ABSTRACT. In this paper the author characterizes all those spaces X, for which $K_n(X, c_0)$ is proximinal in $L(X, c_0)$. Some examples were found that satisfy this characterization.

KEY WORDS AND PHRASES. Proximinal, best approximation, selection, extremal subspaces, n-width.

1991 AMS SUBJECT CLASSIFICATION CODES. 46.

1. INTRODUCTION.

The closed subset A of the normed linear space X, is said to be “proximinal” in X if for each $x \in X$, there is an element $y_x \in A$, such that:

$$d(x, A) = \inf\{\| x - y \| : y \in A \} = \| x - y_x \|,$$

where $d(x, A)$ is the distance of x from A. The element y_x is called a “best approximation” of x in A. The best approximation need not be unique, and the set-valued function $P_A : X \to 2^A$ defined by

$$P_A = \{(y \in A ; d(x, A) = \| x - y \| \}$$

is called the metric projection of X into A. If A is proximinal in X then $P_A(x) \neq \emptyset$ for each $x \in X$, in this case any function $f : X \to A$ satisfying that $f(x) \in P_A(x)$ for each $x \in X$, is called a “selection” for the metric projection P_A.

If A is a subset of X, and N is a subspace of X, then the “deviation” of A from N is defined to be

$$(A, N) = \sup\{(d(x, N); z \in A),$$

and the n-width of A in X is defined to be

$$d_n(A, X) = \inf\{(d(A, N); N \text{ is an n-dimensional subspace of } X).$$

If there is an n-dimensional subspace N_0 of X, such that $d_n(A, X) = d(A, N_0)$ then $d_n(A, X)$ is said to be “attained”, and the subspace N_0 is said to be an “extremal subspace” for $d_n(A, X)$. It is well known (see Garkavi [4]), that if X^* is the dual space of the normed linear space X, then $d_n(A, X^*)$ is attained.

If X and Y are two normed linear spaces, then $L(X, Y)$ denotes the set of all bounded linear operators from X to Y, $K(X, Y)$ the set of all compact operators in $L(X, Y)$, and $K_n(X, Y)$ the subset of $K(X, Y)$ consisting of all operators of rank n.

The proximinality of $K(X, Y)$ in $L(X, Y)$ were studied by several authors, (see for examples Feder [3], Lau [8], Mach [9], Mach and Ward [10], and Saatkamp [11]). Duetsch, Mach, and
Saatkamp [1], Kamal ([5], [6], and [7]) studied the proximinality of $K_n(X,Y)$ in $L(X,Y)$ and $K(X,Y)$ in details, however, one of the problems left unsolved is the problem 5.2.2 mentioned by Duetsch. Mach and Saatkamp [1], concerning the proximinality of $K_n(X,c_0)$, in $L(X,c_0)$ where c_0 is the space of all real sequences that converges to zero. The problem is divided into two parts, the first part is to characterize all those spaces X for which $K_n(X,c_0)$ is proximinal in $L(X,c_0)$, and the second part is to show whether $K_n(X,c_0)$ is proximinal in $L(X,c_0)$ or not, when $X = c$ or 1_∞. Kamal [7] showed that $K_n(c,c_0)$ is not proximinal in $L(c,c_0)$, given a partial solution for the second part of the mentioned problem. Deutsch, Mach, and Saatkamp [1] showed that if $X = c_0$ or if X^* is uniformly convex, then $K_n(X,c_0)$ is proximinal in $L(X,c_0)$, Kamal [6] showed that $K_n(1,c_0)$ is not proximinal in $L(1,c_0)$, also Kamal [7] showed that if Q is a compact Hausdorff space that contains an infinite convergent sequence, then $K_n(C(Q),c_0)$ is not proximinal in $L(C(Q),c_0)$. In this paper a theorem is proved to characterize all those spaces X, for which $K_n(X,c_0)$ is proximinal in $L(X,c_0)$, this characterization includes $X = c_0$, X for which X^* is uniformly convex, and X such that the metric projection from any of its n-dimensional subspaces, has a selection which is ω^*-continuous at zero. A point worth mentioning is that although c_0 is a one codimensional subspace of c, there are spaces X for which $K_n(X,c_0)$ is proximinal in $L(X,c_0)$, meanwhile $K_n(X,c)$ is not proximinal in $L(X,c)$, for example Deutsch, Mach and Saatkamp [1] showed that $K_n(c_0,c_0)$ is proximinal in $L(c_0,c_0)$, meanwhile Kamal [7] showed that $K_n(c_0,c)$ is not proximinal in $L(c_0,c)$.

