ABSTRACT. Let K_n denote the set of all $n \times n$ nonnegative matrices with entry sum n. For $X \in K_n$ with row sum vector (r_1, \ldots, r_n), column sum vector (c_1, \ldots, c_n), let \(\phi(X) = \prod_i r_i + \prod_j c_j - \text{per}X \). Dittert's conjecture asserts that $\phi(X) < 2 - n!/n^n$ for all $X \in K_n$ with equality if and only if $X = [1/n]_{n \times n}$. This paper investigates some properties of a certain subclass of K_n related to the function ϕ and the Dittert's conjecture.

KEY WORDS AND PHRASES. Permanent, Dittert's function, A-admissible matrix.

1980 AMS SUBJECT CLASSIFICATION CODE. 15A48.

1. INTRODUCTION.

Let K_n denote the set of all $n \times n$ nonnegative matrices whose entries have sum n, and let ϕ denote a real valued function of K_n defined by

\[
\phi(X) = \prod_{i=1}^{n} \sum_{j=1}^{n} x_{ij} + \prod_{j=1}^{n} \sum_{i=1}^{n} x_{ij} - \text{per}X
\]

for $X = [x_{ij}] \in K_n$ where $\text{per}X$ stands for the permanent of X;

\[
\text{per}X = \sum_{\sigma \in S_n} x_{\sigma(1)} \cdots x_{\sigma(n)}.
\]

Let J_n denote the $n \times n$ matrix all of whose entries are $1/n$. For the function ϕ there is a conjecture due to Eric Dittert.

CONJECTURE (Marcus and Merris [1], Conjecture 28). For $A \in K_n$,

\[
\phi(A) < 2 - \frac{n!}{n^n}
\]

with equality if and only if $A = J_n$.

In this paper, we will call \(\phi \) the Dittert's function. It is proved that the Dittert's conjecture is true for \(n \leq 3 \) (Marcus and Merris [1], Sinkhorn [2], and Hwang [3]). For a matrix \(X \in K_n \) whose row sum vector is \((r_1, \ldots, r_n)\) and whose column sum vector is \((c_1, \ldots, c_n)\), let

\[
\bar{r}_i = r_1 \cdots r_{i-1} r_{i+1} \cdots r_n \quad (i=1, \ldots, n),
\]

\[
\bar{c}_j = c_1 \cdots c_{j-1} c_{j+1} \cdots c_n \quad (j=1, \ldots, n)
\]

and

\[
\phi_{ij}(X) = \bar{r}_j + \bar{c}_j - \text{per}(X)_{ij} \quad (i,j = 1, 2, \ldots, n)
\]

where \(X(i|j) \) denotes the matrix obtained from \(X \) by deleting the row \(i \) and column \(j \). A matrix \(A \in K_n \) is called a \(\phi \)-maximizing matrix on \(K_n \) if \(\phi(A) > \phi(X) \) for all \(X \in K_n \). In [3], the following results are proved.

THEOREM A. If \(A = [a_{ij}] \) is a \(\phi \)-maximizing matrix on \(K_n \), then

\[
\phi_{ij}(A) = \begin{cases}
\phi(A) & \text{if } a_{ij} > 0 \\
\phi(A) - a_{ij} & \text{if } a_{ij} = 0.
\end{cases}
\]

THEOREM B. If, for every \(\phi \)-maximizing matrix \(A \) on \(K_n \), \(\phi_{ij}(A) = \phi(A) \) for all \(i,j = 1, \ldots, n \), then \(J_n \) is the unique \(\phi \)-maximizing matrix on \(K_n \).

We see that \(\phi(A) > 0 \) for all \(A \in K_n \). For \(A \in K_n \) with row sum vector \((r_1, \ldots, r_n)\) and column sum vector \((c_1, \ldots, c_n)\), if either \(r_1 \cdots r_n > 0 \) or \(c_1 \cdots c_n > 0 \), then \(\phi(A) > 0 \). Now, for \(A \in K_n \) with \(\phi(A) > 0 \), let \(A^* = [a^*_{ij}] \) denote the \(n \times n \) matrix defined by

\[
a^*_{ij} = \frac{\phi_{ij}(A)}{\phi(A)} \quad (i,j = 1, \ldots, n).
\]

For \(A \in K_n \), we say that \(A \in K_n \) with \(\phi(A) > 0 \) is \(A \)-admissible (or \(A \) is admissible by \(A \)) if \(\text{tr}(A^T A)^* > n \) where \(A^T \) denotes the transpose of \(A \) and \(\text{tr} \) denotes the trace function. Let \(\mathcal{C}(A) \) denotes the set of all \(A \)-admissible matrices.

