ABSTRACT. A Tychonoff non-normal space is constructed which can be used for the construction of a regular space on which every weakly continuous (hence every \(\theta \)-continuous or \(\eta \)-continuous) map into a given space is constant.

KEY WORDS AND PHRASES. Tychonoff, non-normal, weakly, \(\theta \), \(\eta \)-continuous maps.

1980 AMS SUBJECT CLASSIFICATION CODE. 54D15, 54C30.

1. INTRODUCTION.

We construct for every Hausdorff space \(R \) a Tychonoff non-normal space \(S \) such that if \(f \) is a weakly continuous map of \(S \) into \(R \) then there exist two closed subsets \(K', L', K' \cap L' = \emptyset \) such that \(f(K') = f(L') = \{ r \} \), \(r \in R \). Therefore, applying the method of Jones [1], we can first construct a regular space containing two points \(-\infty, +\infty\) such that \(f(-\infty) = f(+\infty) \), for every weakly continuous map \(f \) of this space into \(R \) and then, applying the method of Illiadis and Tzannes [2], a regular space on which every weakly continuous (hence every \(\theta \)-continuous or \(\eta \)-continuous (Dickman, Porter and Rubin [3])) map into \(R \) is constant. The construction of \(S \) is a modification of the space \(T(R) \) in Illiadis and Tzannes [2]. For regular spaces on which every continuous map into a given space is constant see also Armentrout [4], Brandenburg and Mysior [5], van Douwen [6], Herrlich [7], Hewitt [8], Tzannes [9] and Jounglove [10]. A map \(f : X \to Y \), where \(X, Y \) are topological spaces is called
1) weakly continuous if for every \(x \in X \) and open neighbourhood of \(f(x) \) there exists an open neighbourhood \(V \) of \(x \), such that \(f(V) \subseteq \text{Cl}U \),
2) \(\theta \)-continuous if for every \(x \in X \) and open neighbourhood \(U \) of \(f(x) \), there is an open neighbourhood \(V \) of \(x \) such that \(f(\text{Cl}V) \subseteq \text{Cl}U \)
3) \(\eta \)-continuous if for every regular-open sets \(U, V \) of \(Y \),
\[(i) \quad f^{-1}(U) \subseteq \text{IntCl}^{-1}(U) \]
\[(ii) \quad \text{IntCl}^{-1}(U \cap V) \subseteq \text{IntCl}^{-1}(U) \cap \text{IntCl}^{-1}(V). \]

Every \(\eta \)-continuous is \(\theta \)-continuous (Dickman, Porter and Rubin [3, Proposition 3.3. (c)]) and every \(\theta \)-continuous is obviously weakly continuous.

We denote
1) by \(|X| \) the cardinality, of \(X \),
2) by \(\psi(X) = \sup \{ \psi(X, x) : x \in X \} \) the pseudocardinal of \(X \), where \(\psi(X, x) \) is the pseudocardinal of \(X \) at \(x \), that is the minimal cardinality of pseudobases of \(x \). (The set \(U_\alpha \) consisting of open neighbourhoods of \(x \), is called a pseudobasis if \(\cap U_\alpha = \{ x \} \),
3) by \(\psi^+(X) \) the smallest cardinal number greater than \(\psi(X) \).

2. THE SPACE \(S \).

Let \(R \) be a Hausdorff space and \(K, L \) two uncountable sets such that \(|K| = |L| = \mathbb{R} > |R| \).
For every $k_i \in K$ (resp. $l_i \in L$) we consider an uncountable set K_i (resp. L_i) and a set M such that $|K_i| = |L_i| = |M| \geq \psi^+(R)$. On the set $S = M \cup KU \cup K_i \cup LU \cup L_i$ we define the following topology: Every point belonging to K_i, L_i is isolated. For every $k_i \in K$ (resp. $l_i \in L$) a basis of open neighbourhoods are the sets $O(k_i) = \{k_i\} \cup C_i$ (resp. $O(l_i) = \{l_i\} \cup D_i$), where C_i, D_i consist of all but finite number of elements of K_i, L_i respectively. For every point $m \in M$ a basis of open neighbourhoods are the sets $O(m) = \{m\} \cup P \cup Q$, where P, Q contain all but finite number of elements of the sets $\{h_i(m) : i \in I\}, \{g_i(m) : i \in I\}$, respectively, where I is an index set, $|I| = \aleph_0$ and h_i, g_i are one-to-one maps of M onto K_i, L_i, respectively.

One can show that the space S is Tychonoff and non-normal.

Let f be a weakly continuous map of S into R. Since $|K| > |R|$, it follows that for some $r_1 \in R$ there exists $K' \subseteq K$ such that $|K'| = |K|$ and $f(K') = \{r_1\}$. Let $\{k_n : n = 1, 2, \ldots\}$ be a countable subset of K'. Since for every open neighbourhood U of r_1 the set $f^{-1}(CIU)$ contains an open neighbourhood of $k_n, n = 1, 2, \ldots$, it follows that $|K_n \setminus f^{-1}(r_1)| \leq \psi(R, r_1)$. Consequently, if h_n is the one-to-one map of M onto K_n then $h_n^{-1}(K_n \setminus f^{-1}(r_1)) \leq \psi(R, r_1)$ and hence $\bigcup_{n=1}^{\infty} h_n^{-1}(K_n \setminus f^{-1}(r_1)) \leq \psi(R, r_1)$. Repeating all the above for the set L we have that for some $r_2 \in R$ there exist $L' \subseteq L, |L'| = |L|, f(L') = \{r_2\}$ and a countable subset $\{l_n : n = 1, 2, \ldots\} \subseteq L'$ such that if V is an open neighbourhood of r_2 then $|L_n \setminus f^{-1}(r_2)| \leq \psi(R, r_2)$ and hence $\bigcup_{n=1}^{\infty} g_n^{-1}(L_n \setminus f^{-1}(r_2)) \leq \psi(R, r_2)$. Therefore if $M' = \bigcup_{n=1}^{\infty} (h_n^{-1}(K_n \setminus f^{-1}(r_1)) \cup g_n^{-1}(L_n \setminus f^{-1}(r_2)))$ then $M \setminus M' \neq \emptyset$. Let $m \in M \setminus M'$ and CIW be a closed neighbourhood of $f(m)$ such that $r_1, r_2 \not\in CIW$. There exists an open neighbourhood $O(m)$ of m such that $f(O(m)) \subseteq CIW$, while for every $n = 1, 2, \ldots, h_n(m) \in f^{-1}(r_1), g_n(m) \in f^{-1}(r_2)$ which imply that $f(m) = r_1 = r_2$.

REFERENCES
2. ILIADIS, S. and TZANNES, V. Spaces on which every continuous map into a given space is constant, Can. J. Math. 38 (1986), 1281-1296.
5. BRANDENBURG, H. and MYSIOR, A. For every Hausdorff space Y there exists a non-trivial Moore space on which all continuous functions into Y are constant, Pacific J. Math., 1 (1964), 1-8.
6. VAN DOUWEN, E.K. A regular space on which every continuous real-valued function is constant, Nieuw Archief voor Wiskunde 20 (1972), 143-145.