Remarks on a Fixed-Point Theorem of Gerald Jungck

Maibam Ranjit Singh
Department of Mathematics
Manipur University
Imphal - 795003, India

(Received August 18, 1988 and in revised form May 29, 1989)

Abstract. Jungck [1] obtained a fixed-point theorem for a pair of continuous self-mappings on a complete metric space. Recently, Barada K. Ray [2] extended the theorem of Jungck [1] for three self-mappings on a complete metric space. In the present paper we omit the continuity of the mapping used by Ray [2] and replace his four conditions by a single condition. Our results so obtained generalize and/or unify fixed-point theorems of Jungck [1], Ray [2], Rhoades [3], Cirić [4], Pal and Maiti [5], and Sharma and Yuel [6].

Keywords and Phrases. Fixed Point Theorem, Continuous Self-Mappings, and Complete Metric Space.

1980 AMS Subject Classification Code. 54H25, 47H10.

1. Introduction.

We quote two theorems:

Theorem 1. (Jungck [1]). If S and T are continuous mappings of a complete metric space (X,d) into itself such that

i) $S(X) \subseteq T(X)$,

ii) $ST = TS$, and

iii) $d(Sx, Sy) < \alpha d(Tx, Ty)$ for every pair of points $x, y \in X$ and for $\alpha \in (0,1)$, then

$F_S = F_T = F_{S \cup T} = \{u\}$ for some $u \in X$,

where $F_S = \{x \in X: x = Sx\}$, $F_T = \{x \in X: x = Tx\}$

and $F_{S \cup T} = \{x \in X: x = Sx = Tx\}$.

Theorem 2 (Ray [2]). Let T be a continuous mapping and T_1 and T_2 be any other two mappings of a complete metric space (X,d) into itself such that

i) $T_{i+1} = T_i T_i, i = 1, 2$,

ii) $U^\infty T_i(X) \subseteq T(X)$, and

iii) at least one of the following is satisfied for every pair of points $x, y \in X$:
\[d(T_1x, T_2y) < \frac{\alpha d(T_1y, T_2y) + d(T_1x, T_2x)}{1 + d(Tx, Ty)} + \beta d(Tx, Ty), \]

where \(0 < \alpha, \beta, \alpha + \beta < 1, \) \((1.1) \)

\[d(T_1x, T_2y) < \lambda \max \{ d(Tx, Ty), \frac{1}{2}[d(T_1x, T_2y) + d(Ty, T_1y)] \} \]

where \(0 < \lambda < 1, \) \((1.2) \)

\[d(T_1x, T_2y) < \mu \max \{ d(Tx, Ty), d(T_1x, T_2y), d(Ty, T_1y), d(Tx, T_2y), d(T_1x, T_2y), d(Ty, T_1x) \} \]

where \(0 < \mu < 1/2, \) \((1.3) \)

\[d(T_1x, T_2y) < \max \{ |K_1 d(Tx, Ty) - K_2 d(T_1x, T_2y)|, |K_1 d(Tx, Ty) - K_2 d(Ty, T_1y)| \} \]

where \(-1 < K_2 < K_1 < K_2 + 1 < 2, K_1 < 1.\) \((1.4) \)

Then \(F_{T_1, T_1, T_2} \) is non-empty, where
\[F_{T_1, T_1, T_2} = \{ x \in X: x = T_1x = T_2x \} \]

Furthermore, \(F_{T_1} = F_{T_2} = F_{T_1, T_1, T_2} = \{ u \}, \) for some \(u \) in \(X. \)

2. MAIN RESULTS.

Now we give our result.

THEOREM 2.1. Let \((X, d)\) be a complete metric space. Let \(T, T_1, T_2: X \to X \) satisfy (i), (ii) of Theorem 2 and (i) let the following conditions hold for every pair of points \(x, y \) in \(X: \)

\[d(T_1x, T_2y) < \mu \max \{ d(x, T_1x), d(y, T_2y), d(y, T_1x), d(y, T_2y), \]

\[\frac{a[l+d(y, T_2y)]d(x, T_1x)}{1 + d(x, y)} \]

\[+ \beta [d(x, T_1x) + d(y, T_2y)] + \nu [d(y, T_1x) + d(x, T_2y)] \]

\[+ \delta d(x, y) \}, \]

\[|K_1 d(x, y) - K_2 d(y, T_1x)|, \]

\[|K_1 d(x, y) - K_2 d(y, T_2y)| \]
REMARKS ON A FIXED-POINT THEOREM OF GERALD JUNGCK

where \(0 < \mu < 1, \alpha, \beta, \nu, \delta > 0, \alpha + \beta + \nu + \delta < 1, 2\nu + \delta < 1,\)

\[
0 < \frac{\mu(\beta + \nu + \delta)}{1 - \mu(\alpha + \beta + \nu)} < 1, \quad -1 < K_2 < K_1 < 1 + \mu K_2 < 2, \quad K_1 < 1.
\]