The rest of introduction will cover some definitions, and known results that will be used later in Section 2.

If X is a normed linear space then $c_0(X^*,\omega^*)$ denotes the Banach space of all bounded sequences $\{x_i\}$ in X^* that converge to zero in the ω^*-topology induced on X^* by X, c_0 (X^*) is the Banach space of all sequences $\{x_i\}$ in X^* that converge to zero in the topology defined on X^* by its norm, and if $n \geq 1$ is any positive integer, then $c_0(X^*,n)$ denotes the union of all $c_0(N)$, where N is an n-dimensional subspace of X^*. The norm on $c_0(X^*,\omega^*)$ is the suprimum norm. If $\{x_i\}$ is an element in $c_0(X^*,\omega^*)$ then for any positive integer $n \geq 1$, define

$$a_n(\{x_i\}) = \inf\{\|\{y_i\} - \{x_i\}\| : \{y_i\} \in c_0(X^*,n)\}$$

The following theorem can be obtained as a corollary, from the theorem of Dunford and Schwartz [2, p. 490].

THEOREM 1.1. Let X be normed linear space. The mapping $T: L(X,c_0) \to c_0(X^*,\omega^*)$ defined by $T(z_i^*) = z_i$ where $i = 1, 2, \ldots$, and $z \in X$, is an isometric isomorphism. Furthermore $\alpha(K_n(X,c_0)) = c_0(X^*)$ and $\alpha(K_n(X,c_0)) = c_0(X^*,n)$.

As corollary of the Theorem 1.1, one can obtain the following:

COROLLARY 1.2. If X is a normed linear space then for any positive integer $n \geq 1$, the set $K_n(X,c_0)$ is proximinal in $L(X,c_0)$ (resp. $K_n(X,c_0)$) if and only if $c_0(X^*,n)$ is proximinal in $c_0(X^*,\omega^*)$ (resp. $c_0(X^*)$).

According to Corollary 1.2 to study the proximinality of $K_n(X,c_0)$ in $L(X,c_0)$ (resp. $K(X,c_0)$), it is enough to study the proximinality of $c_0(X^*,n)$ in $c_0(X^*,\omega^*)$ (resp. $c_0(X^*)$).

2. **THE PROXIMALITY OF K_n(X,c_0) IN L(X,c_0).**

In this paper if $\{x_i\}$ is an element in $c_0(X^*,\omega^*)$, then $d_n(\{x_i\}, X^*)$ (resp. $\delta(\{x_i\}, N)$ denotes the n-width (resp. the deviation from N) of the subset $\{x_1, x_2, x_3, \ldots\}$ of X^*. X^*.

THEOREM 2.1 Let X be a normed linear space, and let $n \geq 1$ be any positive integer. If $\{x_i\}$ is a bounded sequence in X^* then

$$a_n(\{x_i\}) = \max\{d_n(\{x_i\}, X^*), \lim \|x_i\|\}.$$

Furthermore there is an n-dimensional subspace N_0 of X^*, such that $a_n(\{x_i\}) = d(\{x_i\}, c_0(N))$.

$a_n(\{x_i\}) = \max\{d_n(\{x_i\}, X^*), \lim \|x_i\|\}$.

Furthermore there is an n-dimensional subspace N_0 of X^*, such that $a_n(\{x_i\}) = d(\{x_i\}, c_0(N))$.

PROOF. First it will be shown that \(a_n({z_i}) \geq \max\{d_n({x_i}, N^*), \|z_i\|\} \). By Garkavi [4], there is an \(n \)-dimensional subspace \(N_o \) of \(X^* \) such that \(\delta({x_i}, N) = d_n({x_i}, X^*) \). For each \(i = 1, 2, \ldots \), let \(z_i \) be a best approximation for \(x_i \) from \(N_o \), and let \(\varepsilon > 0 \) be given. Define the sequence \(\{y_i\} \) in \(c_o(N_o) \) as follows.

\[
y_i = \begin{cases} z_i & \text{if } i \leq m \\ 0 & \text{if } i > m. \end{cases}
\]

Then

\[
a_n({z_i}) \leq \|x_i - y_i\| = \sup\{\|x_i - y_i\| : i = 1, 2, \ldots\} = \max\{\max\{\|x_i - y_i\| : i = 1, 2, \ldots, m\}, \sup\{\|x_i\| : i = m + 1, m + 2, \ldots\}\}
\]

\[
\leq \max\{d_n({z_i}, X^*), \|z_i\| + \varepsilon\}.
\]

