ABSTRACT. For a monotone convex function $f \in C[a,b]$ we prove that the modulus of continuity $\omega(f;h)$ is concave on $[a,b]$ as function of h. Applications to approximation theory are obtained.

KEY WORDS AND PHRASES. Concave modulus of continuity, approximation by positive linear operators, Jackson estimate in Kornechuk's form.

1991 AMS SUBJECT CLASSIFICATION CODES. 41A10, 41A36, 41A17.

1. INTRODUCTION.

In a recent paper, Gal [1] the modulus of continuity for convex functions is exactly calculated, in the following way.

THEOREM 1. (see [1]) Let $f \in C[a,b]$ be monotone and convex on $[a,b]$. For any $h \in [0,b-a]$ we have:

(i) $\omega(f;h) = f(b) - f(b-h)$, if f is increasing on $[a,b]$,

(ii) $\omega(f;h) = f(a) - f(a + h)$, if f is decreasing on $[a,b],

where $\omega(f;h)$ denotes the classical modulus of continuity.

Denote

$KM[a,b] = \{f \in C[a,b]; \text{ f is monotonous convex or monotonous concave on } [a,b]\}$

The purpose of the present paper is to prove that for $f \in KM[a,b]$ the modulus of continuity $\omega(f;h)$ is concave as function of $h \in [0,b-a]$ and to apply this result to approximation by positive linear operators and to Jackson estimates in Kornechuk's form.

2. MAIN RESULTS AND APPLICATIONS.

A first main result is the following

THEOREM 2. For all $f \in KM[a,b]$, the modulus of continuity $\omega(f;h)$ is concave as function of $h \in [0,b-a]$.

PROOF. Let firstly suppose that f is increasing and convex on $[a,b]$. If f is increasing on $[a,b]$, by Theorem 1, (i), we have $\omega(f;h) = f(b) - f(b-h)$. Hence

$$\omega(f;h) = f(b) - f(b-h)$$

for all $h \in [0,b-a]$.

\[\begin{aligned}
\alpha \omega(f;h_1) + (1 - \alpha) \omega(f;h_2) &= f(b) - \alpha f(b - h_1) - (1 - \alpha) f(b - h_2) \\
\omega(f;\alpha h_1 + (1 - \alpha)h_2) &= f(b) - f(b - \alpha h_1 - (1 - \alpha)h_2)
\end{aligned}\] (1.1) (1.2)

for all $h_1, h_2 \in [0,b-a]$.

\[\begin{aligned}
\alpha \omega(f;h_1) + (1 - \alpha) \omega(f;h_2) &= f(b) - \alpha f(b - h_1) - (1 - \alpha) f(b - h_2) \\
\omega(f;\alpha h_1 + (1 - \alpha)h_2) &= f(b) - f(b - \alpha h_1 - (1 - \alpha)h_2)
\end{aligned}\] (1.1) (1.2)

for all $h_1, h_2 \in [0,b-a]$.

\[\begin{aligned}
\alpha \omega(f;h_1) + (1 - \alpha) \omega(f;h_2) &= f(b) - \alpha f(b - h_1) - (1 - \alpha) f(b - h_2) \\
\omega(f;\alpha h_1 + (1 - \alpha)h_2) &= f(b) - f(b - \alpha h_1 - (1 - \alpha)h_2)
\end{aligned}\] (1.1) (1.2)

for all $h_1, h_2 \in [0,b-a]$.

\[\begin{aligned}
\alpha \omega(f;h_1) + (1 - \alpha) \omega(f;h_2) &= f(b) - \alpha f(b - h_1) - (1 - \alpha) f(b - h_2) \\
\omega(f;\alpha h_1 + (1 - \alpha)h_2) &= f(b) - f(b - \alpha h_1 - (1 - \alpha)h_2)
\end{aligned}\] (1.1) (1.2)

for all $h_1, h_2 \in [0,b-a]$.

\[\begin{aligned}
\alpha \omega(f;h_1) + (1 - \alpha) \omega(f;h_2) &= f(b) - \alpha f(b - h_1) - (1 - \alpha) f(b - h_2) \\
\omega(f;\alpha h_1 + (1 - \alpha)h_2) &= f(b) - f(b - \alpha h_1 - (1 - \alpha)h_2)
\end{aligned}\] (1.1) (1.2)

for all $h_1, h_2 \in [0,b-a]$.

\[\begin{aligned}
\alpha \omega(f;h_1) + (1 - \alpha) \omega(f;h_2) &= f(b) - \alpha f(b - h_1) - (1 - \alpha) f(b - h_2) \\
\omega(f;\alpha h_1 + (1 - \alpha)h_2) &= f(b) - f(b - \alpha h_1 - (1 - \alpha)h_2)
\end{aligned}\] (1.1) (1.2)

for all $h_1, h_2 \in [0,b-a]$.
Since f is convex on $[a,b]$ we get
\[f(b - ah_1 - (1 - a)h_2) \leq af(b - h_1) + (1 - a)f(b - h_2), \]
wherefrom taking into account (1.1) and (1.2) too, we get
\[\alpha \omega(f;h_1) + (1 - \alpha)\omega(f;h_2) \leq \omega(f;ah_1 + (1 - a)h_2) \tag{1.3} \]

Now, if f is decreasing on $[a,b]$, since by Theorem 1, (ii), we have $\omega(f;h) = f(a) - f(a + h)$, we immediately get
\[\alpha \omega(f;h_1) + (1 - \alpha)\omega(f;h_2) = f(a) - af(a + h_1) - (1 - \alpha)f(a + h_2) \tag{1.4} \]
and
\[\omega(f;ah_1 + (1 - a)h_2) = f(a) - f(a + ah_1 + (1 - a)h_2) \tag{1.5} \]
for all $\alpha \in [0,1]$ and all $h_1, h_2 \in [0, b - a]$.

