EXISTENCE OF PERIODIC SOLUTIONS
FOR NONLINEAR LIENARD SYSTEMS

WAN SE KIM
Department of Mathematics
Dong-A University
Pusan 604 - 714
Republic of Korea

(Received January 26, 1993 and in revised form March 29, 1993)

ABSTRACT. We prove the existence and multiplicity of periodic solutions for nonlinear Lienard System of the type

\[x''(t) + \frac{d}{dt} [\nabla F(x(t))] + g(x(t)) + h(t, x(t)) e(t) = 0 \]

under various conditions upon the functions \(g, h \) and \(e \).

KEY WORDS AND PHRASES: Nonlinear Lienard system, multiplicity of periodic solution.

1991 AMS SUBJECT CLASSIFICATION CODES: 34B15, 34C25

1. INTRODUCTION

Let \(\mathbb{R}^n \) be \(n \)-dimensional Euclidean space. We define \(x_{[a,b]} = [x_1, x_2, \ldots, x_n] \) for \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \). By \(L^2([0, 2\pi], \mathbb{R}^n) \) we denote the space of all measurable functions \(x: [0, 2\pi] \to \mathbb{R}^n \) for which \(\int_0^{2\pi} \|x(t)\|^2 dt \) is integrable. The norm is given by

\[\|x\|_{L^2} = \left[\int_0^{2\pi} \|x(t)\|^2 dt \right]^{1/2}. \]

By \(C^k([0, 2\pi], \mathbb{R}^n) \) we denote the Banach space of \(2\pi \)-periodic continuous functions \(x: [0, 2\pi] \to \mathbb{R}^n \) whose derivatives up to order \(k \) are continuous. The norm is given by

\[\|x\|_{C^k} = \sum_{i=0}^{k} \|x^{(i)}\|_{L^2} \]

where \(\|y\| = \sup_{t \in [0, 2\pi]} \|y(t)\| \) is a norm in \(C([0, 2\pi], \mathbb{R}^n) \). We use the symbol \(\langle \cdot, \cdot \rangle \) for the Euclidean inner product in the space \(\mathbb{R}^n \). For \(x, y \) in \(C([0, 2\pi], \mathbb{R}^n) \) we define the \(L^2 \)-inner product as follows

\[\langle x, y \rangle = \int_0^{2\pi} (x(t), y(t)) dt. \]

The mean value \(\bar{x} \) of \(x \) and the function of mean value zero are defined by \(\bar{x} = \frac{1}{2\pi} \int_0^{2\pi} x(t) dt \) and \(\bar{y}(t) = x(t) - \bar{x}, \) respectively.

We define inequalities in \(\mathbb{R}^n \) componentwise, i.e. \(x, y \in \mathbb{R}^n, \ x \leq y \) if and only if \(x_i \leq y_i \) for \(i = 1, 2, \ldots, n, \) and \(x < y \) if and only if \(x_i < y_i \) for \(i = 1, 2, \ldots, n. \) In this work, we will study the existence of periodic solutions and multiple periodic solutions for the problem

\[x''(t) + \frac{d}{dt} [\nabla F(x(t))] + g(x(t)) + h(t, x(t)) e(t) = 0 \]

\[x(0) = x(2\pi), \ x'(0) = x'(2\pi) = 0 \]
where \(F : \mathbb{R}^n \rightarrow \mathbb{R} \) is a \(C^2 \)-function, \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) is continuous, \(h : [0, 2\pi] \times \mathbb{R}^n \rightarrow \mathbb{R} \) is continuous in both variables and 2\(\pi \)-periodic in \(t \), and \(e : [0, 2\pi] \rightarrow \mathbb{R} \) is in \(L^2([0, 2\pi], \mathbb{R}^n) \). We assume that \(g(x) = (g_1(x), g_2(x), \ldots, g_n(x)) \) for all \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \) and \(h(t, x) = (h_1(t, x), h_2(t, x), \ldots, h_n(t, x)) \) for all \((t, x) \in [0, 2\pi] \times \mathbb{R}^n \).

