THE T-STATISTICALLY CONVERGENT SEQUENCES
ARE NOT AN FK-SPACE

JEANNETTE KLINE
DEPARTMENT OF MATHEMATICS
OHIO UNIVERSITY-CHILLICOTHE
CHILLICOTHE, OH 45601

(Received September 26, 1994 and in revised form November 30, 1994)

Abstract In this note we show that under certain restrictions on a nonnegative regular summability matrix T, the space of T-statistically convergent sequences cannot be endowed with a locally convex FK topology.

KEYWORDS AND PHRASES. Statistical convergence, FK-space

1990 AMS SUBJECT CLASSIFICATION CODE. 40H05

1. INTRODUCTION

Statistical convergence, introduced by Fast [5], has most recently been studied by Fridy and Orhan [7] [8], and Kolk [9], among others [3] [4] [6] [11]. In [3], it is shown that the space of statistically convergent sequences cannot be endowed with a locally convex FK topology. In this note, we establish that under certain restrictions on a nonnegative regular summability matrix T, the space of T-statistically convergent sequences cannot be endowed with a locally convex FK topology.

An infinite matrix $T = (t_{nk})$ is nonnegative if $t_{nk} \geq 0$ for all n and k, and regular if, for a convergent sequence x with limit l, $\lim_n \sum_{k=1}^{\infty} t_{nk} x_k = l$. Throughout this note T denotes a nonnegative regular matrix. We say that the rows of T spread if $\lim_n \max_k t_{nk} = 0$. We let ω denote the space of all real valued sequences, φ denote the finitely nonzero elements of ω and N denote the positive integers. For $\epsilon > 0$ and a scalar l, we let $A_{\epsilon,l} = \{k : |x_k - l| < \epsilon\}$. A sequence $x \in \omega$ is T-statistically convergent to l provided that for all $\epsilon > 0$,

$$\lim_n \sum_{k=1}^{\infty} t_{nk} \chi_{A_{\epsilon,l}}(k) = 1,$$

(1.1)

(where χ_A is the characteristic function of A). The space of T-statistically convergent sequences is denoted by S_T. Note that for $T = C_1$, the Cesàro matrix, this definition concurs with the definition of statistical convergence [6].

2. THE MAIN RESULT

A common theme in summability is the quest for “soft” methods to apply to classical type problems. An example of this is the “FK program,” in which a summability space is given an FK topology ([13], pg. 54). An FK space X is a subspace of ω with a complete locally convex Fréchet topology such that the inclusion map from X into ω is continuous [13]. Our result shows that we cannot apply the FK-program to T-statistical convergence and improves Theorem 3.3 of [3].
THEOREM 1. For a nonnegative regular summability matrix T whose rows spread, the space of T-statistically convergent sequences cannot be endowed with a locally convex FK topology.

The proof of this theorem depends upon the following result of Bennett and Kalton [2].

THEOREM 2. Let S be a dense subspace of ω. Then the following are equivalent:
1) S is barrelled.
2) If E is a locally convex FK space that contains S, then $E = \omega$.

Note that the above statement is a restricted version of the result in [2], and an exposition can be found in ([12], pg. 253).

The proof of the main result follows that of Theorem 3.3 in [3].

PROOF OF THEOREM 1:

We show that S_T is a dense barrelled subspace of ω. Recall that S_T is barrelled if and only if every $\sigma(\varphi, S_T)$-bounded subset of φ is $\sigma(\varphi, \omega)$-bounded ([12], pg.248). Thus, to show S_T is barrelled it suffices to show that if E is not $\sigma(\varphi, \omega)$-bounded, then E is not $\sigma(\varphi, S_T)$-bounded.

We may assume that E is $\sigma(\varphi, \varphi)$-bounded, since otherwise E is not $\sigma(\varphi, S_T)$-bounded and we are done. Thus, there exists a sequence of integers $< B_n >$ such that for n an element of E with $\text{spt}(x) = \{k \in \mathbb{N} : x_k \neq 0\} \subseteq \{1, 2, \ldots, n\}$, we have $\sup_{1 \leq i \leq n} |x_i|$ is less than or equal to B_n. Since E is not $\sigma(\varphi, \omega)$-bounded, we can choose s in ω such that $\sup_{z \in E} |\sum_{i=1}^{n} x_i s_i|$ is infinite.

Note that for all z in E, we have $|\sum_{i=1}^{n} x_i s_i| \leq nB_n \sup_{1 \leq i \leq n} |s_i|$.

