MAXIMUM PRINCIPLES FOR PARABOLIC SYSTEMS COUPLED
IN BOTH FIRST-ORDER AND ZERO-ORDER TERMS

CHIPING ZHOU

Department of Mathematics
University of Hawaii-HCC
874 Dillingham Boulevard
Honolulu, HI 96817

(Received October 21, 1992 and in revised form June 30, 1993)

ABSTRACT. Some generalized maximum principles are established for linear second-order
parabolic systems in which both first-order and zero-order terms are coupled.

KEY WORDS AND PHRASES. Maximum principles, parabolic systems, strongly coupled,
complex-valued.

1991 AMS SUBJECT CLASSIFICATION CODES. 35B50, 35K40.

1. INTRODUCTION.

Hile and Protter [2] proved that the Euclidean length of the solution vector
$u \in C^2(D) \cap C(\overline{D})$ of the second-order elliptic system

$$
\sum_{i,k=1}^{n} a_{ik}(x) \frac{\partial^2 u_k}{\partial x_i \partial x_k} + \sum_{j=1}^{m} b_{s,j}(x) \frac{\partial u_j}{\partial x_s} + \sum_{j=1}^{m} c_{s,j}(x) u_j = 0, \quad s = 1, \ldots, m,
$$

can be bounded by a constant times the maximum of its boundary values under a “small”
condition which requires that either the domain D or the coefficients $b_{s,j}$ and $c_{s,j}$ are sufficiently
small. In this paper, we have established the same kind of maximum principle for the second-
order parabolic system

$$
\sum_{i,k=1}^{n} a_{ik}(x,t) \frac{\partial^2 u_k}{\partial x_i \partial x_k} - \frac{\partial u_k}{\partial t} + \sum_{j=1}^{m} b_{s,j}(x,t) \frac{\partial u_j}{\partial x_s} + \sum_{j=1}^{m} c_{s,j}(x,t) u_j = 0, 1 \leq s \leq m.
$$

Moreover, our parabolic version of the maximum principle holds without any “small” conditions.

When the coupling occurs only in the zero-order terms (i.e., in the case of $b_{s,j} = 0$ for all
i, j, s except when $j = s$), the above systems are called weakly coupled systems. For weakly
coupled second-order parabolic systems, similar maximum principles have been obtained by Stys
[4] and Zhou [6]. Under different assumptions, different maximum principles in which the
components rather than the Euclidean length of the solution vector are bounded can be found in
Protter and Weinberger [3] and Dow [1]. In Weinberger’s paper [5], both kinds of maximum
principles have been reformulated and studied in terms of invariant sets.

2. MAIN RESULTS.

Consider a second-order parabolic operator with real coefficients,

$$
M \equiv \sum_{i,k=1}^{n} a_{ik}(x,t) \frac{\partial^2}{\partial x_i \partial x_k} - \frac{\partial}{\partial t} = a_{ij} = a_{ji},
$$
in a general bounded domain Ω in $\mathbb{R}^n \times \mathbb{R}_t$ ($n \geq 1$) with the boundary $\partial \Omega = \partial_p \Omega \cup \partial_q \Omega$. Here $\partial_p \Omega$
is the parabolic boundary of Ω and $\partial_q \Omega = \partial \Omega \setminus \partial_p \Omega$. We suppose that $\Omega \subset D \times (0,T)$ where D is a
bounded domain in \mathbb{R}^n and $0 < T < \infty$. The operator M is assumed to be uniformly parabolic in Ω; i.e., there is a constant $\delta > 0$ such that for all $(x, t) \in \Omega$ and all (y_1, \cdots, y_n) in C^n the inequality

$$
\sum_{i, k=1}^{n} a_{ik}(x, t) y_i y_k \geq \delta \sum_{i=1}^{n} |y_i|^2
$$

holds. The operator M is the principal part of each equation in the second-order parabolic system

$$
Mu_s + \sum_{i=1}^{n} \sum_{j=1}^{m} b_{sj}(x, t) \frac{\partial u_j}{\partial x_i} + \sum_{j=1}^{m} c_{sj}(x, t) u_j = 0, \quad s = 1, 2, \cdots, m. \tag{2.2}
$$

We suppose that the complex-valued coefficients b_{sj}, c_{sj} have the property that for all $\xi \in \mathbb{C}^m$ and all $(x, t) \in \Omega$,

$$
\sum_{r, s=1}^{m} \left[c_{sr} + \bar{c}_{rs} + \frac{1}{2} \sum_{j=1}^{m} \sum_{k, i=1}^{n} A_{k} b_{sj} b_{kr} \right] \xi_{r} \xi_{s} \leq K ||\xi||^2, \text{for some } K > 0. \tag{2.3}
$$

Here $(A_{kj}) = (A_{jk})$ denotes the inverse matrix of (a_{ik}). A solution $u = (u_1, u_2, \cdots, u_m)$ is a complex-valued $C^{1}(\Omega \cup \partial \Omega) \cap C(\overline{\Omega})$ function which satisfies (2) in Ω. Here $C^{1, k}(\Omega)$ is defined as the set of functions $f(x, t)$ having all (x) space (t) derivatives of order $\leq k$ and t (time) derivatives of order $\leq h$ continuous in Ω.