Moreover, we assume the following:

\((H_1)\) \(h \) is bounded; i.e., for each \(i = 1, 2, 3, \ldots, n \), there exists \(K_i > 0 \) such that
\[
|h_i(t, x)| \leq K_i
\]
for all \((t, x) \in [0, 2\pi] \times \mathbb{R}^n \).

\((H_2)\) for each \(i = 1, 2, \ldots, n \),
\[
\frac{d}{dt} \frac{\partial F(x)}{\partial x_i} = \frac{\partial^2 F(x)}{\partial x_i^2} x_i'
\]
and there exists \(C_i > 0 \) such that
\[
\left| \frac{\partial^2 F(x)}{\partial x_i^2} \right| \geq C_i
\]
for all \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \).

The purpose of this work is to give existence and multiplicity results for periodic solutions of coupled Lienard system in \(\mathbb{R}^n \). This paper was motivated by the results in [1] and so our results in this work extend some results in [1]. To prove our results we adapt Mawhin's continuation theorem in [2], and we give appropriate region for the system's multiplicity by finding an a'priori bound.

2. A'priori Bound

To prove our assertion, we consider the following homotopy:

\((E_1)\)
\[x''(t) + \lambda \frac{d}{dt} [VF(x(t))] + \lambda g(x) + \lambda h(t, x) = \lambda e(t). \]

Let \(\lambda \in (0, 1) \) and let \(x(t) \) be a possible solution of the problem \((E_1) (B)\). Taking \(L^2 \)-inner product by \(x'(t) \) on both sides of \((E_1)\), we have

\[\lambda \sum_{i=1}^n \int_0^{2\pi} \frac{\partial^2 F(x(t))}{\partial x_i^2} [x_i'(t)]^2 dt + \lambda \sum_{i=1}^n \int_0^{2\pi} g_i(x(t)) x_i'(t) dt \]
\[+ \lambda \sum_{i=1}^n \int_0^{2\pi} h_i(t, x(t)) x_i'(t) dt = \lambda \sum_{i=1}^n \int_0^{2\pi} e_i(t) x_i'(t) dt. \]

By the continuity of \(\frac{\partial^2 F(x)}{\partial x_i^2} \), \((H_2)\) and the periodicity of \(x_i(t) \) in \(t \), we have

\[
\sum_{i=1}^n C_i \int_0^{2\pi} [x_i'(t)]^2 dt \leq \left(\sum_{i=1}^n \left| \int_0^{2\pi} \frac{\partial^2 F(x)}{\partial x_i^2} [x_i'(t)]^2 dt \right| \right)^{1/2} \leq \sum_{i=1}^n \sqrt{2\pi} \left(\int_0^{2\pi} [x_i'(t)]^2 dt \right)^{1/2} \leq \left(\sum_{i=1}^n \int_0^{2\pi} [x_i'(t)]^2 dt \right)^{1/2}.
\]

Hence

\[
\| x' \|_{L^2} \leq \left(\frac{1}{\min_{i=1,n} C_i} \right)^{1/2} \left(\sqrt{2\pi} \left(\sum_{i=1}^n K_i^2 \right)^{1/2} + \| e \|_{L^2} \right) = M_0.
\]

By the Sobolev inequality, we have

\[
\| x \|_{\infty} \leq \sqrt{\frac{\pi}{6}} M_0 = M_1.
\]
Suppose there exist \(a = (a_1, a_2, \ldots, a_n) \), \(b = (b_1, b_2, \ldots, b_n) \) in \(\mathbb{R}^n \) such that \(a \leq b \); if \(x(t) \) is a solution of \((E_\alpha)(B) \) such that \(a \leq x \leq b \) and \(\|x\| = M_1 \), then

\[
\|x\| \leq \left[\sum_{i=1}^n \left[\max(|a_i|, |b_i|) \right]^2 \right]^{1/2} + M_1.
\]

