_j \to u_0 \text{ strong in } H^1(\Omega)
\]
(1.20)
\[
\frac{\partial}{\partial t} U_m'(0) = U_{1m} = \sum_{j=1}^m \beta_j w_j \to \frac{u_1}{\sqrt{k_2}} \text{ strong in } L^2(\Omega)
\]
(1.21)

The system (1.19)-(1.21) satisfies the condition of Caratheodory’s theorem see [2]. Therefore it has a solution \(U_m' \) defined in \([0, t_m], \) where \(0 < t_m \leq T \). The a priori estimates to be obtained in the following step, show, in particular, that \(t_m = T \).

(ii) A Priori Estimates. By multiplying both sides of (1.19) by \(2g_{jm}(t) \), and adding from
\(j = 1 \) to \(j = m \) we obtain:
\[
\frac{d}{dt} \left| \sqrt{k_2(x)} U_m'(t) \right|^2 + 2 \sqrt{k_1(x)} U_m(t) \left(\frac{1}{2} M U_m'(t) \right) + 2a(t, U_m(t), U_m'(t)) + \frac{1}{2} \int_{\Omega} M(U_m')^2 dx \\
+ \int_{\Omega} \| U_m(s) \| p U_m'(s) U_m'(s) dx = 2(f(t), U_m'(t))
\]
(1.22)
where we wrote \(U_m \) instead of \(U_m' \) and denoted by \(U_m' = \frac{\partial}{\partial t} U_m \).

REMARK 3. We have that
\[
\frac{d}{dt} a(t, U_m(t), U_m(t)) = a'(t, U_m(t), U_m(t)) + 2a(t, U_m(t), U_m'(t));
\]
where
\[
a'(t, U_m(t), U_m(t)) = \sum_{j=1}^m \int_{\Omega} \left(\frac{\partial}{\partial t} a_{ij}(x,t) \frac{\partial}{\partial x_j} U_m(t) \frac{\partial}{\partial x_j} U_m(t) dx.
\]
Therefore,
\[
2a(t, U_m(t), U_m(t)) = \frac{d}{dt} a(t, U_m(t)) - a'(t, U_m(t)).
\]

REMARK 4. We have that
\[
\frac{1}{p} \int_{\Omega} |U_m(s)|^p dx + \int_0^t \left| \frac{1}{2} \sqrt{k_1(x)} U_m'(s) \right|^p ds + a(t, U_m(t)) + \frac{2}{p} \int_{\Omega} |U_m(s)|^p dx
\]
Therefore, in the remarks (3 and 4) below, we have, integrating (1.22) from 0 to \(t \),
\[
0 < t \leq t_m, \text{ that:}
\]
NONLINEAR HYPERBOLIC-PARABOLIC EQUATION

\[\frac{2}{\beta} \int_{0}^{t} |U_{m}(s)|^{p} \, ds + \int_{0}^{t} a'(s, U_{m}(s)) \, ds + 2 \int_{0}^{t} (f(s), U'_{m}(s)) \, ds \]

REMARK 5. From (20), (21) and the Sobolev Immersion, \(H^1(O) \rightarrow L^p(O), \forall \ \frac{1}{p} = \frac{1}{2} - \frac{1}{n} \), we obtain:

\[\| U_{0m} \|_{L^p(O)} \leq C. \]
\[\| \sqrt{k_{2t}(x)} U_{1m} \|_{L^1} \leq C; \ |a(0, U_{0m})| \leq C. \]

Here, the letter \(C \) denotes different constants.

REMARK 6. By using (H.4), we obtain:

\[\int_{0}^{t} \| U_{m}(s) \|^{2} \, ds \leq C \int_{0}^{t} \| U_{m}(s) \|^{2} \, ds; \]

Therefore, from the remarks (5 and 6) below, we can write (1.23) like

\[\left| \sqrt{k_{2t}(x)} U'_{m}(t) \right|^{2} + 2 \int_{0}^{t} \left| \sqrt{k_{1}(x)} U'_{m}(s) \right|^{2} \, ds + a(t, U_{m}(t)) + \frac{2}{\beta} \int_{0}^{t} |U_{m}(s)|^{p} \, ds \]
\[+ \frac{2}{\beta} \int_{0}^{t} M(U'_{m}(s))^{2} \, ds \leq C + C \int_{0}^{t} \| U_{m}(s) \|^{2} \, ds + \lambda \int_{0}^{t} |U'_{m}(s)|^{2} \, ds \]

