AN INVERSE EIGENVALUE PROBLEM FOR AN ARBITRARY MULTIPLY CONNECTED BOUNDED REGION IN \mathbb{R}^2

E. M. E. ZAYED
Mathematics Department, Faculty of Science
Zagazig University
Zagazig, Egypt

(Received June 26, 1990 and in revised form July 26, 1990)

ABSTRACT. The basic problem is to determine the geometry of an arbitrary multiply connected bounded region in \mathbb{R}^2 together with the mixed boundary conditions, from the complete knowledge of the eigenvalues $\{\lambda_j\}_{j=1}^\infty$ for the Laplace operator, using the asymptotic expansion of the spectral function $\theta(t) = \sum_{j=1}^\infty \exp(-t\lambda_j)$ as $t \to 0$.

KEY WORDS AND PHRASES. Inverse problem, Laplace’s operator, eigenvalue problem, spectral function.

1980 AMS SUBJECT CLASSIFICATION CODE. 35K, 35P

1. INTRODUCTION.

The underlying problem is to deduce the precise shape of a membrane from the complete knowledge of the eigenvalues $\{\lambda_j\}_{j=1}^\infty$ for the Laplace operator $\Delta_2 = \sum_{i=1}^2 \left(\frac{\partial}{\partial x_i} \right)^2$ in the x^1x^2-plane.

Let $\Omega \subseteq \mathbb{R}^2$ be a simply connected bounded domain with a smooth boundary $\partial \Omega$. Consider the Neumann/Dirichlet problem

\begin{align*}
(\Delta_2 + \lambda)u &= 0 \quad \text{in } \Omega, \\
\frac{\partial u}{\partial n} &= 0 \quad \text{or } u = 0 \quad \text{on } \partial \Omega,
\end{align*}

where $\frac{\partial}{\partial n}$ denotes differentiation along the inward pointing normal to $\partial \Omega$ and $u \in C^2(\Omega) \cap C(\bar{\Omega})$. Denote its eigenvalues, counted according to multiplicity, by

\begin{equation}
0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots \leq \lambda_j \leq \ldots \to \infty \quad \text{as } j \to \infty.
\end{equation}

The problem of determining the geometry of Ω has been investigated by Pleijel [1], Kac [2], McKean and Singer [3], Stewartson and Waechter [4], Smith [5], Sleeman and Zayed [6,7], Gottlieb [8], Greiner [9], Zayed [10-13] and the references given there, using the asymptotic expansion of the trace function

\begin{equation}
\theta(t) = \text{tr}[\exp(-t\Delta_2)] = \sum_{j=1}^\infty \exp(-t\lambda_j) \quad \text{as } t \to 0.
\end{equation}

It has been shown that, in the case of Neumann boundary conditions (N.b.c.):
\[\theta(t) = \left| \frac{\Omega}{4\pi t} + \frac{1}{8(\pi t)^{1/2}} \sum_{i=1}^{k} L_i - \frac{1}{256} \left(\frac{t}{\pi} \right)^{1/2} \int_{\partial\Omega} k^2(\sigma) d\sigma + o(t) \right| \quad \text{as} \quad t \to 0, \] (1.5)

while, in the case of Dirichlet boundary conditions (D.b.c.):

\[\theta(t) = \left| \frac{\Omega}{4\pi t} - \frac{1}{8(\pi t)^{1/2}} + \frac{a_0}{256} \left(\frac{t}{\pi} \right)^{1/2} \int_{\partial\Omega} k^2(\sigma) d\sigma + o(t) \right| \quad \text{as} \quad t \to 0, \] (1.6)

In these formulae, \(|\Omega|\) is the area of \(\Omega\), \(|\partial\Omega|\) is the total length of \(\partial\Omega\) and \(k(\alpha)\) is the curvature of \(\partial\Omega\). The constant term \(a_0\) has geometric significance, e.g., if \(\Omega\) is smooth and convex, then \(a_0 = \frac{1}{6}\) and if \(\Omega\) is permitted to have a finite number of smooth convex holes "H", then \(a_0 = \frac{1}{6}(1 - H)\).