Taking \(L^2 \)-inner product by \(x''(t) \) on both sides of \((E_\alpha) \), we have

\[
\sum_{i=1}^n \int_0^{2\pi} [x_i''(t)]^2 dt + \lambda \sum_{i=1}^n \int_0^{2\pi} \frac{\partial^2 F(x)}{\partial x_i^2} x_i'(t)x_i''(t) dt
\]

\[
+ \lambda \sum_{i=1}^n \int_0^{2\pi} g_i(x_i(t))x_i''(t) dt + \lambda \sum_{i=1}^n \int_0^{2\pi} h_i(t,x(t))x_i''(t) dt
\]

\[
= \lambda \sum_{i=1}^n \int_0^{2\pi} \delta_i(t)x_i''(t) dt.
\]

Since \(F \) is a \(C^2 \)-function, for each \(i = 1, 2, \ldots, n \), there exists \(\alpha > 0 \) such that

\[
\left| \frac{\partial^2 F(x)}{\partial x_i^2} \right| \leq D_i,
\]

and also since \(g \) is continuous, for each \(i = 1, 2, \ldots, n \), there exists \(L_i > 0 \) such that

\[
|g_i(x_i)| \leq L_i.
\]

Hence

\[
\sum_{i=1}^n \int_0^{2\pi} [x_i''(t)]^2 dt \leq \left(\max_{1 \leq i \leq n} D_i \right) \left[\sum_{i=1}^n \int_0^{2\pi} |x_i'(t)|^2 dt \right]^{1/2} \left[\sum_{i=1}^n \int_0^{2\pi} |x_i''(t)|^2 dt \right]^{1/2}
\]

\[
+ \sqrt{2\pi} \left[\sum_{i=1}^n K_i^2 \right]^{1/2} \left[\sum_{i=1}^n \int_0^{2\pi} |x_i''(t)|^2 dt \right]^{1/2}
\]

\[
+ \left[\sum_{i=1}^n \int_0^{2\pi} |\delta_i(t)|^2 dt \right]^{1/2} \left[\sum_{i=1}^n \int_0^{2\pi} |x_i''(t)|^2 dt \right]^{1/2}
\]

and thus we have

\[
\|x''\|_{L^2} \leq \left(\max_{1 \leq i \leq n} D_i \right) M_0 + \sqrt{2\pi} \left[\sum_{i=1}^n L_i^2 \right]^{1/2} + \left[\sum_{i=1}^n K_i^2 \right]^{1/2} + \|\delta\|_{L^2} = M_2.
\]

By the Sobolev inequality

\[
\|x''\| = \sqrt{\frac{\pi}{6}} M_2
\]

for every solution of the problem \((E_\alpha)(B) \) where \(M_2 \) depends on \(a, b, M_0 \) and \(M_1 \).

3. **OPERATOR FORMULATION**

Define

\[
L : D(L) \subseteq C^1([0, 2\pi], \mathbb{R}^n) \to L^2([0, 2\pi], \mathbb{R}^n)
\]

by

\[
(x_1(t), x_2(t), \ldots, x_n(t)) \to (x_1''(t), x_2''(t), \ldots, x_n''(t))
\]