THEOREM 1. Assume conditions (1.1) and (1.3) hold. If u is a solution of (2.2) and α is a positive $C^{1}(\Omega \cup \partial \Omega)$ function, then the product $\alpha |u|^{2} = \alpha \sum_{j=1}^{m} |u_j|^2$ cannot attain a positive maximum at any point in $\Omega \cup \partial \Omega$ where α satisfies

$$
\alpha^{-1}M\alpha - 2\alpha^{-2} \sum_{i, k=1}^{n} a_{ik} \frac{\partial \alpha}{\partial x_i} \frac{\partial \alpha}{\partial x_k} > K. \tag{2.4}
$$

PROOF. We set $p = |u|^2 = \sum_{s=1}^{m} |u_s|^2$ and find

$$
M(\alpha p) = pM\alpha + \alphaMp + 2 \sum_{i, k=1}^{n} a_{ik} \frac{\partial \alpha}{\partial x_i} \frac{\partial p}{\partial x_k}. \tag{2.5}
$$

At a point $(x, t) \in \Omega \cup \partial \Omega$ where αp attains a maximum, we have

$$
0 \leq \frac{\partial (\alpha p)}{\partial t}, \quad 0 = \frac{\partial (\alpha p)}{\partial x_k} = \alpha \frac{\partial p}{\partial x_k} + p \frac{\partial \alpha}{\partial x_k} \quad 1 \leq k \leq n,
$$

and (2.5) becomes

$$
M(\alpha p) = p \left[M\alpha - 2\alpha^{-1} \sum_{i, k=1}^{n} a_{ik} \frac{\partial \alpha}{\partial x_i} \frac{\partial \alpha}{\partial x_k} \right] + \alphaMp. \tag{2.6}
$$

A direct computation yields

$$
Mp = \sum_{s=1}^{m} \left[u_s, Mu_s + \bar{u}_s, Mu_s + 2 \sum_{i, k=1}^{n} a_{ik} \frac{\partial u_s}{\partial x_i} \frac{\partial \bar{u}_s}{\partial x_k} \right]
$$

$$
= \sum_{s=1}^{m} \left[\sum_{j=1}^{m} b_{sj} \frac{\partial u_j}{\partial x_i} + \sum_{j=1}^{m} c_{sj} u_j \right] \frac{\partial \bar{u}_s}{\partial x_k} - \frac{1}{2} \sum_{q=1}^{m} \sum_{s=1}^{m} A_{q} b_{rs} b_{rq} \bar{u}_s \frac{\partial \bar{u}_s}{\partial x_k} \frac{\partial \bar{u}_s}{\partial x_k} + \sum_{s=1}^{m} \sum_{r, s=1}^{m} \sum_{k, q=1}^{m} A_{k} b_{sq} b_{rq} \bar{u}_s \frac{\partial \bar{u}_s}{\partial x_k} \frac{\partial \bar{u}_s}{\partial x_k}
$$

$$
\geq -K \sum_{s=1}^{m} |u_s|^2 = -Kp.
$$
Hence, from (2.6), we have

\[M(\alpha p) \geq \alpha p \left[\alpha^{-1} M_\alpha - 2\alpha^{-2} \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} \frac{\partial \alpha}{\partial x_i} \frac{\partial \alpha}{\partial x_k} - K \right] \]

(2.7)

This inequality holds at any point in \(\Omega \cup \partial \Omega \) where \(\alpha p \) attains a maximum. Thus \(\alpha p \) cannot achieve a positive maximum at any point in \(\Omega \cup \partial \Omega \) where the quantity in brackets in (2.7) is positive. The theorem is established.

Remark. If for all \((x,t) \in \Omega, \)\n
\[|c_{ij}| \leq K_{0}, \quad |b_{ij}| \leq K_{1}, \quad 1 \leq i \leq n, 1 \leq j, |s| \leq m, \text{ for some } K_{0}, K_{1} \in \mathbb{R}, \]

(2.8)

then for any \(\xi \in \mathbb{C}^m, \)

\[\sum_{r,s=1}^{m} \left[c_{rs} + \delta_{rs} \right] \xi_r \xi_s = \sum_{j=1}^{m} \sum_{k=1}^{n} A_{kj} b_{ij} \xi_k \xi_j \xi_r \xi_s \leq \frac{m}{2} \sum_{j=1}^{m} \sum_{i=1}^{n} \sum_{s=1}^{m} A_{ki} \left(\sum_{s=1}^{m} b_{ij} \xi_s \right) \left(\sum_{r=1}^{m} \xi_r \right) \leq 2mK_{0} \sum_{s=1}^{m} |\xi_s|^2 + \frac{1}{2} \sum_{j=1}^{m} \sum_{i=1}^{n} \sum_{s=1}^{m} |b_{ij} \xi_s|^2 \leq 2mK_{0} + (2\delta)^{-1} nm^2 K_{1}^2 \]

which is the condition (2.3) with \(K := 2mK_{0} + (2\delta)^{-1} nm^2 K_{1}^2. \) Hence, the single bound (2.3) in Theorem 1 can be replaced by the separate bounds (2.8) with \(K := 2mK_{0} + (2\delta)^{-1} nm^2 K_{1}^2. \)