The object of this paper is to discuss the following more general inverse problem: Let \(\Omega\) be an arbitrary multiply connected bounded region in \(\mathbb{R}^2\) which is surrounded internally by simply connected bounded domains \(\partial\Omega_i\), \(i = 1, \ldots, m-1\) and externally by a simply connected bounded domain \(\partial\Omega_m\) with a smooth boundary \(\partial\Omega_m\). Suppose that the eigenvalues (1.3) are given for the eigenvalue equation

\[(\Delta_2 + \lambda)u = 0 \quad \text{in} \quad \Omega, \] (1.7)
together with one of the following mixed boundary conditions:

\[\frac{\partial u}{\partial n_i} = 0 \quad \text{on} \quad \partial\Omega_i, \quad i = 1, \ldots, k \quad \text{and} \quad u = 0 \quad \text{on} \quad \partial\Omega_i, \quad i = k + 1, \ldots, m, \] (1.8)

\[u = 0 \quad \text{on} \quad \partial\Omega_i, \quad i = 1, \ldots, k \quad \text{and} \quad \frac{\partial u}{\partial n_i} = 0 \quad \text{on} \quad \partial\Omega_i, \quad i = k + 1, \ldots, m, \] (1.9)

where \(\frac{\partial}{\partial n_i}\) denote differentiations along the inward pointing normals to the boundaries \(\partial\Omega_i, i = 1, \ldots, m\), respectively.

The basic problem is to determine the geometry of \(\Omega\) from the asymptotic expansion of the spectral function (1.4) for small positive \(t\).

Note that problems (1.7)-(1.9) have been investigated recently by Zayed [11] in the special case where \(\Omega\) is an arbitrary doubly connected bounded region (i.e., \(m=2\)).

2. STATEMENT OF OUR RESULTS.

Suppose that the boundaries \(\partial\Omega_i, i = 1, \ldots, m\) are given locally by the equations \(x^* = y^*(\sigma_i), n = 1, 2\) in which \(\sigma_i, i = 1, \ldots, m\) are the arc-lengths of the counterclockwise oriented boundaries \(\partial\Omega_i\) and \(y^*(\sigma_i) \in C^*(\partial\Omega_i)\). Let \(L_i\) and \(k_i(\sigma_i)\) be the lengths and the curvatures of \(\partial\Omega_i, i = 1, \ldots, m\) respectively. Then, the results of our main problem (1.7)-(1.9) can be summarized in the following cases:

CASE 1. (N.b.c. on \(\partial\Omega_i, i = 1, \ldots, k\) and D.b.c. on \(\partial\Omega_i, i = k + 1, \ldots, m\))

\[\theta(t) = \left| \frac{\Omega}{4\pi t} + \frac{1}{8(\pi t)^{1/2}} \left(\sum_{i=1}^{k} L_i - \sum_{i=k+1}^{m} L_i \right) + \frac{1}{6}(2 - m) \right| + \frac{1}{256} \left(\frac{t}{\pi} \right)^{1/2} \left(\sum_{i=1}^{k} k_i^2(\sigma_i) d\sigma_i + \sum_{i=k+1}^{m} k_i^2(\sigma_i) d\sigma_i \right) + o(t) \quad \text{as} \quad t \to 0. \] (2.1)

CASE 2. (D.b.c. on \(\partial\Omega_i, i = 1, \ldots, k\) and N.b.c. on \(\partial\Omega_i, i = k + 1, \ldots, m\))

In this case the asymptotic expansion of \(\theta(t)\) as \(t \to 0\) has the same form (2.1) with the interchanges \(\partial\Omega_i, i = 1, \ldots, k \leftrightarrow \partial\Omega_i, i = k + 1, \ldots, m\).
With reference to formulae (1.4), (1.5) and to articles [6], [11], [12] the asymptotic expansion (2.1) may be interpreted as follows:

(i) Ω is an arbitrary multiply connected bounded region in \mathbb{R}^2 and we have the mixed boundary conditions (1.8) or (1.9) as indicated in the specifications of the two respective cases.

(ii) For the first four terms, Ω is an arbitrary multiply connected bounded region in \mathbb{R}^2 of area $|\Omega|$.

In case 1, it has $H = (m - 1)$ holes, the boundaries $\partial \Omega_i$, $i = 1, \ldots, k$ are of lengths $\sum_{i=1}^k L_i$ and of curvatures $k_i(\sigma_i)$, $i = 1, \ldots, m$ together with Neumann boundary conditions, while the boundaries $\partial \Omega_i$, $i = k + 1, \ldots, m$ are of lengths $\sum_{i=k+1}^m L_i$ and of curvatures $k_i(\sigma_i)$, $i = k + 1, \ldots, m$ together with Dirichlet boundary conditions, provided H is an integer.