where \(D(L) = C^2([0, 2\pi], \mathbb{R}^n) \). Then \(\text{Ker} \, L = R^2 \) and
Consider two continuous projections
\[P : C^1([0, 2\pi], R^*) \to C^1([0, 2\pi], R^*) \]
such that
\[\text{Im} P = \text{Ker} L \]
and
\[Q : L^2([0, 2\pi], R^*) \to L^2([0, 2\pi], R^*) \]
defined by
\[(Qe)(t) = \frac{1}{2\pi} \int_0^{2\pi} e(t) dt. \]
Then
\[\text{Ker} Q = \text{Im} L, C([0, 2\pi], R^*) = \text{Ker} L \oplus \text{Im} L \]
and \(L^2([0, 2\pi], R^*) = \text{Im} L \oplus \text{Im} Q \) as a topological sum. Since
\[\dim [L^2([0, 2\pi], R^*)/\text{Im} L] = \dim [\text{Im} Q] = \dim [\text{Ker} L] = n, \]
\(L \) is a Fredholm mapping of index zero and hence there exists an isomorphism \(J : \text{Im} Q \to \text{Ker} L \). The operator \(L \) is not bijective but the restriction of \(L \) on \(\text{Dom} L \cap \text{Ker} P \) is one-to-one and onto \(\text{Im} L \), so it has its algebraic right inverse \(K \), and as well known, it is compact. Define
\[N : C^1([0, 2\pi], R^*) \to L^2([0, 2\pi], R^*) \]
by
\[x(t) \to -\frac{d}{dt} [\nabla F(x(t))] - g(x(t)) - h(t, x(t)) + e(t) \]
where \(x(t) = (x_1(t), x_2(t), \ldots, x_n(t)) \). Then \(N \) is continuous and maps bounded sets into bounded sets. Let \(G \) be any open bounded subset of \(C^1([0, 2\pi], R^*) \), then \(QN : G \to L^2([0, 2\pi], R^*) \) is bounded and \(K \in (I - Q) : G \to L^2([0, 2\pi], R^*) \) is compact and continuous. Hence \(N \) is \(L \)-compact on \(G \). Now we see \(x \in D(L) \) is a solution to the problem \((E_1)(B)\) if and only if
\[Lx = \lambda Nx. \]

4. MAIN RESULTS

THEOREM 4.1. Besides conditions on \(F, g, e \), and \((H_1), (H_2)\), we assume

\[(H_3) \text{ there exists } r = (r_1, r_2, \ldots, r_s), s = (s_1, s_2, \ldots, s_n), A = (A_1, A_2, \ldots, A_s) \text{ and } B = (B_1, B_2, \ldots, B_n) \text{ in } R^n \]
such that \(r < s \) and \(A \preceq B \)
\[\frac{1}{2\pi} \int_0^{2\pi} g(r + \bar{x}(t)) dt + \frac{1}{2\pi} \int_0^{2\pi} h(t, \bar{x} + \bar{x}(t)) dt \leq A \]
and
\[\frac{1}{2\pi} \int_0^{2\pi} g(s + \bar{x}(t)) dt + \frac{1}{2\pi} \int_0^{2\pi} h(t, \bar{x} + \bar{x}(t)) dt \geq B \]
for every \(\bar{x} \in R^s \) such that
\[\| \bar{x} \| \leq \left(\sum_{i=1}^s [\max(\{r_i\}, |s_i|^2)]^{1/2} \right), \]
and for every \(\dot{x} \in C^1([0,2\pi),\mathbb{R}^n) \) having mean value zero, satisfying the boundary condition \((B) \) and such that

\[
\| \dot{x} \|_{L^1} \leq \sqrt{\frac{\pi}{6}} \left(\frac{1}{\min_{i_1,\ldots,i_n} C_i} \right) \left[\sqrt{2\pi} \left[\sum_{i_1} K_{i_1}^{1/2} + \| \ell \|_{L^2} \right] \right],
\]

Then \((E)(B)\) has at least one solution if

\[
A < \frac{1}{2\pi} \int_0^{2\pi} e(t)\,dt < B.
\]

PROOF. We construct a bounded open set \(\Omega \) in \(C^1([0,2\pi),\mathbb{R}^n) \) to apply Mawhin's continuation theorem in [2]. Using a'priori estimate, we have

\[
\| x' \|_{L^1} \leq \left(\frac{1}{\min_{i_1,\ldots,i_n} C_i} \right) \left[\sqrt{2\pi} \left[\sum_{i_1} K_{i_1}^{1/2} + \| \ell \|_{L^2} \right] \right] = M_0,
\]

for any solution \(x(t) \) of \((E)(B), \lambda \in (0,1)\). Hence \(\| \dot{x} \|_{L^1} \leq \sqrt{\frac{\pi}{6}} M_0 = M_1 \). Define a bounded set \(\Omega^0 \) by

\[
\Omega^0 = \{ x \in C^1([0,2\pi),\mathbb{R}^n) \mid r < \| x \|_{L^1} < s, \| x \|_{L^1} < M_1 \}.
\]