Since \(\varepsilon \) is arbitrary it follows that \(a_n({z_i}) \leq \max\{d_n({z_i}, X^*), \|z_i\|\} \). Second to show that \(a_n({z_i}) \geq \max\{d_n({z_i}, X^*), \|z_i\|\} \), one should notice first that \(a_n({z_i}) \geq \|z_i\| \), indeed if \(\{y_i\} \in c_o(X^*, n) \) then

\[
\|x_i - y_i\| = \sup\{\|x_i - y_i\| \geq \|x_i - y_i\| = \|z_i\| \}
\]

Let \(\varepsilon > 0 \) be given, there is an \(n \)-dimensional subspace \(N^* \) of \(X^* \), and a sequence \(\{y_i\} \in c_o(N^*) \) such that \(a_n({z_i}) \geq \|x_i - y_i\| - \varepsilon \). Therefore

\[
\|x_i - y_i\| = \sup\{\|x_i - y_i\| \geq \sup\{\|x_i - y_i\| \geq \sup\{\|x_i - y_i\| \} \}
\]

\[
\geq \|x_i - y_i\| = \|z_i\| + \varepsilon
\]

\[
\leq \max\{d_n({z_i}, X^*), \|z_i\| \} + \varepsilon = a_n({z_i}) + \varepsilon.
\]

But \(\varepsilon \) is arbitrary so \(d({z_i}, c_o(N^*)) = a_n({z_i}) \).

THEOREM 2.2. Let \(X \) be a normed linear space. For any positive integer \(n \geq 1 \), \(K_n(X, c_o) \) is proximinal in \(K(X, c_o) \).

PROOF. Let \(\{x_i\} \) be an element in \(c_o(X^*) \), by Corollary 1.2, it is enough to find an element \(\{y_i\} \in c_o(X^*, n) \) such that \(\|x_i - y_i\| = a_n({z_i}) \). Since \(\lim_{i \to \infty} \|z_i\| = 0 \) it follows that \(\sup_{i \to \infty} \|z_i\| = 0 \), thus by Theorem 2.1, \(a_n({z_i}) = d_n({z_i}, X^*) \). Let \(N_o \) be an extremal subspace for \(d_n({z_i}, X^*) \), and for each \(i = 1, 2, \ldots \), let \(y_i \) be a best approximation for \(x_i \) from \(N_o \). Since \(\lim_{i \to \infty} \|x_i\| = 0 \), it follows that

\[
\|x_i - y_i\| = \sup\{\|x_i - y_i\| = \|z_i\| = a_n({z_i})\}.
\]

LEMMA 2.3. Let \(X \) be a normed linear space, and let \(\{x_i\} \) be a bounded sequence in \(X^* \).

a) If \(d_n({z_i}, X^*) > \sup_{i \to \infty} \|z_i\| \) then \(a_n({z_i}) \) is attained.
b) If \(d_n(\{x_i\}, X^*) \leq \lim d(x_i, N_o) \), and there is an extremal subspace \(N_o \) for \(d_n(\{x_i\}, X^*) \) such that
\[
\lim d(x_i, N_o) < \lim \|x_i\|, \quad \text{then } a_n(\{x_i\}) \text{ is attained.}
\]

PROOF. a) Assume that \(N \) is an extremal subspace for \(d_n(\{x_i\}, X^*) \), and let
\[
a = d_n(\{x_i\}, X^*) - \lim \|x_i\|, \quad \text{then there is a positive integer } m \geq 1 \text{ such that for each } i \geq m, \text{ one has}
\]
\[
\|x_i\| \leq \lim \|x_i\| + a. \quad \text{For each } i \leq m, \text{ let } z_i \text{ be a best approximation for } x_i \text{ from } N_o, \text{ and define the sequence } \{y_i\} \text{ in } c_0(N_o) \text{ as follows.}
\]
\[
y = \begin{cases}
 z_i & \text{if } i \leq m \\
 0 & \text{if } i > m.
\end{cases}
\]
Then
\[
\|\{x_i\} - \{y_i\}\| = \max\{\max\{\|x_i - z_i\| ; i = 1, 2, \ldots, m\}, \sup\{\|x_i\| ; i = m + 1, m + 2, \ldots\}\}
\leq \max\{d(\{x_i\}, N_o), \lim \|x_i\| + a\}
\leq d_n(\{x_i\}, X^*) = a_n(\{x_i\}).
\]