Select $x^1 \in E$ such that $|\sum_{i=1}^{\infty} x^1_i s_i| > B_1 |s_1|$, and select $j_1 > 1$ such that $x^1_{j_1} \neq 0$ (such a j_1 exists since E is not $\sigma(\varphi, \omega)$-bounded and since $|x_1| \leq B_1$). Assume that $\{x^1, x^2, \ldots, x^n\}$ and $j_1 < j_2 < \ldots < j_n$ have been chosen so that $x^n_{j_n} \neq 0$ and $j_n > \max\{k \in \mathbb{N} : k \in \text{spt}(x^n)\}$. Set $t = \max\{j_n, \max\{k \in \mathbb{N} : k \in \text{spt}(x^n)\}\}$, and select x^{n+1} such that

$$|\sum_{i=1}^{\infty} x_i^{n+1} s_i| > tB_1 \sup_{k \leq t} |s_k|.$$ \hspace{1cm} (2.1)

Now select j_{n+1} such that $t < j_{n+1}$ and $x_{j_{n+1}}^{n+1} \neq 0$, and proceed inductively.

By [10], since the rows of T spread there is a subsequence $< j_{p_m} >$ of $< j_n >$ such that $\lim_{m \to \infty} \sum_{k=1}^{\infty} t_k \chi_{\{m \in \mathbb{N}\}}(k) = 0$. Since $x_k^{p_m} \neq 0$ for all m, it is possible to construct a sequence $\alpha = (\alpha_k)$ such that $\sum_{k=1}^{\infty} \alpha_k x_k^{p_m} \to \infty$ as $m \to \infty$. Then we set

$$z = (z_r) = \begin{cases}
\alpha_k & \text{if } r = j_{p_k}, \text{ for } k = 1, 2, \ldots \\
0 & \text{else.}
\end{cases}$$ \hspace{1cm} (2.2)

Now, z is T-statistically convergent to 0 (because the non-zero entries of z occur on the subsequence $< j_{p_m} >$ and by the definition of T-statistical convergence). Note also that $\sum_{k=1}^{\infty} x_k^{p_m} z_k = \sum_{k=1}^{\infty} x_k^{p_m} \alpha_k$. Since the right hand side of this equation tends to infinity as m does, it follows that E is not $\sigma(\varphi, S_T)$-bounded. Since $\varphi \subseteq S_T$, S_T is a dense barrelled subspace of ω. Now, by the result of Bennett and Kalton, we have that S_T cannot be endowed with a locally convex FK topology.

The following examples illustrate the necessity of the hypothesis that the rows of T spread. Consider the identity matrix $I = (i_{nk})$, where $i_{nn} = 1$ and $i_{nk} = 0$ for all $k \neq n$. The space
of \(I \)-statistically convergent sequences is the space of convergent sequences \(c \), a well-known FK space. For a less trivial example, consider the matrix \(T = (t_{nk}) \) where \(t_{11} = 1 \), \(t_{1k} = 0 \) for \(k \geq 2 \), and for \(n \geq 2 \),

\[
t_{nk} = \begin{cases}
\frac{1}{2} & \text{if } k = n \text{ or } k = n - 1, \\
0 & \text{else.}
\end{cases}
\]

Note that the rows of \(T \) spread, and that this method is regular. In fact, \(T \) is stronger than convergence since the sequence \(x = \langle (-1)^n \rangle \) has \(\lim_{n} \sum_{k=1}^{\infty} t_{nk} x_k = 0 \). As in the case of the identity matrix, the \(T \)-statistically convergent sequences are again the FK space \(c \) of convergent sequences.

A consequence of this result is that we cannot employ the FK program when studying \(T \)-statistical convergence for a matrix \(T \) whose rows spread. Instead, the Stone-Čech compactification of the integers has been used [4][1] as an avenue for “soft” methods for treating \(T \)-statistical convergence of bounded sequences. This result also includes Corollary 4.4 of [9], where it is shown that under certain restrictions, a matrix \(B \) maps the space of \(T \)-statistically convergent sequences into a sequence space \(Y \) if and only if \(B \) has at most finitely many non-zero columns which belong to \(Y \).

ACKNOWLEDGEMENT. The author wishes to thank Jeff Connor for critically reading an earlier version of this manuscript and making many helpful suggestions.

REFERENCES

2. BENNETT, G. and KALTON, N.J., Inclusion theorems for FK spaces, Canadian J Mathematics 25, 511-524
3. CONNOR, J.S., The statistical and strong p-Cesaro convergence of sequences, Analysis 8, 47-63
4. CONNOR, J.S., R-type summability methods, Cauchy criteria, P-sets, and statistical convergence, Proc Amer Math Soc. 115 2, 319-327
5. FAST, H., Sur la convergence statistique, Colloq. Math. 2, 241-244
9. KOLK, E., Matrix summability of statistically convergent sequences, Analysis 13, 77-83.