Then, for any solution \(x(t) \) of \((E)(B)\) lying in \(\Omega^0 \), we have

\[
\| x \|_{L^1} \leq \left[\sum_{i_1} \left[\max(|r_{i_1}|,|s_{i_1}|) \right]^2 \right]^{1/2} + M_1
\]

and

\[
\| x'' \|_{L^1} \leq \left(\max_{i_1,\ldots,i_n} D_{i_1} \right) M_0 + \sqrt{2\pi} \left[\sum_{i_1} \left(\alpha_{i_1} L_{i_1}^2 + \| \ell \|_{L^2} + \| \ell \|_{L^2} \right) \right]^{1/2} = M_2,
\]

where \(\lambda \) depends on \(r, s \) and \(M_1 \). Thus \(\| x' \|_{L^1} < \sqrt{\frac{\pi}{6}} M_2 \). Define a bounded open set \(\Omega \) by

\[
\Omega = \left\{ x \in C^1([0,2\pi),\mathbb{R}^n) \mid r < \| x \|_{L^1} < s, \| x \|_{L^1} < 2M_1, \| x' \|_{L^1} < \sqrt{\frac{2\pi}{6}} M_2 \right\}.
\]

Let \((x,\lambda) \in [D(L) \cap \partial \Omega] \times (0,1)\) and if \((x,\lambda)\) is any solution to \(Lx + \lambda Nx \), then \((x,\lambda)\) is a solution to the problem \((E)(B)\),

\[
\| \dot{x} \|_{L^1} \leq \left[\sum_{i_1} \left[\max(|r_{i_1}|,|s_{i_1}|) \right]^2 \right]^{1/2}, \quad \| x \|_{L^1} \leq M_1
\]

and there exists some \(i \in \{1,2,\ldots,n\} \) such that \(\dot{x}_i = r_i \) or \(s_i \). Take \(L^2\)-inner product with \(e_i = (0,0,\ldots,0,1,0,\ldots,0) \) on both sides of \((E)_i\), we have

\[
\lambda \int_0^{2\pi} g_i(x_i(t))\,dt + \lambda \int_0^{2\pi} h_i(t,x(t))\,dt = \lambda \int_0^{2\pi} e_i(t)\,dt,
\]

or

\[
\int_0^{2\pi} g_i(x_i(t))\,dt + \int_0^{2\pi} h_i(t,x(t))\,dt - \int_0^{2\pi} e_i(t)\,dt = 0
\]

if \(\dot{x}_i = r_i \), then, by assumption

\[
\int_0^{2\pi} g_i(r_i + \dot{x}_i(t))\,dt + \int_0^{2\pi} h_i(t,\dot{x}_i(t),x_1(t),\ldots,r_i,\ldots,\dot{x}_n(t),\ldots,\dot{x}_n(t))\,dt - \int_0^{2\pi} e_i(t)\,dt < 0.
\]

If \(\dot{x}_i = s_i \), then again by assumption,
Thus, for each \(\lambda \in (0, 1) \), for every solution of

\[
Lx = \lambda Nx
\]

is such that \(x \notin \partial \Omega \).

Next, we will show that \(QNx \neq 0 \) for each \(x \in \text{Ker}L \cap \partial \Omega \) and \(d_0[JQN, \Omega \cap \text{Ker}L, 0] \neq 0 \) where \(d_0 \) is the Brouwer topological degree. Since \(J: \text{Im}Q \rightarrow \text{Ker}L \) is an isomorphism and \(\dim[\text{Im}Q] = \dim[\text{Ker}L] = n \), we may take \(J \) to be the identity on \(R^n \) and hence

\[
(JQN)(x)(t) = -\frac{1}{2\pi} \int_0^{2\pi} g(x(t))dt - \frac{1}{2\pi} \int_0^{2\pi} h(t, x(t))dt + \frac{1}{2\pi} \int_0^{2\pi} e(t)dt
\]

