FIXED POINT THEOREMS FOR NON-SELF MAPS

TROY L. HICKS and LINDA MARIE SALIGA

Department of Mathematics and Statistics
University of Missouri-Rolla
Rolla, MO 65401

(Received July 29, 1992)

ABSTRACT. Suppose \(f: C \to X \) where \(C \) is a closed subset of \(X \). Necessary and sufficient conditions are given for \(f \) to have a fixed point. All results hold when \(X \) is complete metric space. Several results hold in a much more general setting.

KEY WORDS AND PHRASES. Commuting, compatible, \(d \)-complete topological spaces, fixed points, non-self maps, pairs of mappings.

1991 AMS SUBJECT CLASSIFICATION CODE. 47H10, 54H25.

1. INTRODUCTION.

Fixed point theorems for non-self maps are unusual. We surely require that \(C \cap f(C) \) is non-empty. \(f(x) = x + 1 \) for \(X \) in \([0,1]\) is a linear isometry from the compact space \([0,1]\) into the compact space \([0,2]\) but \(f \) is fixed point free. The mapping \(f(x) = x + \frac{1}{2} \) for \(x \) in \([1,\infty)\) is a continuous mapping from \([1,\infty)\) into \([0,\infty)\). It is fixed point free but \(|f(x) - f(y)| < |x - y| \) for \(x \neq y \).

THEOREM (Brouwer [1]). If \(E \) is a non-empty convex compact subset of \(E^n \) and \(f: E \to E \) is continuous, then \(f(x) = x \) for some \(x \) in \(E \).

2. RESULTS.

THEOREM 1. Let \(C \) be a closed subset of a complete metric space \(X \) and suppose \(f \) maps \(C \) onto \(X \) or \(f \) maps \(C \) into \(X \) with \(C \subset f(C) \). If for some \(k > 1 \), \(d(f(x), f(y)) \geq k \ d(x,y) \) for every \(x, y \) in \(C \), then \(f \) has a unique fixed point in \(C \).

PROOF. Clearly, \(f \) is one-to-one. Let \(g = f^{-1} \) restricted to \(C \). Now \(g \) maps \(C \) into \(C \). For \(x, y \) in \(C \), \(d(x,y) = d(f(gx), f(gy)) \geq k \ d(g(x), g(y)) \) or \(d(g(x), g(y)) \leq \frac{1}{k} \ d(x,y) \) and \(0 < \frac{1}{k} < 1 \). \(g \) has a unique fixed point fromBanach’s fixed point theorem. But \(f(x_0) = f(g(x_0)) = x_0 \). If \(x_1 = f(x_1) \), then \(g(x_1) = g(f(x_1)) = x_1 \) and \(c_1 = x_0 \).

The above result suggests that one should consider non-self maps that satisfy \(C \subset f(C) \). It is well known that a continuous function from an arc onto a containing arc must have a fixed point. \([0,1]\) or any homeomorphic image is called an arc. Thus Brouwer’s theorem extends to the case \(C \subset f(C) \) for \(n = 1 \). In [7], Sam Nadler showed that for \(n \geq 2 \) Brouwer’s theorem does not extend. For \(n \geq 2 \), let \(A \) and \(B \) be closed balls in \(E^n \) with \(A \subset B \) and \(A \neq B \). He showed that there exists \(f \) and \(g \) such that:

(a) \(f: A \to B \) where \(f \) is continuous, onto, \(f(\partial A) = B \), and \(f \) is fixed point free,

(b) \(g: A \to B \) where \(g \) is continuous, onto, \(g^{-1}(\partial B) = \partial A \), and \(g \) is fixed point free.
THEOREM 2. Let C be a closed bounded, and convex subset of a uniformly convex Banach space and suppose f maps C onto X or f maps C into X with $C \subset f(C)$. If for every x, y in C

\[\| f(x) - f(y) \| \geq \| x - y \|, \]

then f has a fixed point in C.