Since f is convex on $[a,b]$ we have
\[f(a + ah_1 + (1 - a)h_2) \leq af(a + h_1) + (1 - \alpha)f(a + h_2), \]
which together with (1.4) and (1.5) gives again (1.3).

In the following we need the

DEFINITION 1. (see e.g. [2]) Let $f \in C[a,b]$ be. If $\omega(f;h) = \sup \{ |f(x) - f(y)| : |x - y| \leq h \}$ is the usual modulus of continuity, the least concave majorant of $\omega(f;h)$ is given by
\[\overline{\omega}(f;h) = \sup \left\{ (\alpha)\omega(f;\beta) + (\beta - \alpha)\omega(f;\alpha) : 0 \leq \alpha \leq \beta \leq b - a \right\}. \]

An immediate consequence of Definition 1 is the

COROLLARY 1. For any $f \in KM[a,b]$ we have
\[\overline{\omega}(f;h) = \omega(f;h) \]

PROOF. Putting $\alpha = \delta$ in Definition we get
\[\omega(f;h) \leq \overline{\omega}(f;h). \]
Then, taking into account Theorem 2, for $0 \leq \alpha \leq \delta \leq \beta \leq b - a$ we have
\[\frac{(\delta - \alpha)\omega(f;\beta) + (\beta - \delta)\omega(f;\alpha)}{\beta - \alpha} \leq \omega \left(f; \frac{\beta(\delta - \alpha)}{\beta - \alpha} + \frac{\alpha(\beta - \delta)}{\beta - \alpha} \right) = \omega(f;\delta) \]
wherefrom passing to supremum, we immediately get
\[\overline{\omega}(f;\delta) \leq \omega(f;\delta), \]
which proves the corollary.

REMARK. It is easy to see that Corollary 1 remains valid for all $f \in C[a,b]$ having a concave modulus of continuity $\omega(f;h)$.

Now, firstly we will apply the previous results to approximation by positive linear operators.

Thus, investigating the sequence of Lehnhoff polynomials in [3], $L_n(f)(x)$, defined for $f \in C[-1,1]$, H.H. Gonska [2] proves that
\[|L_n(f)(x) - f(x)| \leq \frac{\sqrt{30}}{\sqrt{n}} \left(f; \sqrt{\frac{1 - x^2}{n}} + \frac{|x|}{n} \right) \]
Taking now into account Corollary 1 we immediately get the
COROLLARY 2. If $f \in K_M[-1,1]$ then for all $x \in [-1,1], n \in N$ we have
\[|I_n(f)(x) - f(x)| \leq \sqrt{\frac{10}{n}} \left(f; \frac{\sqrt{1 - x^2}}{n} + \frac{|x|}{n^2} \right) \]

In the same paper, for $f \in C[0,1]$, H.H. Gonska obtains estimates in terms of the modulus $(f;h)$ in the approximation by the so-called Shepard operator, $S_n^h(f), 1 \leq \mu \leq 2$. Then by Corollary 1 and by Theorem 4.3 in [2] we immediately get the

COROLLARY 3. For all $f \in K_M[0,1]$ and all $n \in N$ we have
\[\|S_n^f(f) - f\| \leq \frac{n + 1}{n} \omega(f; \frac{1}{(n+1)(n+2)}) \]
\[\|S_n^h(f) - f\| \leq \frac{14}{2 - \mu} \omega(f; \frac{1}{(n+1)(n+2)}) \]
\[\|S_n^2(f) - f\| \leq 19\omega(f; \frac{1}{n+1}) \]

Finally, we will apply our results to the following so-called Jackson estimate in Korneichuk’s form.

THEOREM 3. (see e.g. [4], p. 147) For any $f \in C[-1,1]$ we have
\[E_n(f) \leq \omega(f; \frac{1}{n}), n = 1, 2, \cdots \]
where $E_k(f)$ denotes the best approximation by polynomials of degree $\leq k$.

Now, we will prove the

THEOREM 4. If $f \in C[-1,1]$ has a concave modulus of continuity $\omega(f;h), h \in [0,2]$, then we have
\[E_n(f) \leq \frac{1}{2} \omega(f; \frac{\pi}{n}) \]

PROOF. Extending ω to $[0,\pi]$ by taking $\omega(f;h) = \omega(f;2), h \in [2,\pi]$, obviously ω remains concave on $[0,\pi]$.

Denote $\omega(h) = \omega(f;h), h \in [0,\pi]$ and
\[\Lambda_\omega = \{g \in C[-1,1]; \omega(g;h) \leq \omega(h), \forall h \in [0,\pi]\} \]

Obviously $f \in \Lambda_\omega$. Then by [5, Theorem 8 and Lemma 2, p. 122-123], as in the proof of Theorem 9, p. 123 in [5], there is $g \in Lip_M^1$ such that
\[\|f - g\| \leq \frac{1}{2} \omega(f; \frac{\pi}{2n}) \]

Now by Theorem V, (ii), in [4, p. 147], there is P_{n-1} polynomial of degree $\leq n-1$ such that
\[\|g - P_{n-1}\| \leq \frac{\pi M}{2n}. \]

Hence we get
\[\|f - P_{n-1}\| \leq \|f - g\| + \|g - P_{n-1}\| \leq \frac{1}{2} \omega(f; \frac{\pi}{n}) \]

which proves the theorem.

REMARK. For $f \in K_M[-1,1]$, Theorem 4 remains valid.
REFERENCES