We close this section with the following remarks:

REMARK 2.1. On setting $k = 0$ in formula (2.1) with the usual definition that $\sum_{i=1}^0$ is zero, we obtain the results of Dirichlet boundary conditions on $\partial \Omega_i$, $i = 1, \ldots, m$.

REMARK 2.2. On setting $k = m$ in formula (2.1) with the usual definition that $\sum_{i=m+1}^m$ is zero, we obtain the results of Neumann boundary conditions on $\partial \Omega_i$, $i = 1, \ldots, m$.

3. FORMULATION OF THE MATHEMATICAL PROBLEM

It is easy to show that the spectral function (1.4) associated with problems (1.7)-(1.9) is given by

$$\theta(t) = \int_{\Omega} G\left(x_{-1}^{x_{-2}}, t\right) dx, \quad (3.1)$$

where $G\left(x_{-1}^{x_{-2}}, t\right)$ is Green's function for the heat equation

$$\left(\Delta - \frac{\partial}{\partial t}\right) u = 0, \quad (3.2)$$

subject to the mixed boundary conditions (1.8) or (1.9) and the initial condition

$$\lim_{t \to 0} G\left(x_{-1}^{x_{-2}}, t\right) = \delta\left(x_{-1}^{x_{-2}}\right), \quad (3.3)$$

where $\delta\left(x_{-1}^{x_{-2}}\right)$ is the Dirac delta function located at the source point $x_{-1}^{x_{-2}}$. Let us write

$$G\left(x_{-1}^{x_{-2}}, x_{-3}^{x_{-4}}, t\right) = G_0\left(x_{-1}^{x_{-2}}, x_{-3}^{x_{-4}}, t\right) + \chi\left(x_{-1}^{x_{-2}}, x_{-3}^{x_{-4}}, t\right), \quad (3.4)$$

where

$$G_0\left(x_{-1}^{x_{-2}}, x_{-3}^{x_{-4}}, t\right) = (4\pi t)^{-\frac{1}{2}} \exp \left\{ -\frac{|x_{-1}^{x_{-2}}|^2}{4t} \right\}, \quad (3.5)$$

is the "fundamental solution" of the heat equation (3.2), while $\chi\left(x_{-1}^{x_{-2}}, x_{-3}^{x_{-4}}, t\right)$ is the "regular solution" chosen so that $G\left(x_{-1}^{x_{-2}}, x_{-3}^{x_{-4}}, t\right)$ satisfies the mixed boundary conditions (1.8) or (1.9).

On setting $x_{-1}^{x_{-2}} = x_{-3}^{x_{-4}} = x$ we find that
The problem now is to determine the asymptotic expansion of $K(t)$ for small positive t. In what follows we shall use Laplace transforms with respect to t, and use s^2 as the Laplace transform parameter; thus we define

$$
G(x_1, x_2; s) = \int_0^\infty e^{-s^2} G(x_1, x_2; t) dt.
$$

An application of the Laplace transform to the heat equation (3.2) shows that $G(x_1, x_2; s)$ satisfies the membrane equation

$$(\Delta - s^2)G(x_1, x_2; s) = -\delta(x_1 - x_2) \quad \text{in} \quad \Omega,
$$

(3.9)

The asymptotic expansion of $K(t)$ for small positive t, may then be deduced directly from the asymptotic expansion of $G(s^2)$ for large positive s, where

$$
G(s^2) = \int_\Omega \int_\Omega \left(x_1, x_2; s^2 \right) dx_1.
$$

(3.10)

4. CONSTRUCTION OF GREEN'S FUNCTION.

It is well known [6] that the membrane equation (3.9) has the fundamental solution

$$
G_0(x_1, x_2; s) = \frac{1}{2\pi} K_0(s r_{x_1 x_2})
$$

(4.1)

where $r_{x_1 x_2} = \left| x_1 - x_2 \right|$ is the distance between the points $x_1 = (x_1^1, x_1^2)$ and $x_2 = (x_2^1, x_2^2)$ of the region Ω while K_0 is the modified Bessel function of the second kind and of zero order. The existence of this solution enables us to construct integral equations for $G(x_1, x_2; s^2)$ satisfying the mixed boundary conditions (1.8) or (1.9). Therefore, Green's theorem gives:

