A COMMUTATIVITY THEOREM FOR LEFT s-UNITAL RINGS

HAMZA A.S. ABUJABAL

Department of Mathematics
Faculty of Science
King Abdul-Aziz University
P.O. BOX 9028, Jeddah - 21413
Saudi Arabia

(Received June 2, 1989 and in revised form July 25, 1989)

ABSTRACT. In this paper we generalize some well-known commutativity theorems for associative rings as follows: Let R be a left s-unital ring. If there exist non-negative integers $m > 1$, $k > 0$, and $n > 0$ such that for any x, y in R, $[x - x^ny^m, x] = 0$, then R is commutative.

KEY WORDS AND PHRASES. Associative ring, s-unital ring, ring with unity, commutativity of rings.

1980 AMS SUBJECT CLASSIFICATION CODE. 16A70

1. INTRODUCTION.

Throughout this paper, R denotes an associative ring (may be without unity), $Z(R)$ represents the center of R, N the set of all nilpotent elements of R, N' the set of all zero divisors of R, and $C(R)$ the commutator ideal of R. For any $x, y \in R$, we write $[x, y] = xy - yx$.

As stated in Hirano and Kobayashi [1] and Quadri and Khan [2], a ring R is called left (resp. right) s-unital if $x \in Rx$ (resp. $x \in xR$) for each $x \in R$. Further, R is called s-unital if it is both left as well as right s-unital, that is $x \in Rx \cap xR$, for every $x \in R$. If R is s-unital (resp. left or right s-unital), then for any finite subset F of R, there exists an element $e \in R$ such that $ex = e = xe$ (resp. $ex = x$ or $xe = x$) for all $x \in F$. Such an element e will be called a pseudo-identity (resp. pseudo left identity or pseudo right identity) of F in R.

The famous Jacobson theorem stated that any ring R in which for every $x \in R$ there exists a positive integer $n = n(x) > 1$ such that $x^n = x$ is commutative, has been generalized as follows: if for each pair $x, y \in R$ there exists a positive integer $n = n(x, y) > 1$ such that $(xy)^n = xy$, then R is commutative. Recently, Ashraf and Quadri [3] investigated the commutativity of the rings satisfying the following condition: For all $x, y \in R$ there is a fixed integer $n > 1$ such that $x^ny^n = xy$. In fact, Ashraf and Quadri [3] have generalized the above results as follows: Let R be a ring with unity 1 in which $[xy - x^ny^m, x] = 0$, for all $x, y \in R$ and fixed integers $m > 1, n > 1$. Then R is commutative.

The objective of this paper is to generalize the above mentioned results. Indeed, we prove the following:
THEOREM 1.1. Let R be a left s-unital ring with the property that

\((P) \) "there exist positive integers \(m > 1, k > 0, \) and \(n > 0 \)

such that \(x^k y - x^n y^m, x = 0 \) for all \(x, y \in R \)."

Then R is commutative.

We notice that the property (P) of the above theorem can be rewritten as follows:

\[x^k [x, y] = x^n [x, y^m]. \] (1.1)

Thus for any integer \(t \geq 1 \), we have

\[x^{tk} [x, y] = x^{(t-1)k} (x^k [x, y]) \]
\[= x^{(t-1)k} (x^n [x, y^m]) \]
\[= x^{(t-2)k} (x^{n-1} x [x, y^m]) \]
\[= x^{(t-2)k} (x^{2n-1} [x, y^m]) \]
\[= \cdots \]

By repeating the above process and using (1.1), we get

\[x^{tk} [x, y] = x^{tn} [x, y^m]. \] (1.2)

2. PRELIMINARY LEMMAS.

In preparation for the proof of the above theorem we start by stating without proof the following well-known Lemmas.

LEMMA 2.1 (Bell [4, Lemma 1]). Suppose \(x \) and \(y \) are elements of a ring \(R \) with unity 1, satisfying \(x^m y = 0 \) and \((1+x)^m y = 0 \) for some positive integer \(m \). Then \(y = 0 \).