Then \(F_{T_1, T_2}\) is non-empty, where

\[
F_{T_1, T_2} = \{x \in X: x = T_1x = T_2x\}
\]

Furthermore, \(F_{T_1, T_2} = F_{T_2, T_1} = \{u\}\), for some \(u\) in \(X\).

PROOF. Let \(x_0 \in X\), define

\[
x_{2n+1} = T_1x_{2n}, \quad n = 0, 1, 2, \ldots
\]

\[
x_{2n} = T_2x_{2n-1}, \quad n = 1, 2, 3, \ldots
\]

Then, using Theorem 2.1, (i), we have

\[
d(x_{2n+1}, x_{2n}) < Kd(x_{2n}, x_{2n-1})
\]

where \(K = \max \{\mu, \frac{\mu(\beta + \nu + \delta)}{1 - \mu(\alpha + \beta + \nu)}\}r\)

\[
\mu \max \{K_1, K_2, \frac{K_1}{1 + \mu K_2}\}, \quad K_1 > 0,
\]

\[
u \max \{K_1, K_2, \frac{K_1}{1 - \mu K_2}\}, \quad K_1 < 0.
\]

\(\{x_n\}\) is a Cauchy sequence. Since \(X\) is complete there exists \(u \in X\) such that \(x_n \to u\) as \(n \to \infty\).

Now,

\[
d(T_1Tu, x_{2n}) = d(T_1Tu, T_2Tx_{2n-1}).
\]

Then using Theorem 2.1 (i) and allowing \(n \to \infty\) such that \(x_{2n} \to u, x_{2n-1} \to u\) etc, we have \(u = T_1Tu\). Hence \(u = T_1Tu = TTu\) using Theorem 2 (i). Further,

\[
d(x_{2n+1}, T_2Tu) = d(T_1Tx_{2n}, T_2Tu).
\]

Again using Theorem 2 (i) and allowing \(n \to \infty\) such that \(x_{2n} \to u, x_{2n-1} \to u\) etc, we have \(u = T_2Tu\). Hence \(u = T_2Tu = TTu\).

Now, let \(v\) denote any common fixed point of \(T_1T\) and \(T_2T\). From Theorem 2.1 (i), it is easy to see that \(u = v\) since \(2\nu + \delta < 1\). For proving \(u = Tu\) we have

\[
d(Tu, u) = d(TT_1Tu, T_2Tu) = d(T_1Tu, T_2Tu)
\]

which yields \(Tu = u\) using Theorem 2.1 (i). Hence \(u = T_1Tu = T_2u\). Similarly, \(u = T_2Tu = T_2u\). Hence, \(u = Tu = T_1u = T_2u\) which shows that \(F_{T_1, T_2}\) are non-empty. Then we
can see that \(F_{T_1} \circ F_{T_2} = F_{T_1 T_2} = \{u\} \) for some \(u \) in \(X \). This completes the proof.

EXAMPLE. Let \(X = [0,1] \) with Euclidean metric \(d \). Let \(T_1 x = x, 0 < x < 1, T_1 x = \frac{1}{2}, x = 1 \), \(T_2 x = x, 0 < x < 1, T_2 x = \frac{x}{4}, x = 1 \). Here \(T_1, T_2 \) are all discontinuous at \(x = 1 \) and have a unique common fixed point \(x = 0 \). Take \(x = \frac{1}{2}, y = \frac{1}{4} \). Obviously all the conditions (i), (ii) of Theorem 2 and (i) of Theorem 2.1 hold true. Hence the result.

REMARKS. (1) Contractive Definition 20 of Rhoades [3] is a special case of condition (i) of Theorem 2.1. (2) Theorem 1 of Ciric [4], Theorem 1 of Pal and Maiti [5], and Theorem 4 of Sharma and Yuel [6] are special cases of Theorem 2.1.

ACKNOWLEDGEMENT. My sincere thanks are due to Professor A.K. Chatterjee for his guidance in the presentation of this paper and also to the anonymous referee for his valuable comments in the improvement of the same.

REFERENCES