ALMOST COMPLEX SURFACES IN THE NEARLY KAHLER S^6

SHARIEF DESHMUKH
Department of Mathematics
College of Science
King Saud University
P.O. Box 2455, Riyadh-11451
Saudi Arabia

(Received March 14, 1990 and in revised form May 20, 1991)

ABSTRACT: It is shown that a compact almost complex surface in S^6 is either totally geodesic or the minimum of its Gaussian curvature is less than or equal to 1/3.

KEY WORDS AND PHRASES. Almost complex surfaces, nearly Kaehler structure, totally geodesic submanifold, Gaussian curvature.

1991 AMS SUBJECT CLASSIFICATION CODE. 53C40

1. INTRODUCTION.

The six dimensional sphere S^6 has almost complex structure J which is nearly Kaehler, that is, it satisfies (\nabla_X J)(X) = 0, where \nabla is the Riemannian connection on S^6 corresponding to the usual metric g on S^6. Sekigawa [1] has studied almost complex surfaces in S^6 and has shown that if they have constant curvature K, then either K = 0, 1/6 or 1. Under the assumption that the almost complex surface M in S^6 is compact, he has shown that if K > 1/6, then K = 1 and if 1/6 < K < 1, then K = 1/6. Dillen et al [2-3] have improved this result by showing if 1/6 < K < 1, then either K = 1/6 or K = 1 and if 0 < K < 1/6, then either K = 0 or K = 1/6. However, using system of differential equations (1) (cf. [5], p. 67) one can construct examples of almost complex surfaces in S^6 whose Gaussian curvature takes values outside [9,1/6] or [1/6,1]. The object of the present paper is to prove the following:

THEOREM 1. Let M be a compact almost complex surface in S^6 and K_0 be the minimum of the Gaussian curvature of M. Then either M is totally geodesic or K_0 \leq 1/3.

2. MAIN RESULTS. Let M be a 2-dimensional complex submanifold of S^6 and g be the induced metric on M. The Riemannian connection \nabla of S^6 induces the Riemannian connection \nabla on M and the connection \nabla^perp in the normal bundle \nu. We have the Gauss and Weingarten formulae

\nabla_X Y = \nabla_X Y + h(X, Y), \quad \nabla_X N = -A_N X + \nabla^perp_X N, \quad X, Y \in \mathfrak{G}(M), \quad N \in \nu,

(2.1)

where h, A_N are the second fundamental forms satisfying g(h(X, Y), N) = g(A_N X, Y) and \mathfrak{G}(M) is the Lie-algebra of vector fields on M. The curvature tensors \bar{R}, R and R^perp of the connections \nabla,
\(\nabla \) and \(\nabla^\perp \) respectively satisfy
\[
R(X, Y; Z, W) = R(X, Y; Z, W) + g(h(Y, Z), h(X, W)) - g(h(X, Z), h(Y, W)) \tag{2.2}
\]
\[
\bar{R}(X, Y; N_1, N_2) = R^\perp (X, Y; N_1, N_2) - g([A_{N_1}, A_{N_2}](X), Y) \tag{2.3}
\]
\[
[\bar{R}(X, Y)Z]^\perp = (\bar{\nabla}_X h)(Y, Z) - (\bar{\nabla}_Y h)(X, Z), \quad X, Y, Z, W \in \mathfrak{S}(M), \quad N_1, N_2 \in \nu,
\tag{2.4}
\]
where \([\bar{R}(X, Y)Z]^\perp \) is the normal component of \(\bar{R}(X, Y)Z \), and
\[
(\bar{\nabla}_X h)(Y, Z) = \bar{\nabla}_X h(Y, Z) - h(Y, \nabla_X Z).
\]
The curvature tensor \(\bar{R} \) of \(S^6 \) is given by
\[
\bar{R}(X, Y; Z, W) = g(Y, Z)g(X, W) - g(X, Z)g(Y, W). \tag{2.5}
\]

Lemma 1. Let \(M \) be a 2-dimensional complex submanifold of \(S^6 \). Then \((\bar{\nabla}_X J)(Y) = 0, \quad X, Y \in \mathfrak{S}(M) \).