b) Let \(\epsilon_i \) be a sequence of positive real numbers, satisfying that \(\lim_{i \to \infty} \epsilon_i = 0 \), for each
\[
i = 1, 2, \ldots, d(x_i, N_o) \leq \beta + \epsilon_i \text{ and for each } i = 1, 2, \ldots, \|x_i\| \leq \alpha + \epsilon_i. \quad \text{For each } i = 1, 2, \ldots, \text{ let } z_i \text{ be a best approximation for } x_i \text{ from } N_o, \text{ and define the sequence } \{y_i\} \text{ in } N_o \text{ as follows.}
\]
\[
y_i = \begin{cases}
 y_{i-1} & \text{if } \epsilon_i \geq \gamma \\
 z_i & \text{if } \epsilon_i < \gamma.
\end{cases}
\]
Since \(\{x_i\} \) is a bounded sequence in \(N_o \), and \(\lim_{i \to \infty} \epsilon_i = 0 \), it follows that \(\{y_i\} \in c_0(N_o) \).
Furthermore for each \(i = 1, 2, \ldots, \) if \(\epsilon_i > \gamma \) then
\[
\|x_i - y_i\| \leq d(x_i, N_o) \leq d_n(\{x_i\}, X^*) \leq a(\{x_i\}),
\]
and if \(\epsilon_i < \gamma \) then
\[
\|x_i - y_i\| \leq (1 - \frac{\epsilon_i}{\gamma}) \|x_i\| + \frac{\epsilon_i}{\gamma} \|x_i - z_i\|
\leq (1 - \frac{\epsilon_i}{\gamma})(\alpha + \epsilon_i) + \frac{\epsilon_i}{\gamma}(\alpha - \gamma)
\leq \alpha = a_n(\{x_i\}).
\]
Thus \(\|\{x_i\} - \{y_i\}\| = a_n(\{x_i\}) \).

Lemma 2.4 is a continuation for Lemma 2.3.

LEMMA 2.4. Let \(X \) be a normed space, and let \(\{x_i\} \) be a bounded sequence in \(X^* \). Assume that \(d_n(\{x_i\}, X^*) = \lim d(x_i, N) \), and for each extremal subspace \(N \) for \(d_n(\{x_i\}, X^*) \) one has
\[
\lim d(x_i, N) = \lim \|x_i\| = \alpha. \quad \text{Let } N \text{ be a extremal subspace for } d_n(\{x_i\}, X^*), \text{ and for each } i = 1, 2, \ldots, \text{ define}
\]
\[
\epsilon_i = \begin{cases}
 0 & \text{if } \|x_i\| \leq \alpha \\
 \|x_i\| - \alpha & \text{if } \|x_i\| > \alpha.
\end{cases}
\]
\[
\delta_i = \alpha - d(x_i, N_o), \quad \text{and } \alpha_i = \begin{cases}
 \epsilon_i & \text{if } \epsilon_i + \delta_i = 0 \\
 \epsilon_i + \delta_i & \text{if } \epsilon_i + \delta_i \neq 0.
\end{cases}
\]
If \(\lim_{i \to \infty} \alpha_i = 0 \) then \(a_n(\{x_i\}) \) is attained.

PROOF. Let \(z_i \) be a best approximation for \(x_i \) from \(N_o \), and let \(y_i = \alpha_i \cdot z_i \), then the sequence \(\{y_i\} \) is an element in \(c_0(N_o) \). Furthermore for each \(i = 1, 2, \ldots, \)
\[
\|x_i - y_i\| \leq (1 - \alpha_i) \|x_i\| + \alpha_i \|x_i - z_i\|
\leq (1 - \alpha_i)(\alpha + \epsilon_i) + \alpha_i(\alpha - \delta_i)
\leq \alpha + \epsilon_i - \alpha_i(\epsilon_i + \delta_i).
\]
If \(\alpha_i = 0 \) then \(\epsilon_i = 0 \) so \(||x_i - y_i|| = \alpha \), and if \(\alpha_i \neq 0 \) then
\[
||x_i - y_i|| \leq \alpha + \epsilon_i - \frac{\epsilon_i}{\epsilon_i + \delta_i} (\epsilon_i + \delta_i) = \alpha.
\]

Definition 2.5. Let \(X \) be a normed linear space. The bounded sequence \(\{x_i\} \) in \(c_0(X^*, \omega^*) \) is said to be an “n-border” sequence if it satisfies the following,

1. \(\lim_{i \to \infty} ||x_i|| \) exists, and for each extremal subspace \(N \) for \(d_n(\{x_i\}, X^*) \), one has
\[
\lim_{i \to \infty} d(x_i, N) = \lim_{i \to \infty} ||x_i|| = d_n(\{x_i\}, X^*).
\]
2. For each extremal subspace \(N \) for \(d_n(\{x_i\}, X^*) \) if \(\epsilon_i, \delta_i \) and \(\alpha_i \) as in Lemma 2.4 then \(\lim_{i \to \infty} \alpha_i > 0 \).