CASE 1. (N.b.c. on $\partial \Omega_i, i = 1, \ldots, k$ and D.b.c. on $\partial \Omega_i, i = k + 1, \ldots, m$)

$$
G(x_1, x_2; s^2) = \frac{1}{2\pi} K_0(s r_{x_1 x_2}) + \sum_{i=1}^k \int_{\Omega_i} \frac{\partial}{\partial n_{x_i}} K_0(s r_{x_i y}) dy + \sum_{i=k+1}^m \int_{\Omega_i} \frac{\partial}{\partial n_{y}} G(x_1, y; s^2) K_0(s r_{y_2}) dy.
$$

(4.2)

CASE 2. (D.b.c. on $\partial \Omega_i, i = 1, \ldots, k$ and N.b.c. on $\partial \Omega_i, i = k + 1, \ldots, m$)

In this case Green's function $G(x_1, x_2; s^2)$ has the same form (4.2) with the interchanges $\partial \Omega_i, i = 1, \ldots, k \leftrightarrow \partial \Omega_i, i = k + 1, \ldots, m$.

On applying the iteration method (see [11], [12]) to the integral equation (4.2), we obtain Green's function $G(x_1, x_2; s^2)$ which has the regular part:

$$
G(x_1, x_2; s^2) = \frac{1}{2\pi^2} \sum_{n=1}^\infty \int_{\Omega_i} K_0\left(\frac{sr_{1y}}{y_2}\right) \frac{\partial}{\partial n_{1y}} K_0\left(\frac{sr_{2y}}{y_2}\right) dy
$$

$$
\quad + \frac{1}{2\pi^2} \sum_{n=1}^\infty \int_{\Omega_i} \frac{\partial}{\partial n_{1y}} K_0\left(\frac{sr_{1y}}{y_2}\right) K_0\left(\frac{sr_{2y}}{y_2}\right) dy
$$

$$
\quad + \frac{1}{2\pi^2} \sum_{n=1}^\infty \int_{\Omega_i} \frac{\partial}{\partial n_{1y}} K_0\left(\frac{sr_{1y}}{y_2}\right) M_1\left(y, y'\right) \frac{\partial}{\partial n_{2y}} K_0\left(\frac{sr_{2y}}{y_2}\right) dy dy'
$$

$$
\quad + \frac{1}{2\pi^2} \sum_{n=1}^\infty \int_{\Omega_i} \frac{\partial}{\partial n_{1y}} K_0\left(\frac{sr_{1y}}{y_2}\right) M_1\left(y, y'\right) K_0\left(\frac{sr_{2y}}{y_2}\right) dy dy'
$$

$$
\quad + \frac{1}{2\pi^2} \sum_{n=1}^\infty \int_{\Omega_i} \frac{\partial}{\partial n_{1y}} K_0\left(\frac{sr_{1y}}{y_2}\right) L_1\left(y, y'\right) \frac{\partial}{\partial n_{2y}} K_0\left(\frac{sr_{2y}}{y_2}\right) dy dy'
$$

$$
\quad + \frac{1}{2\pi^2} \sum_{n=1}^\infty \int_{\Omega_i} \frac{\partial}{\partial n_{1y}} K_0\left(\frac{sr_{1y}}{y_2}\right) L_1\left(y, y'\right) K_0\left(\frac{sr_{2y}}{y_2}\right) dy dy',
$$

where

$$
M_1\left(y, y'\right) = \sum_{n=0}^\infty K^{(y)}\left(y, y'\right),
$$

$$
M_1^{(y)}\left(y, y'\right) = \sum_{n=0}^\infty K^{(y)}\left(y, y'\right),
$$

$$
L_1\left(y, y'\right) = \sum_{n=0}^\infty K^{(y)}\left(y, y'\right),
$$

$$
L_1^{(y)}\left(y, y'\right) = \sum_{n=0}^\infty K^{(y)}\left(y, y'\right),
$$

$$
K_1\left(y, y'\right) = \frac{1}{\pi} \frac{\partial}{\partial n_{1y}} K_0\left(\frac{sr_{1y}}{y_2}\right),
$$

$$
K_1^{(y)}\left(y, y'\right) = \frac{1}{\pi} \frac{\partial}{\partial n_{1y}} K_0\left(\frac{sr_{1y}}{y_2}\right),
$$

$$
K_1^{(y)}\left(y, y'\right) = \frac{1}{\pi} K_0\left(\frac{sr_{1y}}{y_2}\right),
$$

$$
K_1^{(y)}\left(y, y'\right) = \frac{1}{\pi} K_0\left(\frac{sr_{1y}}{y_2}\right),
$$

and

$$
K_1^{(y)}\left(y, y'\right) = \frac{1}{\pi} \frac{\partial^2}{\partial n_{1y} \partial n_{1y}} K_0\left(\frac{sr_{1y}}{y_2}\right).
$$