Proof. Take a unit vector field \(X \in \mathfrak{S}(M) \). Then \(\{X, JX\} \) is orthonormal frame on \(M \).
Since \(S^6 \) is nearly Kaehler manifold we have \((\bar{\nabla}_X J)(X) = 0 \), and \((\bar{\nabla}_X J)(JX) = 0 \). Also
\[
(\bar{\nabla}_X J)(JX) = -J(\bar{\nabla}_X J)(X) = 0 \quad \text{and} \quad (\bar{\nabla}_X J)(X) = -(\bar{\nabla}_X J)(JX) = 0.
\]
Now for any \(Y, Z \in \mathfrak{S}(M) \), we have \(Y = aX + bJX \) and \(Z = cX + dJX \), where \(a, b, c \) and \(d \) are smooth functions. We have
\[
(\bar{\nabla}_X J)(Z) = a(\bar{\nabla}_X J)(Z) + b(\bar{\nabla}_Y J)(Z) = -a(\bar{\nabla}_Z J)(X) - b(\bar{\nabla}_Z J)(JX)
\]
\[
= -ac(\bar{\nabla}_X J)(X) - ad(\bar{\nabla}_X J)(JX) - bc(\bar{\nabla}_Y J)(JX) - bd(\bar{\nabla}_Y J)(JX) = 0.
\]

Lemma 2. For a 2-dimensional complex submanifold \(M \) of \(S^6 \), the following hold
\begin{enumerate}
\item[(i)] \(h(X, JY) = h(JX, Y) = Jh(X, Y) \), \quad \(\bar{\nabla}_X JY = J\bar{\nabla}_X Y \),
\item[(ii)] \(JA_N X = A_{JN} X, \quad A_N JX = -J A_N X \),
\item[(iii)] \((\bar{\nabla}_X h)(Y, Z) = (\bar{\nabla}_Y h)(JY, Z) = (\bar{\nabla}_Y h)(Y, JZ) \),
\item[(iv)] \(R(X, Y)JZ = J R(X, Y)Z, \quad X, Y, Z \in \mathfrak{S}(M), \quad N \in \nu \).
\end{enumerate}

Proof. (i) follows directly from Lemma 1 and equation (2.1). The second part of (ii) follows from (i). For first part of (ii), observe that for \(N \in \nu \) and \(X \in \mathfrak{S}(M) \),
\[
g((\bar{\nabla}_N J)(N), Y) = -g(N, (\bar{\nabla}_N J)(Y)) = 0 \quad \text{for each} \quad Y \in \mathfrak{S}(M),
\]
that is, \((\bar{\nabla}_N J)(N) \) is normal to \(M \). Hence expanding \((\bar{\nabla}_N J)(N) \) using (2.1) and equating the tangential parts we get the first part of (ii).

From equations (2.4) and (2.5), we get
\[
(\bar{\nabla}_X h)(Y, Z) = (\bar{\nabla}_Y h)(X, Z) = (\bar{\nabla}_Z h)(X, Y), \quad X, Y, Z \in \mathfrak{S}(M). \tag{2.6}
\]
Also from (i) we have
\[
(\bar{\nabla}_X h)(JY, Z) = (\bar{\nabla}_Y h)(Y, JZ), \quad X, Y \in \mathfrak{S}(M). \tag{2.7}
\]
Thus from (2.6) and (2.7), we get that
\[
(\bar{\nabla}_X h)(JY, Z) = (\bar{\nabla}_X h)(Y, JZ) = (\bar{\nabla}_Y h)(X, JZ) = (\bar{\nabla}_Y h)(JX, Z) = (\bar{\nabla}_X h)(Y, Z),
\]
this together with (2.7) proves (iii). The proof of (iv) follows from second part of (i).
The second covariant derivative of the second fundamental form is defined as

\[(\nabla^2 h)(X, Y, Z, W) = \nabla_X (\nabla h)(Y, Z, W) - (\nabla h)(\nabla_X Y, Z, W) - (\nabla h)(Y, \nabla_X Z, W) - (\nabla h)(Y, Z, \nabla_X W), \]

where \((\nabla h)(X, Y, Z) = (\nabla_X h)(Y, Z), X, Y, Z, W \in \mathfrak{X}(M)\).

Let \(\Pi: UM \to M\) and \(UM_p\) be the unit tangent bundle of \(M\) and its fiber over \(p \in M\) respectively. Define the function \(f: UM \to R\) by \(f(U) = \| h(U, U) \|^2\).

For \(U \in UM_p\), let \(\sigma_U(t)\) be the geodesic in \(M\) given by the initial conditions \(\sigma_U(0) = p, \dot{\sigma}_U(0) = U\). By parallel translating \(V \in UM_p\) along \(\sigma_U(t)\), we obtain a vector field \(V_U(t)\). We have the following Lemma (cf. [5]).

Lemma 3. For the function \(f_U(t) = f(V_U(t))\), we have

1. \(\frac{df_U(t)}{dt} = 2g((\nabla h)(\dot{\sigma}_U, V_U, V_U), h(V_U, V_U))(t)\).
2. \(\frac{d^2 f_U(t)}{dt^2} = 2g((\nabla h)(U, U, V, V), h(V, V)) + 2\| (\nabla h)(U, V, V) \|^2\).