(1.24)

From (1.24), if we choose \(\lambda = \beta > 0 \) (the \(\beta > 0 \) of H.3) we obtain:

\[\int_{0}^{T} |U'_{m}(s)|^{2} \, ds \leq C + C \int_{0}^{t} \| U_{m}(s) \|^{2} \, ds, \]

(1.25)

and

\[a(t, U_{m}(t)) \leq C + C \int_{0}^{t} \| U_{m}(s) \|^{2} \, ds + \beta \int_{0}^{t} |U'_{m}(s)|^{2} \, ds \]

(1.26)

Being \(a(t, u, v) \) coercive, we obtain from (1.25) and (1.26), that:

\[\| U_{m}(t) \|^{2} \leq C + C \int_{0}^{t} \| u_{m}(s) \|^{2} \, ds, \quad \forall t \in [0, t_{cm}). \]

(1.27)

Gronwall's inequality implies that

\[\| U_{m}^{\e} \| \leq C, \quad \forall m \in \mathbb{N}, \ \forall \varepsilon > 0, \ \forall t \in [0, t_{cm}). \]

(1.28)

Returning to (1.25) we obtain:

\[\int_{0}^{t} \left\| \frac{\partial}{\partial s} U_{m}^{\e}(s) \right\|^{2} \, ds \leq C, \]

\(\forall m \in \mathbb{N}, \ \forall \varepsilon > 0, \ \forall t \in [0, t_{cm}). \)

(1.29)

The priori estimative (1.24) shows that \(t_{cm} = T \). Therefore,

\[\left| \sqrt{k_{2t}(x)} \frac{\partial}{\partial s} U_{m}(t) \right|^{2} + 2 \int_{0}^{t} \left| \sqrt{k_{1}(x)} \frac{\partial}{\partial s} U_{m}(s) \right|^{2} \, ds + a(t, U'_{m}(t)) \]
\[+ \frac{2}{\beta} \int_{0}^{t} |U'_{m}(s)|^{p} \, ds + \frac{2}{\beta} \int_{0}^{t} M(U'_{m}(s))^{2} \, ds \leq C \]

\(\forall m \in \mathbb{N}, \forall \varepsilon > 0 \) and \(\forall t \in [0, T]. \)

We obtain from (1.28), (1.29) and (1.30) the estimates,

\[\| U^{\e}_{m} \|_{L^{\infty}(0, T; H^{1}(O))} \leq C, \quad \forall m \in \mathbb{N}, \ \varepsilon > 0. \]

(1.31)
where C is a constant independent of $m \in \mathbb{N}$ and $\varepsilon > 0$.

By the estimates (1.31)-(1.34), there exist a subsequence of (U_m^ε), still denoted by (U_m^ε), and a function U^ε such that

$$U_m^\varepsilon \to U^\varepsilon \text{ weak-star in } L^\infty(0,T;H_0^1(\Omega)),$$

(1.35)

$$\frac{1}{\sqrt{\varepsilon}} M \frac{\partial}{\partial t} U_m^\varepsilon \to \frac{1}{\sqrt{\varepsilon}} M \frac{\partial}{\partial t} U^\varepsilon \text{ weak-star in } L^\infty(0,T;L^2(\Omega)).$$

(1.37)

THE NONLINEAR TERM.

By (1.30) and noting that $\frac{1}{p} + \frac{1}{p'} = 1$, we obtain

$$\left\| |U_m^\varepsilon|^p U_m^\varepsilon\right\|_{L^{p'}} = \int_\Omega |U_m^\varepsilon|(p+1)p' \, dx = \int_\Omega |U_m^\varepsilon|(p-1)p' \, dx = \int_\Omega |U_m^\varepsilon|^p \, dx \leq C,$$

which implies:

$$\left\| |U_m^\varepsilon|^p U_m^\varepsilon\right\|_{L^\infty(0,T;L^{p'}(\Omega))} \leq C, \quad \forall m \in \mathbb{N}, \quad \forall \varepsilon > 0.$$

(1.38)

From (1.31), (1.32) and the Aubin-Lions Theorem (see [7]) we obtain:

$$|U_m^\varepsilon|^p U_m^\varepsilon \to |U^\varepsilon|^p U^\varepsilon \text{ a.e. in } \Omega \times (0,T),$$

(1.39)

and

$$|U_m^\varepsilon|^p U_m^\varepsilon \to W \text{ weak-star in } L^\infty(0,T;L^{p'}(\Omega)).$$

(1.40)

The difficulty is to prove that $W = |U^\varepsilon|^p U^\varepsilon$. This is a consequence of the following result due to W.A. Strauss (see [15]).