Theorem 2.6. Let \(X \) be a normed linear space, and let \(n \geq 1 \) be a positive integer. Then \(K_n(X, c_0) \) is proximinal in \(L(X, c_0) \) if and only if for each n-border sequence \(\{x_i\} \) in \(X^* \), \(a_n(\{x_i\}) \) is attained.

Proof. If there is an n-border sequence \(\{x_i\} \) in \(X^* \) such that \(a_n(\{x_i\}) \) is not attained, then since \(\{x_i\} \in c_0(X^*, \omega^*) \), it follows by Corollary 1.2 that \(K_n(X, c_0) \) is not proximinal in \(L(X, c_0) \). To prove the other part, let \(\{x_i\} \) be an element in \(c_0(X^*, \omega^*) \). If \(d_n(\{x_i\}, X^*) > \lim_{i \to \infty} ||x_i|| \), or if \(d_n(\{x_i\}, X^*) \leq \lim_{i \to \infty} ||x_i|| \) and there is an extremal subspace \(N \) for \(d_n(\{x_i\}, X^*) \), such that
\[
\lim_{i \to \infty} d(x_i, N) < \lim_{i \to \infty} ||x_i|| \text{ then by Lemma 2.3, } a_n(\{x_i\}) \text{ is attained.}
\]
Assume that \(d_n(\{x_i\}, X^*) = \lim_{i \to \infty} ||x_i|| \), and for each extremal subspace \(N \) for \(d_n(\{x_i\}, X^*) \), one has
\[
\lim_{i \to \infty} d(x_i, N) = \lim_{i \to \infty} ||x_i|| \text{ then by Lemma 2.3, } a_n(\{x_i\}) \text{ is attained.}
\]
Assume that \(d_n(\{x_i\}, X^*) = \lim_{i \to \infty} ||x_i|| \), and for each extremal subspace \(N \) for \(d_n(\{x_i\}, X^*) \) one has \(\lim_{i \to \infty} \alpha_i > 0 \). Let \(\alpha = d_n(\{x_i\}, X^*) \) and let \(\{x_i\} \) be the largest subsequence of \(\{x_i\} \) satisfying that \(||x_i|| > \alpha \) for each \(i_k \). Thus for each \(i \), if \(x_i \) is not an element in \(\{x_i\} \) then \(||x_i|| \leq \alpha \). The sequence \(\{x_i\} \) is an n-border sequence in \(X^* \), and there is an n-dimensional subspace \(N \) of \(X^* \), and a sequence \(\{z_i\} \in c_0(N) \) such that
\[
||\{z_i\} - \{x_i\}|| = a_n(\{x_i\}) = \alpha.
\]
Define the sequence \(\{y_i\} \) in \(N \) as follows.
\[
y_i = \begin{cases}
 x_i & \text{if } ||x_i|| > \alpha \\
 0 & \text{if } ||x_i|| \leq \alpha.
\end{cases}
\]
Then \(\{y_i\} \in c_0(N) \), and \(||\{x_i\} - \{y_i\}|| = \alpha = a_n(\{x_i\}) \).

Corollary 2.7. Let \(X \) be a normed linear space, and let \(n \geq 1 \) be a positive integer. If \(X^* \) is uniformly convex then \(K_n(X, c_0) \) is proximinal in \(L(X, c_0) \).