3. Proof of the Theorem 1. Since \(UM\) is compact, the function \(f\) attains maximum at some \(V \in UM\). From (i) of Lemma 2, \(\| h(V, V) \|^2 = \| h(JV, JV) \|^2\) and thus we have \(\frac{d^2 f(V)}{dt^2} \leq 0\) and \(\frac{d^2 f_JV}{dt^2} \leq 0\). Using (iii) of Lemma 2 in (2.8) we get that

\[(\nabla^2 h)(JV, JV, V, V) = (\nabla^2 h)(JV, JV, V, V). \]

The above equation together with the Ricci identity gives

\[(\nabla^2 h)(JV, JV, V, V) - (\nabla^2 h)(JV, JV, JV, V) = R^{\perp} (JV, V)h(JV, V), \]

Taking inner product with \(h(V, V)\) and using (iv) of Lemma 2, we get

\[g((\nabla^2 h)(JV, JV, V, V) - (\nabla^2 h)(JV, JV, JV, V), h(V, V)) = R^{\perp} (JV, V)h(JV, V) - 2g(h(R(JV, V), JV, V), h(V, V)). \]

Now using (i) of Lemma 2, we find that \(g(h(U, V), h(U, JV)) = 0\), that is, \(g(A_h(U, U), JV) = 0\) for all \(U \in UM_p\). Since \(\dim M = 2\), it follows that \(A_h(U, U) = \lambda U\). To find \(\lambda\), we take inner product with \(U\) and obtain \(\lambda = \| h(U, U) \|^2\). Thus, \(A_h(U, U) = \| h(U, U) \|^2 U\). From equations (2.2) and (2.5) we obtain

\[R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + A_h(Y, Z)X - A_h(X, Z)Y, \]

which gives

\[R(JV, V)JV = -V + A_h(V, JV) - A_h(JV, V)V = -V + 2A_h(V, V) = -V + 2\| h(V, V) \|^2 V. \]

Also from (2.3) and (2.5) we get

\[R^{\perp} (JV, V, h(JV, V), h(V, V)) = g([A_h(JV, V), A_h(V, V)], JV, V) = -2g(A_h(V, V), A_h(V, V)) = -2\| h(V, V) \|^4. \]
Substituting (3.2) and (3.3) in (3.1) we get

\[g((\nabla^2 h)(JV, JV, V, V) - (\nabla^2 h)(V, JV, JV, V), h(V, V)) = 2f(V)(1 - 3f(V)). \]

(3.4)

From (iii) of Lemma 2, it follows that

\[(\nabla h)(JV, JV, V) = (\nabla h)(J^2 V, V, V) = -(\nabla h)(V, V, V), \]

this together with \(\nabla XY = J \nabla Y \) of (i) in Lemma 2, gives

\[(\nabla^2 h)(V, JV, JV, V) = -(\nabla^2 h)(V, V, V). \]

Using this and (ii) of Lemma 3 in (3.4), we obtain

\[\frac{d^2}{dt^2} f_V(0) + \frac{d^2}{dt^2} f_{JV}(0) = 2f(V)(1 - 3f(V)) + 2 \| (\nabla h)(V, V, V) \|^2 + 2 \| (\nabla h)(JV, V, V) \|^2 \leq 0 \]

Thus either \(f(V) = 0 \), that is, \(M \) is totally geodesic or \(1/3 \leq f(V) \). Since an orthonormal frame of \(M \) is of the form \((U, JU) \), the Gaussian curvature \(K \) of \(M \) is given by

\[K = 1 + g(h(U, U), h(JU, JU)) - g(h(JU, JU), h(U, U)) = 1 - 2 \| h(U, U) \|^2. \]

Thus \(K:UM \to R \), is a smooth function, and \(UM \) being compact, \(K \) attains its minimum \(K_0 = \min K \) and we have \(K_0 = 1 - 2 \max \| h(U, U) \|^2 \), from which for the case \(1/3 \leq f(V) \), we get \(K_0 \leq 1/3 \). This completes the proof of the Theorem.

As a direct consequence of our Theorem we have

COROLLARY. Let \(M \) be a compact almost complex surface in \(S^6 \). If the Gaussian curvature \(K \) of \(M \) satisfies \(K > 1/3 \), then \(M \) is totally geodesic.

ACKNOWLEDGEMENTS.

The author expresses his sincere thanks to Prof. Abdullah M. Al-Rashed for his inspirations, and to referee for many helpful suggestions. This work is supported by the Research Grant No. (Math/1409/04) of the Research Center, College of Science, King Saud University, Riyadh, Saudi Arabia.

REFERENCES

3. DILLEN, F., OPOZDA, B., VERSTRAELEN, L. and VRANCKEN, L., On almost complex surfaces of the nearly Kaehler 6 sphere I, Collection of scientific papers, Faculty of Science, Univ. of Kragujevac 8(1987), 5-13.