ON RADIi OF CONVEXITY AND STARLIKENESS OF SOME CLASSES OF ANALYTIC FUNCTIONS

KHALIDA INAYAT NOOR
Mathematics Department
College of Science
King Saud University
Riyadh 11451
Saudi Arabia

(Received December 5, 1989 and in revised form March 21, 1990)

ABSTRACT. Let $P[A,B]$, $-1 \leq B < A \leq 1$, be the class of functions p such that $p(z)$ is subordinate to $\frac{1-Az}{1-Bz}$. Let $P(\alpha)$ be the class of functions with positive real part greater than α, $0 < \alpha < 1$. It is clear that $P[A,B] \subseteq P(1) \subseteq P[1,-1]$. The principal results in this paper are the determination of the radius of β-starlikeness and β-convexity of $f(z)$ with $\beta = \frac{1-A}{1-B}$, when $f(z)$ is restricted to certain classes of univalent and analytic functions related with $P[A,B]$.

KEY WORDS AND PHRASES. Subordinate, starlike and convex functions, bounded boundary rotation, radius, close-to-convex functions.

1991 AMS SUBJECT CLASSIFICATION CODE. 30A32, 30A34, 30C45.

1. INTRODUCTION.

Let f be analytic in $E = \{z : |z| < 1\}$, and be given by

$$f(z) = z + \sum_{n=2}^\infty a_nz^n.$$ \hspace{1cm} (1.1)

A function g, analytic in E, is called subordinate to a function G if there exists a Schwarz function $w(z)$, $w(z)$ analytic in E with $w(0) = 0$ and $|w(z)| < 1$ in E, such that $g(z) = G(w(z))$.

In [1], Janowski introduced the class $P[A,B]$. For A and B, $-1 \leq B < A \leq 1$, a function p, analytic in E with $p(0) = 1$ belongs to the class $P[A,B]$ if $p(z)$ is subordinate to $\frac{1-Az}{1-Bz}$.

Also $C[A,B]$ and $S^*[A,B]$ denote the classes of functions, analytic in E and given by (1.1) such that $\frac{d^2}{dz^2} \in P[A,B]$ and $\frac{d^2}{dz^2} \in P[A,B]$ respectively. For $A = 1$, and $B = -1$, we note that $C[1,-1] = C$ and $S^*[1,-1] = S^*$, the classes of convex and starlike functions in E. Also $S^*[A,B] \subset S^*[\frac{1-A}{1-B}] \subset S^*[1,-1]$ and $C[A,B] \subset C[\frac{1-A}{1-B}] \subset C[1,-1]$, where $S^*[\frac{1-A}{1-B}]$ and $C[\frac{1-A}{1-B}]$ denote the classes of starlike and convex functions of order $\frac{1-A}{1-B}$ respectively. These classes were first introduced by Robertson in [2].

A function f, analytic in E and given by (1.1), is said to be in the class $R[A,B]$, $-1 \leq B < A \leq 1$, if and only if
Hence

\[
\frac{(zf'(z))'}{f'(z)} - \frac{1-A}{1-B} = p(z) + \frac{zp'(z)}{p(z)} - \frac{1-A}{1-B}
\]

Using Lemma 2.3 for \(a = 1 - \beta\), we have for \(R_1 \leq R_2\)

\[
Re \left[\frac{(zf'(z))'}{f'(z)} - \frac{1-A}{1-B} \right] \geq \frac{1-(3A-B)r+A^2r^2}{(1-A)r(1-Br)} - \frac{1-A}{1-B} \]

\[
= \frac{A-B}{1-B} \left[\frac{1-(2+A-B)r+Ar^2}{(1-A)r(1-Br)} \right],
\]

and this implies that \(Re \left[\frac{(zf'(z))'}{f'(z)} - \frac{1-A}{1-B} \right] \geq 0\) for \(|z| < r_0\), where \(r_0\) is given by (3.1). The inequality \(R_1 < R_2\) is satisfied whenever \(T(r) = 1-(2+A-B)r+Ar^2 \geq 0\). But \(T(0) = 1 > 0\) and \(T(1) = B - 1 < 0\). So \(T(r)\) has at least one root in (0,1). Let \(r_0\) given by (3.1) be that root of \(T(r) = 0\). Then in \([0, r_0), R_1 < R_2\) and hence \(f \in C(\frac{1-A}{1-B})\) for all \(z\) with \(|z| = r \leq r_0 < 1\).