LEMMA 1. Let Ω be a bounded open set of \mathbb{R}^n. Let g_m and $g \in L^p(\Omega)$, $1 < p < \infty$ satisfy the following conditions:

(i) $g_m \to g$ a.e. in Ω

(ii) $\|g_m\|_{L^p(\Omega)} \leq C$, $\forall m \in \mathbb{N}$.

Then:

(iii) $g_m \to g$ strongly in $L^q(\Omega)$, $1 \leq q < p$

(iv) $g_m \to g$ weakly in $L^p(\Omega)$.

Lemma 1 with $q = \frac{p+2}{p+1} = p'$; $\Omega = \Omega \times (0,T)$ and $g_m = |U_m^\varepsilon|^p U_m$, we obtain from (1.38) and (1.39) that

$$|U_m^\varepsilon|^p U_m^\varepsilon \to |U^\varepsilon|^p U^\varepsilon \text{ weak-star in } L^\infty(0,T;L^{p'}(\Omega))$$

(1.41)

and consequently weak in $L^{p'}(0,T;L^{p'}(\Omega))$.

By multiplying both sides of (1.19) by $\theta \in C^\infty_0(0,T)$, integrating from $t = 0$ to $t = T$, passing to the limit and using the convergences (1.35)-(1.37), (1.41) and noting that $\{w_p\}_{p=1}^\infty$ is a basis of $H_0^1(\Omega)$, we obtain:
\[\int_0^T (\dot{k}_{2x}(x) \frac{\partial^2}{\partial t^2} U^\varepsilon(t), v) dt + \int_0^T (\dot{k}_{i_1}(x) \frac{\partial}{\partial t} U^\varepsilon(t), v) dt + \int_0^T a(t, U^\varepsilon(t), v) dt + \int_0^T \frac{1}{2} M \frac{\partial}{\partial t} U^\varepsilon(t), v) dt + \int_0^T (1 - \frac{\partial}{\partial t}) U^\varepsilon(t), v) dt = \int_0^T (f(t), v) dt. \]

(1.42)

\(\forall v \in H^1_0(O), \forall \theta \in C_0^\infty(0,T). \)

Then, from (1.35)-(1.37) and from (1.42), we obtain \(U^\varepsilon \) satisfying (1.9)-(1.10) and (1.12).

Noting that
\[L^2(O; L^2(O)) \rightarrow L^2(O; H^{-1}(O)), \]
we obtain
\[-\frac{1}{2} M U'^\varepsilon - \dot{k}(x) U'^\varepsilon \in L^2(0,T; H^{-1}(O)). \]

The fact that \(a_{ij}(x, t) \frac{\partial}{\partial x_i} U(t) \in L^2(O) \) implies that
\[\sum_{i,j=1}^n \frac{\partial}{\partial x_j} \left(a_{ij}(x, t) \frac{\partial}{\partial x_i} U(t) \right) \in L^2(0,T; H^{-1}(O)), \]
(see [3]). Also from (1.16), (1.41) and \(\tilde{f} \in L^2(0,T; L^2(O)) \) we obtain
\[\dot{k}_{2x}(x) \frac{\partial^2}{\partial t^2} U^\varepsilon \in L^2(0,T; H^{-1}(O)), \]
which proves (1.15).