Proof. Let \(\{x_i\} \) be an n-border sequence in \(X^* \), and let \(\alpha = \lim_{i \to \infty} ||x_i|| \). Without loss of generality assume that \(x_i \neq 0 \) for each \(i \). Let \(N \) be any extremal subspace for \(d_n(\{x_i\}, X^*) \), and let \(y_i \) be the best approximation for \(x_i \) from \(N \). Since
\[
\frac{||x_i||}{||x_i||} = 1, \quad \frac{||x_i - y_i||}{\alpha} \leq 1,
\]
and
\[
\lim_{i \to \infty} \frac{||x_i||}{||x_i||} = \lim_{i \to \infty} \frac{||x_i - y_i||}{\alpha} \leq 1,
\]
and
\[
\frac{||x_i - y_i||}{\alpha} = \lim_{i \to \infty} \left(\frac{\alpha + ||x_i||}{\alpha} \right) \frac{||x_i - y_i||}{\alpha} \leq \lim_{i \to \infty} \left(\frac{\alpha + ||x_i||}{\alpha} \left(\frac{||x_i||}{\alpha} \right) \right) \frac{||x_i - y_i||}{\alpha} = 2.
\]
It follows by the fact that \(X^* \) is uniformly convex that
\[
\lim_{i \to \infty} \frac{||x_i||}{||x_i||} - \frac{||x_i - y_i||}{\alpha} = 0.
\]
But then
\[
\lim_{i \to \infty} \frac{||x_i||}{||x_i||} - \frac{||x_i - y_i||}{\alpha} = 0.
\]
Corollary 2.7 was proved by Deutsch, Mach, and Saatkamp \([1]\) in a different way.

Corollary 2.8. Let \(X \) be a normed linear space, and let \(n \geq 1 \) be a positive integer. If for each n-dimensional subspace \(N \) of \(X^* \), the metric projection \(P_n \) has a selection which is \(\omega^* \)-continuous at zero, then \(K_n(X, c_0) \) is proximinal in \(L(X, c_0) \).

Proof. Let \(\{x_i\} \) be an element in \(c_0(X^*, \omega^*) \) and let \(N \) be an extremal subspace for \(d_n(\{x_i\}, X^*) \). Since the metric projection \(P_N \) has a selection which is \(\omega^* \)-continuous at zero, it follows that there is a sequence \(\{y_i\} \) in \(N \), satisfying that \(y_i \in P_N(x_i) \) for each \(i \), and that \(\{y_i\} \)
converges \(\omega^* \)-to zero. But \(N \) is of finite dimension, thus \(\{y_i\} \in c_0(N) \).

Furthermore

\[
\| x_i - y_i \| = \delta(x_i, N) = d_n(x_i, X^*) = a_n(x_i).
\]

From Corollary 2.8 one concludes that for each positive integer \(n \geq 1 \), if \(X = c_0 \) or \(l_p, l < p < \infty \), then \(K_n(X, c_0) \) is proximinal in \(L(X, c_0) \). Proposition 2.9 clarify that. The fact that \(K_n(c_0, c_0) \) is proximinal in \(L(c_0, c_0) \) was proved first by Deutsch, Mach, and Saatkamp [1].

PROPOSITION 2.9. Let \(n \geq 1 \) be a positive integer and let \(X = c_0 \) or \(l_p, l < p < \infty \). The metric projection \(P_N \) from \(X^* \) onto any of its \(n \)-dimensional subspace \(N \), has a selection which is \(\omega^* \)-continuous at zero.

PROOF. Let \(N \) be any \(n \)-dimensional subspace of \(X^* \), \(\{x_i\} \) be any bounded sequence in \(X^* \) that converges \(\omega^* \)-to zero, and let \(\{y_i\} \) by any sequence in \(N \), satisfying that \(y_i \in P_N(x_i) \) for each \(i \).

It will be shown that \(\{y_i\} \in c_0(N) \). The sequence \(\{y_i\} \) is a bounded sequence in a finite dimensional subspace of \(X^* \), so it has a convergent subsequence \(\{y_{i_k}\} \) that converges to \(y_0 \) in \(N \), it will be shown that \(y_0 = 0 \). Assume not, and without loss of generality assume that \(\{y_i\} \) converges to \(y_0 \), and that \(X^* = l_p, l < p < \infty \). Let \(t_i = x_i - (y_i - y_0) \), \(r_i = x_i - y_i \), and let \(\varepsilon > 0 \) be such that \(\varepsilon < \| y_0 \| \), then as in Proposition 3 of Mach [9], there is a positive integer \(m \geq 1 \) such that for each \(i \geq m \) one has

\[
\| t_i - y_0 \| \leq \| t_i \| + \| y_0 \| = \| x_i - y_i \| + \| y_0 \| \leq \| x_i - (y_i - y_0) \|.
\]

So for each \(i > m \) one has \(\| x_i - (y_i - y_0) \| > \| x_i - y_i \| \), which contradict the fact that \(\| x_i - y_i \| = d(x_i, N) \), therefore \(y_0 = 0 \).

REFERENCES