PROOF. Clearly, f is one-to-one. Let $g = f^{-1}$ restricted to C and observe that

\[\| g(x) - g(y) \| \leq \| x - y \| \]

where $g: C \to C$. From Kirk's theorem [6], g has a fixed point x_0 in C. Clearly, $f(x_0) = x_0$.

The following is an example of a mapping f that takes a closed, bounded, and convex subset C of a Banach space X into X where $C \subset f(C)$, $\| f(x) - f(y) \| = \| x - y \|$ for all $x, y \in C$, and f has no fixed points.

EXAMPLE 1. Let X be the space of sequences which converge to zero with

\[\| x \| = \sup_{n} |x_n| \]

for x in X. Let $C = \{ x \in X: \| x \| = 1 \text{ and } x_0 = 1 \}$. C is closed, bounded, and convex. Define $f: C \to X$ by $f(x) = y$ where $y_n = x_{n+1}, n = 0, 1, 2, \cdots$. $f(x) - f(y) = x - y$ and f is linear. To see that $C \subset f(C)$ consider the following. For $z \in C$, define r to be the sequence where $r_0 = 1$ and $r_n = x_{n-1}$, $n = 1, 2, 3, \cdots$. Then $r \in C$, and $f(r) = z$ so $C \subset f(C)$. If $s = \{1, 0, 0, \cdots, \}, s \in C$ but $f(s) = \{0, 0, 0, \cdots\} \notin C$. Hence $C \neq f(C)$. If $f(x) = x$ for some x in C,

then $x_n = x_{n+1}$ for $n = 0, 1, 2, \cdots$. Since $x_0 = 1, x_n = 1$ for all n and $x \notin C$. Therefore, f does not have a fixed point in C.

The following example shows that Banach's fixed point theorem does not generalize to non-self maps.

EXAMPLE 2. Let $X = (R, R)$ with $\| f \| = \sup_{t \in R} |f(t)|$ for $f \in X$. Let $C = \{ f \in X: f(t) = 0 \text{ for all } t \leq 0 \text{ and } \lim_{t \to \infty} f(t) \geq 1 \}$. C is a closed and convex subset of X. Define $T: C \to X$ by $(Tf)(t) = \frac{1}{2} f(t + 1)$. To see that $C \subset T(C)$ consider the following. For f in C set $g(t) = 2f(t - 1)$ and $g(t) = 0$ for $t \geq 0$ since $t - 1 < 0$ and $f(t) = 0$ for all $t \leq 0$.

\[\lim_{t \to \infty} g(t) = \lim_{t \to \infty} 2 f(t - 1) \geq 2. \]

Thus $g \in C$ and $(Tg)(t) = f(t)$. Hence $C \subset T(C)$. Let $f(t)$ be defined as 0 if $t \leq 0$, t if $0 < t < 1$, and 1 if $t \geq 1$. Then $f \in C$. Now $(Tf)(t)$ is 0 if $t \leq -1$, $\frac{1}{2} (t + 1)$ if $-1 < t < 0$, and $\frac{1}{2}$ if $t \geq 0$. Therefore, $Tf \notin C$ and $C \neq T(C)$. For $f, g \in C$, $\| Tf - Tg \| = \frac{1}{2} \| f - g \|$. If $Tf = f$ for some $f \in C$, then $f(t) = \frac{1}{2} f(t + 1)$ and it follows that $f(n) = 0$ for all integers n. Hence $\lim_{t \to \infty} f(t) \notin C$ and $C \neq T(C)$. Therefore T does not have a fixed point in C. Note that T is linear, one-to-one, and $T(C)$ is closed.

We now turn to finding necessary and sufficient conditions for a non-self map to have a fixed point. Then it becomes clear that $C \subset f(C)$ is a natural assumption.

Let (X, t) be a topological space and $d: X \times X \to [0, \infty)$ such that $d(x, y) = 0$ if and only if $x = y$. X is said to be d-complete if $\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty$ implies that the sequence $\{x_n\}$ is convergent in (X, t). These spaces include complete (quasi) metric spaces and d-complete (symmetric) semi-metric spaces. In [2] and [3] several basic metric space fixed point theorems were extended to this setting. $f: X \to X$ is w-continuous at x if $x_n \to x$ as $n \to \infty$ implies $f(x_n) \to f(x)$ as $n \to \infty$.