It follows from Theorem A that every \(\phi \)-maximizing matrix \(A \) is self-admissible i.e. \(A \in \mathcal{C}(A) \).

If for each \(\phi \)-maximizing matrix \(A \) there exists a positive matrix \(\Lambda \in K_n \) such that \(A \in \mathcal{C}(\Lambda) \), then the Dittert's conjecture is true (See section 2).

In such a point of view, it would be interesting to study the classes \((\Lambda) \) for some particular matrices \(\Lambda \in K_n \). Such a matrix \(\Lambda \) should be one which is most likely to possess the property that all \(\phi \)-maximizing matrices on \(K_n \) are \(\Lambda \)-admissible.

In this paper we find some matrices in \(\mathcal{C}(\Lambda) \) for certain \(\Lambda \)'s and investigate some properties of the Dittert's function related to the class \(\mathcal{C}(\Lambda) \).

2. **THE CLASS \(\mathcal{C}(\Lambda) \) AND \(\phi \)-MAXIMIZING MATRICES.**

From now on let \(\text{Max}(K_n) \) denote the set of all \(\phi \)-maximizing matrices on \(K_n \).
THEOREM 2.1. If each $A \in \text{Max}(K_n)$ is admissible by a positive matrix in K_n, then $\text{Max}(K_n) = \{ J_n \}$, i.e., the Dittrert's conjecture holds.

PROOF. Let $A \in \text{Max}(K_n)$ and let $A = [a_{ij}] \in K_n$ be a positive matrix such that $A \in C(A)$. Then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} \frac{\phi_{ij}(A)}{\phi(A)} - \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} = n$$

by Theorem A. Therefore the inequalities in (2.1) are all equalities and hence $\phi_{ij}(A) = \phi(A)$ for all $i, j = 1, 2, \ldots, n$ since A is a positive matrix. Now the assertion of the theorem follows from Theorem B.

For $A \in K_n$ with row sum vector (r_1, \ldots, r_n) and column sum vector (c_1, \ldots, c_n), let $A = [a_{ij}]$ denote the $n \times n$ matrix defined by

$$a_{ij} = \frac{r_i c_j}{n} \quad (i, j = 1, \ldots, n).$$

Since $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} = n^2$ we see that $A \in K_n$. In particular if $A \in \text{Max}(K_n)$, then A is a positive matrix since $r_i > 0$, $c_j > 0$ for all $i, j = 1, \ldots, n$ because $\text{per} A > 0$ [2].

We believe that every $A \in \text{Max}(K_n)$ is \hat{A}-admissible, which we can not prove yet. We may ask which matrices $A \in K_n$ are \hat{A}-admissible and which are not. We have an answer to this question.

THEOREM 2.2. If A is positive semidefinite symmetric matrix in K_n, then A is \hat{A}-admissible.

PROOF. Let A be a p.s.d. symmetric matrix in K_n and let r_i be the i-th row sum of $A(i=1, \ldots, n)$. Then the condition that A is \hat{A}-admissible is equivalent to

$$\sum_{i=1}^{n} \sum_{j=1}^{n} r_i r_j \phi_{ij}(A) > n^2 \phi(A).$$

Let $r=r_1 \ldots r_n$ and let $\bar{r}_i = r_1 \ldots r_{i-1} r_{i+1} \ldots r_n \quad (i=1, \ldots, n)$. Then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{r_i r_j}{r} \phi_{ij}(A) = \sum_{i=1}^{n} \sum_{j=1}^{n} r_i r_j (\bar{r}_i + \bar{r}_j - \text{per} A(i|j))$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} [(r_i + r_j) r - r_i r_j \text{per} A(i|j)]$$

$$= 2n^2 r - \sum_{i=1}^{n} \sum_{j=1}^{n} r_i r_j \text{per} A(i|j).$$

Since

$$\sum_{i=1}^{n} \sum_{j=1}^{n} r_i r_j \text{per} A(i|j) < n^2 \text{per} A$$

by a theorem of Marcus and Merris [4], we have
and the proof is complete.

Note that not every matrix $A \in K_n$ is A-admissible. For $n=2$, the matrix

$$A_x = \begin{bmatrix} 2-2x & x \\ x & 0 \end{bmatrix}$$

in K_2 is not A_x-admissible if $0 < x < \frac{1}{2}$. For $n > 3$, we have an

EXAMPLE 2.1. Let T_n denote the following $n \times n$ matrix.

$$T_n = \begin{bmatrix} 0 & \cdots & \frac{1}{n-1} \\ \vdots & \ddots & \vdots \\ \frac{1}{n-1} & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{bmatrix}$$

Then $T_n \in K_n$ and $(r_1, \ldots, r_n) = (1, \ldots, 1), (c_1, \ldots, c_n) = (2, \frac{n-2}{n-1}, \ldots, \frac{n-2}{n-1})$. We have

$$n^2 \phi(T_n) - \sum_{i=1}^{n-1} \sum_{j=1}^{n} r_i c_{ij} \phi_{ij}(T_n) = 2 \frac{(n-1)!}{(n-1)^{n-2}} > 0$$

so that $T_n \in J_n(T_n)$ and hence that T_n is not T_n-admissible.