with, for \(i = 1, 2, \ldots, n \),

\[
(JQN)_i(x)(t) = -\frac{1}{2\pi} \int_0^{2\pi} g_i(x_i(t))dt - \frac{1}{2\pi} \int_0^{2\pi} h_i(t, x_i(t))dt + \frac{1}{2\pi} \int_0^{2\pi} e_i(t)dt
\]

where \(x(t) = (x_1(t), x_2(t), \ldots, x_n(t)) \).

Let \(x \in \text{Ker}L \cap \partial \Omega \), then \(x = \vec{x} \) is constant in \(R^n \),

\[
\| x \| = \left[\sum_{i=1}^n \max(|r_i|, |s_i|) \right]^{1/2}
\]

and there exists \(i \in \{1, 2, \ldots, n\} \) such that \(x_i = r_i \) or \(s_i \). In a similar manner we have \((QN)_i(x) \neq 0 \).

Thus \(QNx \neq 0 \) for each \(x \in \text{Ker}L \cap \partial \Omega \). It is easy to see that \(P = \Omega \cap \text{Ker}L = \Pi_i \{r_i, s_i\} \). Let

\[P_i = \{ x \in P \mid x_i = r_i \} \quad \text{and} \quad P_i' = \{ x \in P \mid x_i = s_i \} \quad \text{and} \quad x \in P, x_i \in P_i, i = 1, 2, \ldots, n \]

Then \(x = \vec{x}, x' = \vec{x}' \) are constant with

\[
\| \vec{x} \|, \quad \| \vec{x}' \| = \left[\sum_{i=1}^n \max(|r_i|, |s_i|) \right]^{1/2}
\]

and \(x_i = r_i, x_i' = s_i \). Hence

\[
(JQN)_i(x) = -\frac{1}{2\pi} \int_0^{2\pi} g_i(r_i)dt - \frac{1}{2\pi} \int_0^{2\pi} h_i(t, x_i, \ldots, x_n)dt + \frac{1}{2\pi} \int_0^{2\pi} e_i(t)dt > 0
\]

and

\[
(JQN)_i(x') = -\frac{1}{2\pi} \int_0^{2\pi} g_i(s_i)dt - \frac{1}{2\pi} \int_0^{2\pi} h_i(t, x_i', \ldots, x_n')dt + \frac{1}{2\pi} \int_0^{2\pi} e_i(t)dt < 0
\]

Thus \((JQN)_i(x)(JQN)_i(x') < 0 \) for \(i = 1, 2, \ldots, n \). Therefore, by the generalized intermediate value theorem, \(d_0[JQN, \Omega \cap \text{Ker}L, 0] \neq 0 \). Hence, by Mawhin's continuation theorem, the problem \((E)(B) \) has at least one solution in \(D(L) \cap \partial \Omega \).

Theorem 4.2. Besides conditions on \(F, g, e, \) and \((H_1) \) and \((H_2) \), we assume

\((H_4) \) there exists \(q = (q_1, q_2, \ldots, q_n), r = (r_1, r_2, \ldots, r_n), s = (s_1, s_2, \ldots, s_n), A = (A_1, A_2, \ldots, A_n) \) and \(B = (B_1, B_2, \ldots, B_n) \) in \(R^n \) such that \(q < r < s \) and \(A = B \) such that

\[
\frac{1}{2\pi} \int_0^{2\pi} g(q + \vec{x}(t))dt + \frac{1}{2\pi} \int_0^{2\pi} h(t, \vec{x} + \vec{x}(t))dt \geq B,
\]

\[
\frac{1}{2\pi} \int_0^{2\pi} g(r + \vec{x}(t))dt + \frac{1}{2\pi} \int_0^{2\pi} h(t, \vec{x} + \vec{x}(t))dt \leq A,
\]