LEMMA 2.2. (Bell [5, Lemma 3]). Let \(x \) and \(y \) be in \(R \). If \([x,y] \) commutes with \(x \), then \([x^k, y] = k x^{k-1} [x, y] \) for all positive integers \(k \).

LEMMA 2.3 ([2, Lemma 3]). Let \(R \) be a ring with unity 1. If \((1 - y^k)x = 0 \), then \((1 - y^{km}) x = 0 \), for any positive integers \(m \) and \(k \).

LEMMA 2.4 ([1, Proposition 2]). Let \(f \) be a polynomial in non-commuting indeterminates \(x_1, x_2, \ldots, x_n \) with integer coefficients. Then the following statements are equivalent:

1) For any ring \(R \) satisfying \(f = 0 \), \(C(R) \) is a nil ideal.
2) Every semi-prime ring satisfying \(f = 0 \) is commutative.
3) For every prime \(p \), \((\mathbb{GF}(p))_2 \) fails to satisfy \(f = 0 \).

3. MAIN RESULTS.

The following lemmas will be used in the proof our main theorem.

LEMMA 3.1. Let \(R \) be a left \(s \)-unital ring satisfying \(x^k y - x^n y^m, x = 0 \), for each \(x, y \in R \) and any non-negative integers \(k, n, m \) and \(m > 1 \). Then \(R \) is \(s \)-unital.

PROOF. Let \(u \in \mathbb{N} \). Then for any \(x \in R \), and \(t > 1 \), we have \(x^{tk} [x, u] = x^{tn} [x, u^m] \).
For sufficiently large t, we have $x^{tk}[x,u] = x^{tn}[x,u^m]^t = 0$, since u is nilpotent and $u^m = 0$.

Since R is a left s-unital ring, we have $u = cu$ for some $c \in R$. But $e^{tk}[e,u] = 0$ which gives $u = cu$. For arbitrary $x \in R$, there exists $e' \in R$ such that $e'x = x$. Further, for some $e'' \in R$, we have $e''e' = e'$. Thus $e''e = e$ and $(x - xe'')e'' = 0$, that is $(x - xe'') \in N$. Since $e''(x - xe'')e' = x - xe''$, we have $x - xe'' = (x - xe')e'' = 0$ which implies $x = xe''$. Hence R is s-unital.

Lemma 3.2. Let R be a ring with unity 1 which satisfies the property (P). Then every nilpotent element of R is central.

Proof. Let u be a nilpotent element of R. Then by (1.2) for any $x \in R$ and a positive integer $t > 1$ we have $x^{tk}[x,u] = x^{tn}[x,u^m]^t$. But $u \in N$, then $u^m = 0$, for sufficiently large t, and hence $x^{tk}[x,u] = 0$ for each $x \in R$. By Lemma 2.1 this yields $[x,u] = 0$, which forces $N \subseteq Z(R)$. Thus every nilpotent element of R is central.

Lemma 3.3. Let R be a ring with unity 1 which satisfies the property (P), then $C(R) \subseteq Z(R)$.

Proof. Now, R satisfies $[x^k y - x^n y^m, x] = 0$ for all $x, y \in R$, which is a polynomial identity with relatively prime integral coefficients. Let $x = e_{12} = (0 1)$ and $y = e_{21} = (1 0)$, we find that no ring of 2×2 matrices over $GF(p)$, p a prime, satisfies the above polynomial identity. Hence by Lemma 2.4, the commutator ideal $C(R)$ of R is nil. Therefore $C(R) \subseteq Z(R)$.

In view of Lemma 3.3 it is guaranteed that the conclusion of Lemma 2.2 holds for each pair of elements x, y in a ring R with unity 1 which satisfies the property (P).

Lemma 3.4. Let R be a ring with unity 1, satisfying (P), then R is commutative.