3. THE CLASS J_n AND THE MONOTONICITY OF THE DITTERN'S FUNCTION.

Another candidate for positive $A \in K_n$ with "good" $\phi(A)$ is the matrix J_n. A nonnegative square matrix is called a doubly stochastic matrix if all the row sums and column sums are equal to 1. It is conjectured that every $n \times n$ doubly stochastic matrix is J_n-admissible (Dokovic [5] and Minc [6]) but this still remains open. Here we have to notice that A is J_n-admissible (i.e. $A \in J_n$) if and only if

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \phi_{ij}(A) > n^2 \phi(A).$$

We can show that $\zeta(J_n) \notin K_n$ for $n > 3$ (see Example 3.1). However it seems that $\text{Max}(K_n) \neq J_n$. It is clear that J_n and the $n \times n$ identity matrix I_n are J_n-admissible. We can show that all diagonal matrices in K_n are also J_n-admissible.

THEOREM 3.1. Every diagonal matrix in K_n is J_n-admissible.

PROOF. Let $A = \text{diag}(a_1, \ldots, a_n) \in K_n$, $a = a_1, \ldots, a_n$ and $\overline{a} = \overline{a_1}, \ldots, \overline{a_n-1}$ $a_1+\ldots+a_n$ $(i=1, \ldots, n)$. If $a=0$, there is nothing to prove. Suppose $a > 0$. Then

$$\phi(A) = a$$

and

$$\frac{1}{n} \sum_{i=1}^{n} \phi_{ij}(A) = \frac{1}{n} \sum_{i=1}^{n} (\overline{a_i} + \overline{a_j}) - \frac{1}{n} \overline{a_i} \overline{a_j}.$$
\[\phi(A) < \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \phi_{ij}(A) \]

if \(n > 2 \), and the proof is complete.

The Dittert's function \(\phi \) has some nice behavior on the set \(\overline{\phi}(\mathbb{J}_n) \) namely that \(\phi \) is monotone on the straight line segment joining \(\mathbb{J}_n \) and \(A \in \overline{\phi}(\mathbb{J}_n) \) whenever the line segment lies in \(\overline{\phi}(\mathbb{J}_n) \). To show this, let \(\Delta \) be a function define by

\[\Delta(X) = \phi(X) - \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \phi_{ij}(X), \quad X \in \mathbb{K}_n. \]

Let \(A = [a_{ij}] \in \mathbb{K}_n \) have row sum vector \((r_1, \ldots, r_n) \) and column sum vector \((c_1, \ldots, c_n) \). For a real number \(t, 0 < t < 1 \), let \(A_t = (1-t)\mathbb{J}_n + tA = [a_{ij}(t)] \) and let the row sum vector and the column sum vector of \(A_t \) be \((r_1(t), \ldots, r_n(t)) \) and \((c_1(t), \ldots, c_n(t)) \) respectively.

Letting

\[r(t) = r_1(t) \ldots r_n(t), \]
\[c(t) = c_1(t) \ldots c_n(t), \]
\[\bar{r}_i(t) = r_1(t) \ldots r_{i-1}(t)r_{i+1}(t) \ldots r_n(t), \quad (i=1, \ldots, n), \]
\[\bar{c}_j(t) = c_1(t) \ldots c_{j-1}(t)c_{j+1}(t) \ldots c_n(t), \quad (j=1, \ldots, n), \]

we compute, for \(t > 0 \), that

\[\frac{d}{dt} r(t) = \frac{1}{t} \sum_{i=1}^{n} (r(t) - \bar{r}_i(t)) \]
\[= \frac{n}{t} \{ r(t) - \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \bar{r}_i(t) \}, \]
\[\frac{d}{dt} c(t) = \frac{1}{t} \sum_{j=1}^{n} (c(t) - \bar{c}_j(t)) \]
\[= \frac{n}{t} \{ c(t) - \frac{1}{n^2} \sum_{j=1}^{n} \bar{c}_j(t) \}, \]
\[\frac{d}{dt} \text{per}A_t = \frac{n}{t} \{ \text{per}A_t - \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \text{per}A_t(i,j) \} \]

so that

\[\frac{d}{dt} \phi(A_t) = \frac{n}{t} \{ r(t) + c(t) - \text{per}A_t \]
\[- \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} [\bar{r}_i(t) + \bar{c}_j(t) - \text{per}A_t(i,j)] \} \]
which is
\[
\frac{d}{dt} \phi(A_t) = \frac{n}{t} \Delta(A_t).
\]
Thus we have the following

Theorem 3.2. Let \(A \in K_n \). If \(A_t \in C(J_n) \) for all \(t, 0 < t < 1 \), then the Dirrert's function is monotone decreasing on the straight line segment from \(J_n \) to \(A \).