The estimates (1.31)-(1.34) and (1.38) are independent form \(\varepsilon > 0 \), we obtain the same convergences (1.35)-(1.37) and (1.41) by changing \(U^\varepsilon \) by \(U \) and \(U^\varepsilon \) by \(W \). Therefore, we have
\[U^\varepsilon \rightarrow W \text{ weak-star in } L^\infty(0,T; H^1_0(O)) \]
(1.43)
\[U_i^\varepsilon \rightarrow W_i \text{ weak in } L^2(0,T; L^2(O)) \]
(1.44)
\[\sqrt{k_{2x}(x)} U_i^\varepsilon \rightarrow \sqrt{k_{2x}(x)} W_i \text{ weak-star in } L^\infty(0,T; L^2(O)). \]
(1.45)

Note that \(\sqrt{k_{2x}(x)} = \sqrt{k_{2x}(x) + \varepsilon - \varepsilon} \sqrt{k_{2x}(x)} \) strong in \(L^2(0,T; L^2(O)). \)

\[|U^\varepsilon|^2 U^\varepsilon \rightarrow |W|^2 W \text{ weak-star in } L^\infty(0,T; L^2(O)) \]
(1.46)

Also, we obtain the essential estimates:
\[\int_{O \times (0,T)} M(U_i^\varepsilon) dx dt \leq Ce. \]
(1.47)

From (1.44) we have: \(M(U_i^\varepsilon)^2 \rightarrow M(W_i)^2 \text{ weak in } L^2(0,T; L^2(O)). \)

Therefore, from (1.47) we obtain
\[\int_{O \times (0,T)} M(W_i)^2 dx dt = 0. \]

From this and the definition of \(M \), we deduce: \(W_i = 0 \text{ a.e. in } O \times (0,T) \supset Q \). Consequently \(W(x,t) \) is constant in the variable \(t \) in \(O \times (0,T) \supset Q \). Being \(W(x,0) = \tilde{u}_0(x) \) in \(O \), we conclude that \(W(x,0) = 0 \) in \(O \setminus Q \). From this and from (H-1), we get:

\[W(x,t) = 0 \text{ a.e. in } O \times (0,T) \supset Q. \]
(1.48)

We conclude from (1.43) and (1.44) that \(W(t) \in H^1(O) \). Let \(u \) be the restriction of \(W \) to \(Q \).
Then from (1.48) and (H-2), we obtain that \(u \in L^\infty(0,T; H^1_0(\Omega_t)) \); which proves (1.4) in Theorem 1. Moreover, from (1.44) and (1.45), we conclude that \(u \) satisfies (1.5).

Let \(\hat{U} \) be the restriction of \(U \) to \(Q \). Then, restricting the equation of Theorem 2 to the domain \(Q \), we obtain:

\[
(k_2(x)\hat{U}'_1(t), v) + (k_1(x)\hat{U}'_2(t), v) + a(t, \hat{U}'_1(t), v) + \frac{1}{\varepsilon} (M\hat{U}'_1(t), v) + \frac{1}{\varepsilon} (|\hat{U}'_1(t)| \varepsilon\hat{U}'_1(t), v) = \langle \hat{f}(t), v \rangle,
\]

\(\forall v \in H^1_0(\Omega) \), in the sense of the \(D'(0,T) \).

By taking the limit when \(\varepsilon \to 0 \) in (1.49), and using the convergences (1.43)-(1.46) we get:

\[
\frac{d}{dt} (k_2(x)u_1(t), v) + (k_1(x)u_1(t), v) + a(t, u(t), v) + \langle \varepsilon u(t) | \varepsilon u(t), v \rangle = \langle f(t), v \rangle,
\]

in \(D'(0,T), \forall v \in H^1_0(\Omega_t) \), which proves (1.7).

The proof of (1.6) is analogous to (1.15) of the cylinder problem.

(iii) The Initial Conditions.

Let \(\sigma \in C^1([0,T]; \mathbb{R}) \) be such that \(\sigma(0) = 1 \) and \(\sigma(T) = 0 \). We have

\[
\int_0^T \left(\frac{\partial}{\partial t} U'_m(t), v \right) \sigma(t) dt = -(U'_m(0), v) - \int_0^T (U'_m(t), v) \sigma'(t) dt, \quad \forall v \in L^2(\Omega).
\]

By passing to the limit in the above equality and using the convergences (1.20), (1.35) and (1.36) we obtain:

\[
\int_0^T \left(\frac{\partial}{\partial t} U'(t), v \right) \sigma(t) dt = -(\hat{u}_0, v) - \int_0^T (U'(t), v) \sigma'(t) dt, \quad \forall v \in L^2(\Omega).
\]

Integrating by parts the last integral above, we conclude that

\[
(U'(0), v) = (\hat{u}_0, v), \forall v \in L^2(\Omega).
\]

From this it follows (1.17). The initial condition \(u(x,0) = u_0(x) \) of Theorem 1 is done analogously.