where \(\vec{x} = (x_1(t), x_2(t), \ldots, x_n(t)) \).
and

\[\frac{1}{2\pi} \int_0^{2\pi} g(x + \tilde{x}(t))dt + \frac{1}{2\pi} \int_0^{2\pi} h(t, x + \tilde{x}(t))dt = B \]

for every \(\tilde{x} \in \mathbb{R}^n \) such that

\[\| \tilde{x} \| = \left(\sum_{i=1}^{n} \max(|q_i|, |r_i|, |s_i|)^2 \right)^{1/2} \]

and for every \(\tilde{x} \in C^1([0,2\pi], \mathbb{R}^n) \) having mean value zero, satisfying the boundary condition (B) such that

\[\| \tilde{x} \| = \sqrt{\frac{1}{6} \left(\min_{x \in x^*} C_i \right)} \left[\sqrt{2\pi} \left(\sum_{i=1}^{n} K_i^2 \right)^{1/2} + \| \tilde{e} \| \right] \]

Then \((E)(B) \) has at least \(2^s \) solutions if

\[A < 1/2 \pi \int_0^{2\pi} e(t)dt < B. \]

Proof. We construct \(2^s \) bounded open sets in \(C^1([0,2\pi], \mathbb{R}^n) \) to apply Mawhin’s continuation theorem in [3]. Using a’priori estimate, we have

\[\| x \|_{L^2} \leq \left(\frac{1}{\min_{x \in x^*} C_i} \right) \left[\sqrt{2\pi} \left(\sum_{i=1}^{n} K_i^2 \right)^{1/2} + \| \tilde{e} \| \right] = M_0 \]

for any solution \(x(t) \) of \((E)\alpha(B), \alpha \in (0,1) \). Hence \(\| x \|_{L^2} \leq \sqrt{\frac{1}{6}} M_0 = M_1 \). Let \(I, J \) be two disjoint subsets of \(\{1, 2, ..., n\} \) such that \(I \cup J = \{1, 2, ..., n\} \) and define \(\Omega_{ij} \) by \(\Omega_{ij} = \{ x \in C^1([0,2\pi], \mathbb{R}^n) | q_i \leq \tilde{x}_i \leq r_i \}

for \(i \in I, r_j \leq \tilde{x}_j \leq s_j \) for \(j \in J, \| x \|_{L^2} = M_1 \}; \) then the number of such sets is \(2^s \) and for any solution, \(x(t) \) of \((E)\alpha(B) \) lying in \(\Omega_{ij} \), we have

\[\| x \|_{L^2} \leq \left(\sum_{i \in I} \max(|q_i|, |r_i|) \right)^2 + \left(\sum_{j \in J} \max(|r_j|, |s_j|) \right)^2 \]

and

\[\| x'' \|_{L^2} \leq \left(\max_{x \in x^*} D_i \right) M_0 + \sqrt{2\pi} \left(\sum_{i=1}^{n} L_i^2 \right)^{1/2} + \left(\sum_{i=1}^{n} K_i^2 \right)^{1/2} + \| \tilde{e} \|_{L^2} = M_2 \]

where \(L_i \) depends on \(q_i, r_i, s_i \) and \(M_2 \). Thus \(\| x \|_{L^2} \leq \sqrt{\frac{1}{3}} M_2 \). Define a bounded open set \(\Omega_{ij} \) by

\[\Omega_{ij} = \{ x \in C^1([0,2\pi], \mathbb{R}^n) | q_i \leq \tilde{x}_i \leq r_i \}

for \(i \in I, r_j \leq \tilde{x}_j \leq s_j \}

\[\Omega_{ij} = \{ x \in C^1([0,2\pi], \mathbb{R}^n) | q_i \leq \tilde{x}_i \leq r_i \}

for \(j \in J, \| x \|_{L^2} < 2M_1, \| x'' \|_{L^2} < \sqrt{\frac{5\pi}{3}} M_2 \).