In the same way, we can show that in case 2 Green's function $G(x_1, x_2; s^2)$ has a regular part of the same form (4.3) with the interchanges $\partial \Omega_i, i = 1, \ldots, k \leftrightarrow \partial \Omega_i, i = k + 1, \ldots, m$.
On the basis of (4.3) the function $\chi(x_1, x_2; s^2)$ will be estimated for large values of s. The case when x_1 and x_2 lie in the neighborhoods of $\partial \Omega_i, i = 1, \ldots, m$ is particularly interesting. For this case, we need to use the following coordinates.

5. COORDINATES IN THE NEIGHBORHOODS OF $\partial \Omega_i, i = 1, \ldots, m$.

Let $n_i, i = 1, \ldots, m$ be the minimum distances from a point $x = (x_1, x_2)$ of the region Ω to the boundaries $\partial \Omega_i, i = 1, \ldots, m$ respectively. Let $n_i(\sigma_i), i = 1, \ldots, m$ denote the inward drawn unit normals to $\partial \Omega_i, i = 1, \ldots, m$ respectively. We note that the coordinates in the neighborhood of $\partial \Omega_i, i = k + 1, \ldots, m$ and its diagrams (see [11]) are in the same form as in section 5.1 of [11] with the interchanges $\sigma_2 \leftrightarrow \sigma_1, n_2 \leftrightarrow n_1, h_2 \leftrightarrow h_1, I_2 \leftrightarrow I_1, D(I_2) \leftrightarrow D(I_1)$ and $\delta_2 \leftrightarrow \delta_1, i = k + 1, \ldots, m$. Thus, we have the same formulae (5.1.1)-(5.1.5) of section 5.1 in [11] with the interchanges $n_2 \leftrightarrow n_1, n_i(\sigma_2) \leftrightarrow n_i(\sigma_1), t_i(\sigma_2) \leftrightarrow t_i(\sigma_1), k_i(\sigma_2) \leftrightarrow k_i(\sigma_1), i = k + 1, \ldots, m$.

Similarly, the coordinates in the neighborhood of $\partial \Omega_2, i = 1, \ldots, k$ and its diagrams (see [11]) are similar to those obtained in section 5.2 of [11] with the interchanges $\sigma_2 \leftrightarrow \sigma_1, n_2 \leftrightarrow n_1, h_2 \leftrightarrow h_1, I_2 \leftrightarrow I_1, D(I_2) \leftrightarrow D(I_1)$ and $\delta_2 \leftrightarrow \delta_1, i = 1, \ldots, k$. Thus, we have the same formulae (5.2.1)-(5.2.5) of section 5.2 in [11] with the interchanges $n_1 \leftrightarrow n_2, n_i(\sigma_1) \leftrightarrow n_i(\sigma_2), t_i(\sigma_1) \leftrightarrow t_i(\sigma_2)$ and $k_i(\sigma_1) \leftrightarrow k_i(\sigma_2), i = 1, \ldots, k$.

6. SOME LOCAL EXPANSIONS.

It now follows that the local expansions of the functions

$$K_i\left(\frac{\partial}{\partial n_{i}}, s_{xx}\right), \quad \frac{\partial}{\partial n_{i}} K_i\left(\frac{\partial}{\partial n_{i}}, s_{xx}\right), \quad i = 1, \ldots, m$$

when the distance between x and y is small, are very similar to those obtained in section 6 of [11]. Consequently, for $i = 1, \ldots, k, k + 1, \ldots, m$, the local behavior of the following kernels:

$$K_i\left(y', y\right), \quad K_i\left(y', y\right), \quad i = 1, \ldots, m$$

when the distance between y and y' is small, follows directly from the knowledge of the local expansions of (6.1).