Finally, we will verify condition (1.18). Initially we verify that \([(k_2(x) + \varepsilon)U'_1](0) \) does make sense.

Let \(U' \) be a solution of the perturbated problem. Then

\[
- \int_0^T \left(k_2(x)U'_1(t), \theta'(t) v \right) dt + \int_0^T \left(k_1(x)U'_2(t), \theta(t) v \right) dt + \int_0^T \left(A(t)U'(t), \theta(t) v \right) dt + \int_0^T \left(\frac{1}{\varepsilon} M U'_1(t), \theta(t) v \right) dt + \int_0^T \left(|U'(t)| \varepsilon U'(t), \theta(t) v \right) dt = \int_0^T \langle \hat{f}(t), \theta(t) v \rangle dt
\]

\(\forall v \in H^1_0(\Omega) \) and \(\forall \theta \in C_0^\infty(0,T) \); where \(\langle \cdot, \cdot \rangle \) is the duality between \(H^1_0(\Omega) \) and \(H^{-1}(\Omega) \). So

\[
- \int_0^T k_2(x)U'_1(t)\theta'(t) dt + \int_0^T k_1(x)U'_2(t)\theta(t) dt + \int_0^T A(t)U'(t)\theta(t) dt + \int_0^T \frac{1}{\varepsilon} M U'_1(t)\theta(t) dt + \int_0^T |U'(t)| \varepsilon U'(t)\theta(t) dt = \int_0^T \langle \hat{f}(t), \theta(t) v \rangle dt
\]

\(\forall v \in H^1_0(\Omega) \) and \(\forall \theta \in C_0^\infty(0,T) \).
Therefore, we have
\[
< -\hat{k}_2(x)U_\gamma'(t),\theta'(t) > + < \hat{k}_1(x)\mathbf{u}'_\gamma(t),\theta(t) > + < A(t)|\mathbf{u}'_\gamma(t)|,\theta(t) > + \\
< \frac{1}{2} MU'_\gamma(t),\theta(t) > + < |U'_\gamma(t)|^p U'_\gamma(t),\theta(t) > = < \hat{f}(t),\theta(t) >.
\]
\(\forall \theta \in C^\infty_0(0,T)\); where, here \(< \cdot, \cdot >\) denotes the vectorial distribution of \((0,T)\) in \(H^{-1}(0)\) evaluated in scalar test application of \((0,T)\). Being \(\hat{k}_2 \in L^\infty(O \times (0,T))\) and \(U'_\gamma \in L^2(0,T;L^2(O))\), we have \(-\hat{k}_2 U'_\gamma \in L^2(0,T;L^2(O))\).

So \(-\hat{k}_2 U'_\gamma\) defines a vectorial distribution of \((0,T)\) in \(L^2(O)\), whose derivative is:
\[
< -\hat{k}_2 U'_\gamma,\theta' > = < (\hat{k}_2 U'_\gamma)_\gamma,\theta >, \ \forall \theta \in C^\infty_0(0,T).
\]

Therefore,
\[
< (\hat{k}_2 U'_\gamma)_\gamma,\theta > + < \hat{k}_1 U'_\gamma,\theta > + < A(t)U'_\gamma,\theta > + \\
< \frac{1}{2} MU'_\gamma,\theta > + < |U'_\gamma|^p U'_\gamma,\theta > = < \hat{f},\theta >, \forall \theta \in C^\infty_0(0,T).
\]