Proof. Since R is isomorphic to a subdirect sum of subdirectly irreducible rings R_i each of which as a homomorphic image of R satisfies the property (P) placed on R, R itself can be assumed to be a subdirectly irreducible ring. Let S be the intersection of all its non-zero ideals, then $S \neq (0)$.

Let $k = n = 0$, in (1.1). Then we have $[x,y] = [x,y^m]$ or $[x,y - y^m] = 0$ for all $x, y \in R$. This forces commutativity of R by Herstein [6, Theorem 18]. Next, we assume $k = n = 1$ in (1.1). Then replacing x by $(x + 1)$, we obtain $[x,y] = [x,y^m]$, for every $x, y \in R$, and again by [6, Theorem 18] R is commutative. If $(k,n) = (1,0)$, then $x[x,y] = [x,y^m]$ and hence by replacing x by $(x + 1)$ we have $[x,y] = 0$, for all $x, y \in R$. Therefore R is commutative. If $(k,n) = (0,1)$, then $[x,y] = x[x,y^m]$, and hence by replacing x by $(x + 1)$ we have $[x,y] = 0$, for all $x, y \in R$. Thus $[x,y] = x[x,y^m] = 0$ for all $x, y \in R$. Thus R is commutative.

Next, we suppose that $k > 1$, and $n > 1$. Let $q = 2^n - 2$ be a positive integer. Then by (1.1) we have

$$q x^k [x,y] = 2^m x^k [x,y] - 2 x^k [x,y]$$

$$= 2^m x^n [x,y^m] - x^k [x,2y]$$

$$= x^n [x, (2y)^m] - x^n [x, (2y)^m]$$

$$= 0.$$
that is, \(qx^k [x,y] = 0 \). By replacing \(x \) by \((x + 1)\) and using Lemma 2.1, this yields \(q[x,y] = 0 \) for all \(x,y \in R \). Now combining Lemma 3.3 with Lemma 2.2, we get

\[
[x^q,y] = q x^{q-1} [x,y] = 0
\]

which yields

\[
x^q \in Z(R) \quad \text{for all } x,y \in R.
\] (3.1)

Replacing \(y \) by \(y^m \) in (1.1), we get

\[
x^k [x,y^m] = x^n [x,(y^m)^m].
\] (3.2)

By applying Lemma 3.3 and Lemma 2.2, we obtain

\[
x^k [x,y^m] = [x,y^m] x^k
\]

\[
= my^{m-1} [x,y] x^k
\]

\[
= my^{m-1} y [x,y]
\]

\[
= m y^{m-1} x^n [x,y^m]
\]

and, using similar techniques, we get

\[
x^n [x, (y^m)^m] = [x, (y^m)^m] x^n
\]

\[
= m(y^m)^{m-1} [x,y^m] x^n
\]

\[
= m y^{m-2} [x,y^m] x^n
\]

\[
= m y^{m-1} y^{(m-1)^2} [x,y^m] x^n.
\]

Thus (3.2) gives

\[
m y^{m-1} (1 - y^{(m-1)^2}) [x,y^m] x^n = 0.
\] (3.3)

Again the usual argument of replacing \(x \) by \((x + 1)\) in (3.3) and applying Lemma 2.1 yields \(m y^{m-1} (1 - y^{(m-1)^2}) [x,y^m] = 0 \). Then by Lemma 3.3 and Lemma 2.3 we have

\[
m y^{(m-1)} (1 - y^{(m-1)^2}) [x,y^m] = 0.
\] (3.4)