DEFINITION 1. Let ξ_1 and ξ_2 be points in the upper half-plane $\xi^2 > 0$, then we define

$$\tilde{\rho}_{12} = \sqrt{(\xi_1 - \xi_2)^2 + (\xi_1^2 + \xi_2^2)^2}.$$
(6.4)

An $e^{\lambda\tilde{\rho}_{12}}\left(\xi_1, \xi_2; s\right)$-function is defined for points ξ_1 and ξ_2 belong to sufficiently small domains $D(\xi_i)$ except when $\xi_1 = \xi_2 \in I_i, i = 1, \ldots, m$ and λ is called the degree of this function. For every positive integer Λ it has the local expansion (see [11]):
where \(\sum' \) denotes a sum of a finite number of terms in which \(f(\xi_l) \) is an infinitely differentiable function.

In this expansion, \(P_1, P_2, l, m \) are integers, where \(P_1 \geq 0, P_2 \geq 0, l \geq 0, \lambda = \min(P_1 + P_2 - q), q = l + m \) and the minimum is taken over all terms which occur in the summation \(\sum' \). The remainder \(R^A(\xi_1, \xi_2; s) \) has continuous derivatives of order \(d \leq A \) satisfying

\[
D^d R^A(\xi_1, \xi_2; s) = 0(s^{-\lambda_1}e^{-\lambda_1 s}) \quad \text{as} \quad s \to \infty,
\]

where \(A \) is a positive constant.

Thus, using methods similar to those obtained in section 7 of [11], we can show that the functions (6.1) are \(e^\lambda \)-functions with degrees \(\lambda = 0, -1 \) respectively. Consequently, the functions (6.2) are \(e^\lambda \)-functions with degrees \(\lambda = 0, -1 \), while the functions (6.3) are \(e^\lambda \)-functions with degrees \(\lambda = 0, 1 \) respectively.

DEFINITION 2. If \(x_1 \) and \(x_2 \) are points in large domains \(\Omega + \partial \Omega_i, i = 1, \ldots, k, k + 1, \ldots, m \), then we define

\[
f_{12} = \min_{\xi} \left(r_{x_1} + r_{y_2} \right) \quad \text{if} \quad y \in \partial \Omega_i, \quad i = 1, \ldots, k,
\]

and

\[
f_{21} = \min_{\xi} \left(r_{y_2} + r_{x_1} \right) \quad \text{if} \quad y \in \partial \Omega_i, \quad i = k + 1, \ldots, m.
\]

An \(E^{\lambda}(x_1, x_2; s) \)-function is defined and infinitely differentiable with respect to \(x_1 \) and \(x_2 \) when these points belong to large domains \(\Omega + \partial \Omega_i \) except when \(x_1 = x_2 \in \partial \Omega_i, \quad i = 1, \ldots, m \). Thus, the \(E^{\lambda} \)-function has a similar local expansion of the \(e^\lambda \)-function (see [6], [11]).

By the help of section 8 in [11], it is easily seen that formula (4.3) is an \(E^{\lambda}(x_1, x_2; s) \)-function and consequently

\[
\overline{G}(x_1, x_2; s^2) = \sum_{i=1}^{m} O \left(1 + \left| \log s \xi_i \right| \right) e^{-A s_{12}^2}.
\]

(6.7)

which is valid for \(s \to \infty \), where \(A_i, i = 1, \ldots, m \) are positive constants.

Formula (6.7) shows \(\overline{G}(x_1, x_2; s^2) \) is exponentially small for \(s \to \infty \).

7. THE ASYMPTOTIC BEHAVIOR OF \(\overline{\chi}(x_1, x_2; s^2) \).

With reference to sections 7 and 9 in [11], if the \(e^\lambda \)-expansions of the functions (6.1)-(6.3) are introduced into (4.3) and if we use formulae similar to (7.4) and (7.10) of section 7 in [11], we obtain the following local behavior of \(\overline{\chi}(x_1, x_2; s^2) \) as \(s \to \infty \) which is valid when \(\xi_{12} \) and \(\hat{R}_{12} \) are small:

\[
\overline{\chi}(x_1, x_2; s^2) = \sum_{i=1}^{m} \overline{\chi}_{i}(x_1, x_2; s^2),
\]

(7.1)
where, if \(x_1 \) and \(x_2 \) belong to sufficiently small domains \(D(l_i), i = 1, \ldots, k, k + 1, \ldots, m \), then

\[
\mathcal{K}_i(x_1, x_2; s^2) = -\frac{1}{2\pi} K_0(s\tilde{\rho}_{12}) + O\{s^{-1}\exp(-A_i s\tilde{\rho}_{12})\}. \tag{7.2}
\]