Let \((x, \lambda) \in [D(L) \cap \partial\Omega_{ij}] \times (0,1) \) and if \((x, \lambda) \) is any solution to

\[Lx = \lambda Nx, \]

then \((x, \lambda) \) is a solution to the problem \((E)\alpha(B) \),

\[\| \tilde{x} \| \leq \left(\sum_{i \in I} \max(|q_i|, |r_i|) \right)^2 + \left(\sum_{j \in J} \max(|r_j|, |s_j|) \right)^2 \]

and there exists some \(i \in \{1, 2, ..., n\} \), such that \(\tilde{x}_i = q_i, r_i \) or \(s_i \). By \((H_2) \) and assumption we can see for each \(\lambda \in (0,1) \), for every solution of \(Lx = \lambda Nx \) is such that \(x \notin \partial\Omega_{ij} \). And similarly, we can also see \(QNx \neq 0 \) for each \(x \in KerL \cap \partial\Omega_{ij} \). It is easy to see \(P = \Omega_{ij} \cap KerL = \Pi_{i \in I}[q_i, r_i] \times \Pi_{j \in J}[r_j, s_j] \). Let
and let $x \in P_i$, $x' \in P'_i$ with $i \in I \cup J$. Then, for $i \in I$, we have $x_i = q_i$, $x_i = r_i$. Hence $(JQN)(x)(JQN)(x') < 0$ for $i \in I$. For $j \in J$, we have $x_j = r_j$, $x'_j = s_j$. Thus $(JQN)(x)(JQN)(x') < 0$ for $j \in J$. Therefore, we have $d \delta [JQN, \Omega_{ij} \cap \text{Ker} L, 0] \neq 0$. Thus, by Mawhin's continuation theorem, the problem $(E_0)(B)$ has at least one solution in $D(L) \cap \overline{\Omega}_{ij}$. Thus $(E_0)(B)$ has at least 2^* solutions.

Corollary 4.3. Besides the conditions on F, g, and e, and (H_1) and (H_2), we assume

- (H_3) there exists $T = (T_1, T_2, \ldots, T_n) > 0$ in \mathbb{R}^n such that

 \[g(T + x) - g(x) \quad \text{and} \quad h(t, T + x) - h(t, x) \]

 for all $(t, x) \in [0, 2\pi] \times \mathbb{R}^n$.

- (H_4) there exists $r = (r_1, r_2, \ldots, r_n)$, $s = (s_1, s_2, \ldots, s_n)$, $A = (A_1, A_2, \ldots, A_n)$ and $B = (B_1, B_2, \ldots, B_n)$ in \mathbb{R}^n such that

 \[0 < s - r < T, \quad r < s, \quad A < B \]

 \[\frac{1}{2\pi} \int_0^{2\pi} g(r + x(t))dt + \frac{1}{2\pi} \int_0^{2\pi} h(t, T + x(t))dt \leq A, \]

 \[\frac{1}{2\pi} \int_0^{2\pi} g(s + x(t))dt + \frac{1}{2\pi} \int_0^{2\pi} h(t, T + x(t))dt \geq B \]

 for every $x \in \mathbb{R}^n$ such that

 \[\|x\| \leq \left[\sum_{i=1}^n \left(\max(|s_i - T_i|, |r_i|, |s_i|) \right) \right]^{1/2} \]

 and for every $x \in C([0, 2\pi], \mathbb{R}^n)$ having mean value zero, satisfying the boundary condition (B) and such that

 \[\|x\|_{L^2} \leq \sqrt{\frac{\pi}{6}} \left(\frac{1}{\min_{1 \leq i \leq n} C_i} \right) \left[\sqrt{2\pi} \left[\sum_{i=1}^n K_i \right]^{1/2} \right] \left[\|e\|_{L^2} \right]. \]

 Then $(E)(B)$ has at least 2^* solutions if

 \[A < \frac{1}{2\pi} \int_0^{2\pi} e(t)dt < B. \]

ACKNOWLEDGMENT. This work was supported by the 1991 KOSEF grant and non-directed research fund, Korch Research Foundation, 1992.

REFERENCES