It is not hard to show that, for any \(A \in K_2 \),
\[
\frac{1}{2^2} \sum_{i=1}^2 \sum_{j=1}^2 \phi_{ij}(A) = \frac{3}{2}.
\]

On the other hand, the validity of Dittert's conjecture for \(n=2 \) gives us that
\[
\frac{3}{2} = \phi(J_n) \geq \phi(A).
\]

Therefore it follows that \(K_2 = C(J_2) \). However it does not hold in general that \(K_n = C(J_n) \).

Example 3.1. Let
\[
U_n = \begin{bmatrix}
\frac{n}{n+1} & \frac{n}{n+1} \\
\frac{n}{n+1} & 0 & 0 \\
\frac{n}{n+1} & 0 & \ddots \\
& \ddots & \ddots & \ddots \\
& & 0 & \frac{n}{n+1} & 0 \\
\end{bmatrix}
\]
and let
\[
U_3 = \begin{bmatrix}
0 & 3/4 & 3/4 \\
3/4 & 0 & 0 \\
3/4 & 0 & 0 \\
\end{bmatrix}
\]

Then
\[
\phi(U_n) = 4 \left(\frac{n}{n+1} \right)^n
\]
and
Hence

\[\sum_{i=1}^{n} \sum_{j=1}^{n} \phi_{ij}(U_n) = \phi(U_n) \times (\text{sum of entries of } U_n^*)\]

\[= 4\left(\frac{n}{n+1}\right)^{n-1} \left(2 + 4(n-3)^2 + 3(6n-10)\right)\]

\[= \left(\frac{n}{n+1}\right)^{n-1} (4n^2 - 6n + 8).\]

Thus we have

\[n^2 \phi(U_n) - \sum_{i=1}^{n} \sum_{j=1}^{n} \phi_{ij}(U_n) = \left(\frac{n}{n+1}\right)^{n-1} \left(\frac{4n^3}{n+1} - 4n^2 + 6n - 8\right)\]

\[= \frac{n}{(n+1)^{n-1}} (2n^2 - 2n - 8),\]

which is positive for all \(n > 3\), telling us that \(U_n\) is not \(J_n\)-admissible.

4. CONCLUDING REMARKS.

If, for every \(A \in \text{Max}(K_n)\), we could find a positive matrix \(A \in K_n\) such that \(A\) is admissible by \(A\), it would prove the Dittert's conjecture by Theorem 2.1. It seems to us that the matrices \(A\) or \(J_n\) are two of the strongest candidates for such matrices. However we may not expect to have a positive matrix \(A \in K_n\) such that all the matrices in \(K_n\) are \(A\)-admissible.

We shall close our discussion here by giving some further research problems.

PROBLEM 4.1. Determine whether there exists a positive matrix \(A \in K_n\) admitting all matrices in \(K_n\).

We conjecture that such a matrix does not exist.

It is proved that every p.s.d. symmetric doubly stochastic matrix is \(J_n\)-admissible [4], from which it follows that the permanent function is monotone increasing on the straight line segment from \(J_n\) to any p.s.d. symmetric doubly stochastic matrix (Hwang [7]).

PROBLEM 4.1. Determine whether every p.s.d. symmetric matrix in \(K_n\) is \(J_n\)-admissible.
If every p.s.d. symmetric matrix in K_n is J_n-admissible, then it follows from Theorem 3.2 that the Dittert's function is monotone decreasing on the straight line segment from J_n to any p.s.d. symmetric matrix in K_n. We conjecture that the Problem 4.1 will have an affirmative answer.

PROBLEM 4.3. Is every ϕ-maximizing matrix A on K_n A-admissible or J_n-admissible?

If Problem 4.3 has an affirmative answer, it would prove the Dittert's conjecture as we stated earlier.

ACKNOWLEDGEMENT. Research supported by a grant from the Korean Ministry of Education via the Kyungpook University Basic Science Res. Inst., 1988.

REFERENCES

The present address of Dr. Suk Geun Hwang is:

Department of Mathematics
Sung Kyun Kwan University
Suwon 440-746
Republic of Korea