When \(\tilde{r}_{12} \geq \delta_i > 0, i = 1, \ldots, k \) and \(\tilde{R}_{12} \geq \delta_i > 0, i = k + 1, \ldots, m \) the function \(\mathcal{X}_i(x_1, x_2; s^2) \) is of order \(O\{\exp(-c s)\} \) as \(s \to \infty, c > 0 \). Thus, since \(\lim_{\tilde{r}_{12} \to 0} \tilde{r}_{12} \lim_{\tilde{R}_{12} \to 0} \tilde{R}_{12} = 1 \), then if \(x_1 \) and \(x_2 \) belong to large domains \(\Omega + \partial\Omega_i, i = 1, \ldots, k \), we deduce for \(s \to \infty \) that

\[
\mathcal{K}_i(x_1, x_2; s^2) = -\frac{1}{2\pi} K_0(s\tilde{r}_{12}) + O\{s^{-1}\exp(-A_i s\tilde{r}_{12})\}, \tag{7.3}
\]

while, if \(x_1 \) and \(x_2 \) belong to large domains \(\Omega + \partial\Omega_i, i = k + 1, \ldots, m \), we deduce for \(s \to \infty \) that

\[
\mathcal{K}_i(x_1, x_2; s^2) = -\frac{1}{2\pi} K_0(s\tilde{R}_{12}) + O\{s^{-1}\exp(-A_i s\tilde{R}_{12})\}. \tag{7.4}
\]

8. CONSTRUCTION OF OUR RESULTS.

Since for \(\xi_i^2 \geq h_i > 0, i = 1, \ldots, k, k + 1, \ldots, m \), the functions \(\mathcal{X}_i(x_1, x_2; s^2) \) are of order \(O\{\exp(-2sA_i h_i)\} \), the integral of the function \(\mathcal{X}_i(x_1, x_2; s^2) \) over the region \(\Omega \) can be approximated in the following way (see (3.10)):

\[
\mathcal{K}(s^2) = \sum_{i=1}^{m} \int_{\xi_i^2 = 0}^{\tilde{r}_i} \int_{\xi_i^2 = 0}^{\tilde{R}_i} \mathcal{X}_i(x_1, x_2; s^2) \{1 - k_i(\xi_i^2)\xi_i^2\} d\xi_i^2 d\xi_i^2
\]

\[
- \frac{1}{2} \sum_{i=1}^{m} \int_{\xi_i^2 = 0}^{\tilde{r}_i} \int_{\xi_i^2 = 0}^{\tilde{R}_i} \mathcal{X}_i(x_1, x_2; s^2) \{1 + k_i(\xi_i^2)\xi_i^2\} d\xi_i^2 d\xi_i^2
\]

\[
+ \sum_{i=1}^{m} O\{\exp(-2sA_i h_i)\} \quad \text{as} \quad s \to \infty. \tag{8.1}
\]

If the \(e^x \)-expansions of \(\mathcal{X}_i(x_1, x_2; s^2) \), \(i = 1, \ldots, k, k + 1, \ldots, m \), are introduced into (8.1), one obtains an asymptotic series of the form:

\[
\mathcal{K}(s^2) = \sum_{n=1}^{j} a_n s^n + O(s^{j+1}) \quad \text{as} \quad s \to \infty, \tag{8.2}
\]

where the coefficients \(a_n \) are calculated from the \(e^x \)-expansions by the help of formula (10.3) of section 10 in [11].

Now, the first three coefficients \(a_1, a_2, a_3 \) take the forms:
\begin{equation}
 a_1 = \frac{1}{8} \left(\sum_{i=1}^{4} L_i - \sum_{i=1}^{8} L_i \right),
 \end{equation}
\begin{equation}
 a_2 = \frac{1}{6} (2 - m),
 \end{equation}
\begin{equation}
 a_3 = \frac{1}{512} \left[7 \sum_{i=1}^{4} \int_{\Omega_i} k_i^2(\omega) d\omega + \sum_{i=1}^{8} \int_{\Omega_i} k_i^2(\omega) d\omega \right].
 \end{equation}

On inserting (8.3) into (8.2) and inverting Laplace transforms and using (3.6) we arrive at our result (2.1).

REFERENCES

*Present address: Mathematics Department
Faculty of Science
University of Emirates
P.O. Box 15551
Al-Ain, United Arab Emirates*