This result is sharp for the function \(f_0 \in S^*[A, B]\) such that

\[
\frac{zf_0'(z)}{f_0(z)} = \frac{1+Az}{1+Bz}
\]

THEOREM 3.2. Let \(g \in S^*[A, B]\) and let \(\frac{g(z)}{z} \in P[A, B]\). Then \(f \in C(\frac{1-A}{1-B})\) for \(|z| < r_0\), where \(r_0\) is given by (3.1).

PROOF. \((zf'(z)) = g(z)p(z), p \in P[A, B]\). This gives us

\[
\frac{(zf'(z))'}{f'(z)} = \frac{g'(z)}{g(z)} + \frac{zp'(z)}{p(z)}
\]

Applying the usual inequalities, we obtain

\[
Re \left[\frac{(zf'(z))'}{f'(z)} - \frac{1-A}{1-B} \right] \geq \frac{1-Ar}{1-Br} \frac{(A-B)r}{(1-A)r(1-Br)} - \frac{1-A}{1-B} \]

\[
= \frac{(A-B)[1-(2+A-B)r+Ar]}{(1-B)(1-Ar)(1-Br)}
\]

Hence we obtain the required result that \(f \in C(\frac{1-A}{1-B})\) for \(|z| < r_0\) and \(r_0\) is given by (3.1).

THEOREM 3.3. Let \(g \in S^*[A, B]\) and \(\frac{g(z)}{z} \in P[A, B]\). Then \(\frac{g(z)}{z} \in P(\frac{1-A}{1-B})\) for \(|z| < r_0\), where \(r_0\) is given by (3.1).

PROOF. We have \((zf'(z)) = g(z)p(z), p \in P[A, B]\) and so

\[
\frac{(zf'(z))'}{g'(z)} = p(z) + \frac{g(z)}{zg'(z)} \frac{zp'(z)}{p(z)}
\]

Thus

\[
Re \left[\frac{(zf'(z))'}{g'(z)} - \frac{1-A}{1-B} \right] \geq Re \left[p(z) \left(1 - \frac{(1-Br)}{(1-Ar)(1-Br)} \frac{(A-B)r}{(1-Ar)(1-Br)} \right) - \frac{1-A}{1-B} \right]
\]

\[
= \frac{(1-Ar)}{(1-Br)} \left(1 - \frac{(3A-B)r+A^2r^2}{(1-Ar)(1-Br)} \right) - \frac{1-A}{1-B} \]

\[
= \frac{(A-B)}{(1-B)} \left[\frac{1-(2+A-B)r+Ar^2}{(1-Ar)(1-Br)} \right]
\]
Clearly \(k \geq 2 \) and \(R_k[A,B] = S^*[A,B] \). Also \(R_{[1,-1]} = U_k \), the class of functions with bounded radius rotation discussed in [3].

Similarly we can define the class \(V_k[A,B] \) as follows. A function \(f \), analytic in \(E \) and given by (1.1) belongs to \(V_k[A,B] \), \(k \geq 2 \), if and only if

\[
f(z) = \frac{(S_2(z)/z)^{k^{1/2}}}{(S_1(z)/z)^{(k-1)/2}}, \quad S_1, S_2 \in S^*[A,B].
\]

From (1.2) and (1.3), it is clear that

\[
f(z) \in V_k[A,B] \quad \text{if and only if} \quad zf'(z) \in R_k[A,B]
\]

It may be noted that \(V_2[A,B] = C[A,B] \) and \(V_{[1,-1]} = V_1 \), the class of functions of bounded rotation first discussed by Paatero [4].

2. PRELIMINARY RESULTS

Lemma 2.1 [5] Let \(p \in P[A,B] \). Then

\[
\frac{1-Ar}{1-Br} \leq \Re p(z) \leq \left| p(z) \right| \leq \frac{1+Ar}{1+Br}
\]

The following is the extension of Libera's result [6].

Lemma 2.2. Let \(N \) and \(D \) be analytic in \(E \), \(D \) map onto a many-sheeted starlike region. \(N(0) = 0 = D(0) \) and \(\frac{N(z)}{D(z)} \in P[A,B] \). Then \(\frac{N(z)}{D(z)} \in P[A,B] \). For the proof of this result we refer to [5].

Lemma 2.3. [7] Let \(p \in P[A,B] \). Then, for \(z \in E \), \(\alpha \geq 0 \) and \(\beta \geq 0 \), we have

\[
\Re \left\{ \alpha p(z) + \beta^2 p'(z) \right\} = \left\{ \begin{array}{ll}
\frac{\alpha - \{\beta(A-B) + 2\alpha A\} r + \alpha^2 r^2}{(1-Ar)(1-Br)}, & R_1 \leq R_2 \\
\frac{\beta A + B}{A-B} + \frac{2[(L_1 K_1)^{1/2} - \beta(1-AB^2)]}{(A-B)(1-r^2)}, & R_2 \leq R_1
\end{array} \right.
\]

where

\[
R_1 = \left(\frac{L_1}{K_1} \right)^{1/2}, \quad R_2 = \frac{1-Ar}{1-Br}, \quad L_1 = \beta(1-A)(1+Ar^2)
\]

and

\[
K_1 = \alpha(A-B)(1-r^2) + \beta(1-B)(1+Br^2).
\]

This result is sharp.