Or,
\[
(\hat{k}_2 U'_\gamma)_\gamma + \hat{k}_1 U'_\gamma + A(t)U'_\gamma + \frac{1}{2} MU'_\gamma + |U'_\gamma|^p U'_\gamma = \hat{f},
\]

in \(L^2(0,T;H^{-1}(0))\). As \(\hat{f},\hat{k}_1 U'_\gamma,\frac{1}{2} MU'_\gamma, |U'_\gamma|^p U'_\gamma \in L^2(0,T;L^2(O))\) and \(A(t)U'_\gamma \in L^2(0,T;H^{-1}(0))\), we obtain, from the last equality above that: \((\hat{k}_2 U'_\gamma)_\gamma \in L^2(0,T;H^{-1}(0)) \rightarrow L^p(0,T;H^{-1}(0))\), which proves (1.15). It is easy to see that \(\hat{k}_2 U'_\gamma \in C^0(0,T;H^{-1}(0))\). Therefore, \([\hat{k}_2 U'_\gamma](0)\) makes sense. Let now \(\theta \in C^1([0,T],\mathbb{R})\) be such that \(\theta(0) = 1\) and \(\theta(T) = 0\). Then,
\[
\int^T_0 (\hat{k}_2 \frac{\partial^2}{\partial t^2} U'_\gamma(t),v)\theta(t)dt = -\left(\hat{k}_2 \frac{\partial}{\partial t} U'_\gamma(0),v\right) \\
- \int^T_0 (\hat{k}_2 \frac{\partial}{\partial t} U'_\gamma(t),v)\theta'(t)dt, \forall v \in V_m.
\]

From this and taking \(v = w_j\) in the approximate equation, we obtain:
\[
-\left(\hat{k}_2 \frac{\partial}{\partial t} U'_\gamma(0),v\right) - \int^T_0 (\hat{k}_2 \frac{\partial}{\partial t} U'_\gamma(t),v)\theta'(t)dt + \int^T_0 \left(\frac{1}{2} M \frac{\partial}{\partial t} U'_\gamma(t),v\right)\theta'(t)dt + \\
\int^T_0 a(t,U'_\gamma(t),v)\theta(t)dt + \int^T_0 \left(\frac{1}{2} MU'_\gamma(t),v\right)\theta(t)dt + \int^T_0 (|U'_\gamma(t)|^p U'_\gamma(t),v)\theta(t)dt = \\
\int^T_0 (\hat{f}(t),v)\theta(t)dt, \ \forall v \in V_m.
\]

By passing to the limit in the above equality and using the convergences (1.21), (1.35)-(1.37) and (1.41) we obtain:
\[
-\left(\sqrt{\hat{k}_2} \mathbf{u}',v\right) - \int^T_0 (\hat{k}_2 \mathbf{u}'_\gamma(t),v)\theta'(t)dt + \int^T_0 (\hat{k}_1(t)\mathbf{u}'_\gamma(t),v)\theta(t)dt + \\
\int^T_0 a(t,U'_\gamma(t),v)\theta(t)dt + \int^T_0 \left(\frac{1}{2} MU'_\gamma(t),v\right)\theta(t)dt + \\
\int^T_0 (|U'_\gamma(t)|^p U'_\gamma(t),v)\theta(t)dt = \int^T_0 (\hat{f}(t),v)\theta(t)dt,
\]
As \(- \int_{\Omega} (\hat{k}_2 \theta'(t), v) \theta(t) \, dt = \langle \hat{k}_2 U'_\theta(t), v \rangle > \theta(t) \theta(v) \forall v \in V_m \) and \(\theta \in C^1([0,T];\mathbb{R}) \) such that \(\theta(0) = 1 \) and \(\theta(T) = 0 \), we have, using the fact that \(U' \) is solution of the perturbed equation, that:

\[
- \langle \sqrt{\hat{k}_2(x)} \bar{u}_1, v \rangle + \langle \hat{k}_2(x) U'_\theta(0), v \rangle = 0, \forall v \in V_m.
\]

Or,

\[
\langle \hat{k}_2(x) U'_\theta(0) - \sqrt{\hat{k}_2(x)} \bar{u}_1, v \rangle = 0,
\]

\(\forall v \in H^1_0(\Omega) \). This proves (1.18) and, therefore, the proof of Theorem 2 is complete.

ACKNOWLEDGEMENT. I would like to express my sincere thanks to Professor M. Milla Miranda and L.A. Medeiros of the Federal University of Rio de Janeiro, for their encouragement and valuable suggestions when of the elaboration of this paper.

REFERENCES

14. NEVES, B.P., Perturações e aumento das condições iniciais de equações hiperbólicas-parabólicas não Lineares-9º SBA (1979), 109-123.