The following definition was given by G. Jungck in [5].

DEFINITION 1. Two maps f and g are compatible if, for any sequence $\{x_n\}$ such that $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = t$ it follows that $\lim_{n \to \infty} d(f(gx_n), g(fx_n)) = 0$. Commuting maps are compatible but the converse is false.

DEFINITION 2. Given a map f, a map g is compatible with f, if for any sequence $\{x_n\}$ such that $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = t$ it follows that $\lim_{n \to \infty} f(g(x_n)) = g(t)$.

REMARK 1. If f and g are w-continuous and (X, d) is a metric space, then, using definition
2, \(f \) is compatible with \(g \) is equivalent to \(g \) is compatible with \(f \). In this case, we say that \(f \) and \(g \) are compatible.

Proof. Assume \(f \) and \(g \) are \(w \)-continuous and that \(\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = t \) implies \(\lim_{n \to \infty} f(g(x_n)) = g(t) \). If we are in a metric space,

\[
d(f(gx_n), f(fx_n)) \leq d(f(gx_n), g(t)) + d(g(t), g(fx_n))
\]

and

\[
d(g(fx_n), f(t)) \leq d(g(fx_n), f(gx_n)) + d(f(gx_n), f(t)).
\]

It follows that \(f \) is compatible with \(g \) implies that \(g \) is compatible with \(f \). Interchanging \(g \) and \(f \) above gives the converse.

It also follows from the above argument that if \(f \) and \(g \) are \(w \)-continuous and \((X, d)\) is a metric space, then the two definitions of compatibility are equivalent.

Remark 2. If \((X, t)\) is a \(d \)-complete topological space, \(g \) is \(w \)-continuous, and \(f \) and \(g \) commute, then \(g \) is compatible with \(f \) using definition 2. We use definition 2 for \(d \)-complete topological spaces.

Theorem 3 and its corollaries are generalizations of theorems due to Hicks and Rhoades [4] which are generalizations of theorems due to Jungck [5].

Theorem 3. Let \((X, t)\) be a Hausdorff \(d \)-complete topological space and suppose \(f: C \to X \) where \(f \) is \(w \)-continuous and \(C \) is a closed subset of \(X \). Then \(f \) has a fixed point in \(C \) if and only if there exists \(\alpha \in (0, 1) \) and a \(w \)-continuous function \(g: C \to C \) such that \(g(C) \subseteq f(C) \), \(g \) is compatible with \(f \) on \(f^{-1}(C) \) and

\[
(1) \quad d(g(x), g(y)) \leq \alpha d(f(x), f(y)) \quad \text{for all} \ x, y \in C.
\]

Indeed, if \((1) \) holds, \(f \) and \(g \) have a unique common fixed point.

Proof. If \(f(a) = a \) for some \(a \in C \), set \(g(x) = a \) for every \(x \in C \). If \(x \in f^{-1}(C) \), \(f(x) \in C \) and \(g(f(z)) = a \) gives \(g(C) \subseteq f(C) \). Also,

\[
0 = d(a, a) = d(g(x), g(y)) \leq \alpha d(f(x), f(y)) \quad \text{for all} \ x, y \in C.
\]

Suppose there exists \(\alpha \in (0, 1) \) and a \(w \)-continuous function \(g: C \to C \) such that \(g(C) \subseteq f(C) \), \(g \) is compatible with \(f \) on \(f^{-1}(C) \) and \(d(g(x), g(y)) \leq \alpha d(f(x), f(y)) \) for all \(x, y \in C \). Let \(x_0 \in C \).

\[
g(x_0) = f(x_1) \quad \text{for some} \ x_1 \in C \quad \text{since} \ g(C) \subseteq f(C).
\]

Construct a sequence \(\{x_n\} \) with \(\{x_n\} \subseteq C \) and \(f(x_n) = g(x_{n-1}) \) for \(n = 1, 2, 3, \ldots \).