Under the conditions (2.1) and (2.3) (or (2.1) and (2.8)), by choosing \(\alpha(x,t) = e^{-(K + \varepsilon)t}, \varepsilon > 0, \) the condition (2.4) will be satisfied. Hence from Theorem 1, we get the following maximum principle:

Corollary 2 (Maximum Principle). For any solution \(u \) of the system (2.2), the function

\[|u(x,t)|^2 \exp\left[-(K + \varepsilon)t\right], \varepsilon > 0, \]

does not attain a positive maximum in \(\Omega \cup \partial \Omega, \) and

\[\|u\|_{0,\Omega} \leq \exp(KT/2) \|u\|_{0,\partial \Omega}. \]

(2.9)

Here \(K = (2\delta)^{-1} nm^2 K_{1}^2 + 2mK_{0} \) and \(\|u\|_{0,\Omega} := \sup_{(x,t) \in \Omega} |u(x,t)|. \)

Remark. Results similar to Theorem 1 and Corollary 2 for second-order elliptic systems were proven by Hile and Protter [2] (under a condition which is similar to (2.8)). But their maximum principle for elliptic systems only holds under the restriction that either the domain \(D \) is sufficiently small or the coefficients of the elliptic system are restricted sufficiently. Corollary 2 tells us that these restrictions can be lifted for parabolic systems.

Corollary 3 (Uniqueness). The system (2.2) with the initial-boundary condition

\[u|_{\partial \Omega} = \varphi(x,t) \]

has at most one solution \(u \in C^{2,1}(\Omega \cup \partial \Omega) \cap C(\Omega). \)

Theorem 1 can be used to obtain bounds on the gradient of the \(C^{3,2} \) solution of the parabolic system (2.2), provided the coefficients are \(C^{1} \) and

\[\|a_{ik}\|_{1,\Omega} \leq L_{2}, \|b_{ij}\|_{1,\Omega} \leq L_{1}, \|c_{ij}\|_{1,\Omega} \leq L_{0}, \text{ for some } L_{2}, L_{1}, L_{0} \in \mathbb{R}. \]

(2.10)

Here \(\|f\|_{1,\Omega} := \|f\|_{0,\Omega} + \sum_{i=1}^{n} \|\frac{\partial f}{\partial x_i}\|_{0,\Omega} + \|\frac{\partial f}{\partial t}\|_{0,\Omega}. \)

We differentiate (2.2) with respect to \(x_{k} \) and \(t, \) and get \(m(n + 1) \) equations:
By combining (2.2), (2.11) and (2.12) we get a system (of the form (2.2)) consisting of \(m(n + 2)\) equations in the \(m(n + 2)\) unknowns \(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial t}, s = 1, 2, \ldots, m, h = 1, 2, \ldots, n\).

Theorem 4. Let \(K = 2(n(n+2)m + \max\{L_1, L_2\}) + 2m(n+2)\max\{L_0, L_1\}\) and suppose that \(u\) is a \(C^{2,1}(\Omega \cup \partial_0 \Omega)\) solution of (2.2) and \(\alpha\) is a positive \(C^{2,1}(\Omega \cup \partial_0 \Omega)\) function. Then the product

\[
\alpha(x,t) \prod_{s=1}^{m} \left| u_{x_s} \right|^{2} + \left| \nabla u(x,t) \right|^{2} = \alpha(x,t) \sum_{s=1}^{m} \left[\left| u_{x_s} \right|^{2} + \sum_{i=1}^{m} \left[\left| \frac{\partial u_{x_s}}{\partial x_i} \right|^{2} + \left| \frac{\partial u_{x_s}}{\partial t} \right|^{2} \right] \right]
\]

cannot attain a positive maximum at any point in \(\Omega \cup \partial_0 \Omega\) where \(\alpha\) satisfies (2.4).

Corollary 5. Let \(K\) be the same number of Theorem 4. Then, for any \(C^{2,1}(\Omega \cup \partial_0 \Omega)\) solution \(u\) of the system (2.2), we have

\[
\| u \|_{\Omega} + \| \nabla u \|_{\Omega} \leq \exp(KT) \left(\| u \|_{\partial_0 \Omega} + \| \nabla u \|_{\partial_0 \Omega} \right)
\]
or equivalently,

\[
\| u \|_{1,\Omega} \leq \exp(KT/2) \cdot \| u \|_{1,\partial \Omega}
\]

Remark. Under the condition that either \((c_{x_s})_{m \times m}\) is a constant matrix or \((c_{x_s})_{m \times m}\) is invertible for all \((x,t) \in \Omega\), the unknowns \(u, s = 1, \ldots, m\), can be eliminated from the system (2.2), (2.11), (2.12), and then a system of \(m(n+1)\) equations in the gradient of \(u\) yields a maximum principle for \(\alpha \left| \nabla u \right|^{2}\).

Acknowledgement. The author thanks Professor G.N. Hile and the anonymous referee for some helpful suggestions and comments.

References