3. MAIN RESULTS.

Theorem 3.1. Let \(f \in S^*[A,B] \). Then \(f \in C \left(\frac{1-A}{1-B} \right) \) for

\[
|z| < r_0 = \frac{2}{(2+A-B)+\sqrt{(2+A-B)^2-4A}}
\]

This result is sharp.

Proof. We have \(zf'(z) = f(z)p(z), p \in P[A,B] \)
Hence \(\frac{(f(z))'}{f(z)} \in P\left(\frac{1-A}{1-B}\right) \) for \(|z| < r_0 \), where \(r_0 \) is given by (3.1).

Our next result is about the radius of convexity problem for the class \(V_k[A, B] \).

THEOREM 3.4. Let \(f \in V_k[A, B] \), \(k \geq 2 \). Then \(f \in C\left(\frac{1-A}{1-B}\right) \) for \(|z| < r_1 \), where

\[
 r_1 = \frac{4}{k(1-B) + \sqrt{k(1-B)^2 + 16B}} \tag{3.2}
\]

PROOF. Since \(f \in V_k[A, B] \), we have from (1.3)

\[
 f'(z) = \frac{(S_1(z)/z)^{1/2}}{(S_2(z)/z)^{1/2}}, \quad S_1, S_2 \in S^*[A, B]
\]

This implies that

\[
 \frac{(zf'(z))'}{f'(z)} = \left(\frac{k + 1}{4 + 2}\right)p_1(z) - \left(\frac{k + 1}{4 - 2}\right)p_2(z), \quad p_1, p_2 \in P[A, B]
\]

so

\[
 \text{Re} \left[\frac{(zf'(z))'}{f'(z)} \right] \cdot \frac{1-A}{1-B} = \frac{k + 1}{4 + 2} - \frac{k + 1}{4 - 2} - \frac{1-A}{1-B}
\]

Hence \(f \in C\left(\frac{1-A}{1-B}\right) \) for \(|z| < r_1 \), \(r_1 \) is given by (3.2).

From Theorem 3.4 and relation (1.4) we have the following:

THEOREM 3.5. Let \(f \in R_\alpha[A, B] \). Then \(f \in S^{*}\left(\frac{1-A}{1-B}\right) \) for \(|z| < r_1 \) where \(r_1 \) is given by (3.2).

THEOREM 3.6. Let \(\alpha \) and \(m \) be any positive integers and \(f \in R_\alpha[A, B] \). Then the function \(F \) defined by

\[
 (F(z))^\alpha = \frac{\alpha + m}{z^m} \int_0^z t^{\alpha-1}(f(t))^\alpha dt \tag{3.3}
\]

belongs to \(S^{*}\left(\frac{1-A}{1-B}\right) \) for \(|z| < r_1 \), \(r_1 \) is given by (3.2).

PROOF. Let \(J(z) = \int_0^z t^{\alpha-1}(F(t))^\alpha dt \) and so

\[
 (F(z))^\alpha = \frac{\alpha + m}{z^m} J(z),
\]

and

\[
 \alpha zF'(z) \quad \frac{zJ'(z)}{F(z)} = \frac{zJ'(z) - mJ(z)}{J(z)} = \frac{N(z)}{D(z)}
\]

or

\[
 \frac{zF'(z)}{F(z)} = \frac{1}{\alpha} \frac{zJ'(z) - mJ(z)}{J(z)} = \frac{N(z)}{D(z)}
\]

\[
 N(0) = 0 = D(0)
\]
By a result of Bernardi [8] and Theorem 3.5, $D(z)$ is a $(m + \alpha - 1)$-valent starlike function for $|z| < r_1$. Also

$$\frac{N'(z)}{D'(z)} = \frac{1}{\alpha} \left[\frac{(zJ'(z))'-mJ'(z)}{J'(z)} \right]$$

Now, by Theorem 3.5, $f \in S^\ast\left(\frac{1-A}{1-B}\right)$ for $|z| < r_1$ and this implies that $\frac{N(z)}{D(z)} \in P\left(\frac{1-A}{1-B}\right)$ for $|z| < r_1$. Hence

$$\frac{N(z)}{D(z)} \in P\left(\frac{1-A}{1-B}\right) \quad \text{for} \quad |z| < r_1, \quad \text{see [8]}.$$

This proves our result.