Since

\[
d(f(x_n), f(x_{n+1})) = d(g(x_{n-1}), g(x_n)) \leq \alpha d(f(x_{n-1}), f(x_n)),
\]

it follows that \(d(f(x_n), f(x_{n+1})) \leq \alpha^{n-1} d(f(x_1), f(x_2)) \) for all \(n \). Hence \(\lim_{n \to \infty} f(x_n) = p \) for all \(n \). Then \(f(y_n) \to f(p) \) as \(n \to \infty \), \(g(y_n) \to g(p) \) as \(n \to \infty \), and compatibility give \(f(g(p)) = f(g(y_n)) \to f(p) \) as \(n \to \infty \). Thus, \(f(g(p)) = f(g(p)) \).

Therefore,

\[
(2) \quad d(g(p), g(g(p))) \leq \alpha d(f(p), f(gp)) = \alpha d(g(p), g(gp)) \quad \text{implies} \quad g(p) = g(g(p)).
\]

Hence \(g(p) = g(g(p)) = f(g(p)) \) and \(g(p) \) is a common fixed point of \(f \) and \(g \).

If \(x = f(x) = g(x) \), then \(d(x, g(p)) = d(g(x), g(gp)) \leq \alpha d(f(x), f(gp)) = \alpha d(x, g(p)) \) gives \(x = g(p) \).

Corollary 1. Let \((X, t)\) be a Hausdorff \(d \)-complete topological space and \(C \) be a closed
subset of X. Suppose $f: C \to X$ and $g: C \to C$, where f and g are w-continuous, commute on $f^{-1}(C)$, and $g(C) \subseteq f(C)$. If there exists $\alpha \in (0,1)$ and a positive integer k such that $d(g^k(x), g^k(y)) \leq \alpha d(f(x), f(y))$ for all $x, y \in C$, then f and g have a unique common fixed point.

PROOF. Clearly, g^k commutes with f on $f^{-1}(C)$ and $g^k(C) \subseteq g(C) \subseteq f(C)$. Applying the theorem to g^k and f gives a unique $p \in C$ such that $p = g^k(p) = f(p)$. Since f and g commute on $f^{-1}(C)$ and $p \in f^{-1}(C)$, $g(p) = g(f(p)) = f(g(p)) = g^k(g(p))$ or $g(p)$ is a common fixed point of f and g^k. Uniqueness of the common fixed point of f and g^k gives $g(p) = p = f(p)$. If $q = g(q) = f(q)$ then $g^k(q) = f(q)$ and $q = p$.

COROLLARY 2. Let n be a positive integer and let $\alpha > 1$. Suppose C is a closed subset of a Hausdorff d-complete topological space and $f: C \to X$ with $C \subseteq f(C)$. If $d(f^n(x), f^n(y)) \geq \alpha d(x, y)$ for all $x, y \in (f^{-1})^{-1}(C)$, then f has a fixed point in C.

PROOF. For $n = 1$, this follows from corollary 1 by letting $g = I$. f^n is one-to-one. $C \subseteq f(C)$ implies $C \subseteq f^n(C)$. Let h be the restriction of $(f^n)^{-1}$ to C. $h: C \to C$ and $d(h(x), h(y)) \leq \frac{1}{\alpha} d(x, y)$ for all $x, y \in C$. From corollary 1 with $k = 1, h = g^k = g$ and $f = I$, there exists a unique x_0 such that $h(x_0) = x_0$. Hence $f(x_0) = f^{n+1}(x_0) = f^n(f(x_0))$ or $h(f(x_0)) = (f^n)^{-1}(f(x_0)) = f(x_0)$. Uniqueness of the fixed point for h gives $x_0 = f(x_0)$. If $f(y) = y$ then $f^n(y) = y$ and $y = h(y)$. Again, uniqueness of the fixed point for h gives $x_0 = y$.

REFERENCES