Similarly, we can prove the following:

THEOREM 3.7. Let α and m be positive integers and $f \in V_\delta[A,B]$. Let F be defined by (3.3). Then

$f \in C\left(\frac{1-A}{1-B}\right)$ for $|z| < r_1$ where r_1 is given by (3.2).

We now prove:

THEOREM 3.8. Let f and $g \in R_\delta[A,B]$ and, for m positive integers, let F be defined as

$$F(z) = \frac{(m + \alpha)}{(g(z))^m} \int_0^z t^{(m-1)}(f(t))^\alpha dt \quad (3.4)$$

Then $F \in S^\ast\left(\frac{1-A}{1-B}\right)$ for $|z| < r_0$

where $r_0 = \min(r_1, r_2)$, r_1 is given by (3.2) and r_2 is the least positive root of the equation

$$\{(1-B)-\alpha(1-A)-\{(A-B)(1+2m)r+\{(A-B)\}r^2 = 0, \quad (3.5)$$

PROOF. Let $J_1(z) = \frac{\alpha}{\alpha + m} \int_0^z t^{(m-1)}(f(t))^\alpha dt$.

Then $(F(z))^\alpha = \left(\frac{z}{g(z)}\right)\alpha J_1(z)$, where by Theorem 3.6, $J_1 \in S^\ast\left(\frac{1-A}{1-B}\right)$ for $|z| < r_1$.

So

$$\frac{\alpha zF'(z)}{F(z)} = \frac{zJ_1'(z)}{J_1(z)} + m \left(1 - \frac{zg'(z)}{g(z)}\right)$$

Thus

$$\Re \left[\frac{zF'(z)}{F(z)} - \frac{1-A}{1-B} \right] \geq \frac{1}{\alpha} \left[\left(1 + \frac{B-A}{1-B}\right)r/(1+r) \right] + \left[\frac{2m}{\alpha}(B-A)r/(1-r) - \frac{1-A}{1-B}\right]$$

This implies $\Re \left[\frac{zF'(z)}{F(z)} \right] \geq \frac{1-A}{1-B}$ for $|z| < r_2$, where r_2 is the least positive root of (3.5). Hence $F \in S^\ast\left(\frac{1-A}{1-B}\right)$ for $|z| < r_0$, where $r_0 = \min(r_1, r_2)$.

Similarly, we have the following:

THEOREM 3.9. Let f and $g \in V_\delta[A,B]$ and, for α, m positive integers, let F be defined by (3.4).

Then $F \in C\left(\frac{1-A}{1-B}\right)$ for $|z| < r_0$, where r_0 is as given in Theorem 3.8.

THEOREM 3.10. Let $g \in V_\delta[A,B]$ and $\frac{f(z)}{g(z)} \in P[A,B]$ and let F be defined by
\[F(z) = \frac{m+1}{z^m} \int_0^z t^{m-1} f(t) \, dt, \]

where \(m \) is any positive integer. Then there exists a function \(G \) such that

\[\frac{F'(z)}{G'(z)} \in \mathcal{P}\left(\frac{1-A}{1-B}\right), \quad G \in \mathcal{C}\left(\frac{1-A}{1-B}\right) \]

for \(|z| < r_i \), where \(r_i \) is given by (3.2).

PROOF. Let

\[G(z) = \frac{m+1}{z^m} \int_0^z t^{m-1} g(t) \, dt. \]

Then, by Theorem 3.7 with \(\alpha = 1, \ G \in \mathcal{C}\left(\frac{1-A}{1-B}\right) \) for \(|z| < r_i \) and \(r_i \) is defined by (3.2). Now

\[
\begin{align*}
\frac{F'(z)}{G'(z)} &= \frac{z^m f(z) - m \left(\int_0^z t^{m-1} f(t) \, dt \right)}{z^m g(z) - m \left(\int_0^z t^{m-1} g(t) \, dt \right)} \\
&= \frac{\int_0^z t^{m-1} f(t) \, dt}{\int_0^z t^{m-1} g(t) \, dt} = \frac{N(z)}{D(z)}
\end{align*}
\]

Also

\[
\frac{N'(z)}{D'(z)} = \frac{f'(z)}{g'(z)} \in \mathcal{E}[A, B] \quad \text{for} \quad |z| < r_i.
\]

Thus, by Lemma 2.2, we have \(\frac{N(z)}{D(z)} \in \mathcal{E}[A, B] \subset \mathcal{P}\left(\frac{1-A}{1-B}\right) \) for \(|z| < r_i \) and this proves our result.

REFERENCES