Next, we claim that \(N' \subseteq Z(R) \). Let \(a \in N' \), then by (3.1) \(a^{q(m-1)^2} \in N' \cap Z(R) \), and \(S a^{q(m-1)^2} = 0 \). Since by (3.4), \(m a^{(m-1)} (1 - a^{q(m-1)^2}) [x,a^m] = 0 \), that is, \((1 - a^{q(m-1)^2}) m a^{m-1} [x,a^m] = 0\).
Now, if \(m^{-1}a^m \neq 0 \), then \((1-aq(m-1)^2) \in N'\), and so \(S(1-aq(m-1)^2) = 0 \) which leads to the contradiction that \(S = (0) \). Hence \(m^{-1}a^m = 0 \). From (1.1) and using Lemma 3.2 repeatedly we get

\[
x^{2k}[x,a] = x^k(x^k[x,a^m]) = x^k(x^n[x,a^m]) = x^n(x^k[x,a^m]) = x^{2n}[x,(a^m)^m] = x^{2n}m(a^m)^{-1}[x,a^m] = x^{2n}a^{-1}(m-1)^2[x,a^m] = x^{2n}a^{-2}(m-1)^2m^{-1}[x,a^m] = 0.
\]

This implies that \(x^{2k}[x,a] = 0 \), and so the usual argument of replacing \(x \) by \((x + 1)\) and using Lemma 2.1 gives \([x,a] = 0\), and hence,

\[N' \subseteq Z(R). \quad (3.5) \]

Now, for any \(x \in R \), \(x^q \) and \(x^{qm} \) are in \(Z(R) \). Then by (1.1) for any \(y \in R \), we have

\[
(x^q - x^{qm})x^k[x,y] = x^q(x^k[x,y]) - x^{qm}(x^k[x,y]) = x^k(x^q[x,y]) - x^{qm}x^n[x,y^m] = x^k[x,x^qy] - x^n[x,(x^qy)^m] = x^k[x,x^qy] - x^k[x,x^{q-1}].
\]

Therefore \((x^q - x^{qm})x^k[x,y] = 0\), and hence

\[(x - x^{qm-q+1})x^{k+q-1}[x,y] = 0. \quad (3.6)\]

If \(R \) is not commutative then by [6, Theorem 18], there exists an element \(x \in R \) such that \((x - x^t) \notin Z(R)\), where \(t = qm - q + 1 \). This also reveals \(x \notin Z(R) \). Thus neither \((x-x^t)\) nor \(x \) is a zero divisor, and so \((x-x^t) x^{k+q-1} \notin N'\). Hence (3.6) forces that \([x,y] = 0\), for all \(x,y \in R \). Thus \(x \notin Z(R) \) which is a contradiction. Hence \(R \) is commutative.

Proof of the Theorem. Let \(R \) be a left \(s \)-unital ring satisfying (P), then by Lemma 3.1, \(R \) is \(s \)-unital. Therefore, in view of [1, Proposition 1] and Lemma 3.4, \(R \) is commutative, if \(R \) with 1 satisfying (P) is commutative.

Corollary 3.1 ([3, Theorem]). Let \(R \) be a ring with unity 1 in which \([x^ny^m,x] = 0 \) for all \(x,y \in R \) and fixed integers \(m > 1, n > 1 \). Then \(R \) is commutative.

Proof. Actually, \(R \) satisfies the polynomial identity \(x[x,y] = x^n[x,y^m] \) for all \(x,y \in R \) and fixed integers \(m > 1, n > 1 \). Put \(k = 1 \) in (1.1), then \(R \) is commutative by Lemma 3.4.

Corollary 3.2 (Hirano, Kobayashi, and Tominaga [7, Theorem]). Let \(m,k \) be fixed non-negative integers. Suppose that \(R \) satisfies the polynomial identity
$x^k [x,y] = [x,y]^m$.

(a) If R is a left s-unital, then R is commutative except when $(m,k) = (1,0)$.

(b) If R is a right s-unital, then R is commutative except when $(m,k) = (1,0)$, and $m = 0$, $k > 0$.

REMARK 3.1. ([7]). In case $k > 0$ and $m = 0$ in Corollary 3.2(b), R need not be commutative. For, let K be a field. Then the non-commutative ring

$R = \left\{ \begin{array}{ll}
0 & \\
1 & \\
0 & \\
1 & \\
\end{array} \right\}$

$a,b \in K$ has a right identity element and satisfies the polynomial identity $x[x,y] = 0$.

ACKNOWLEDGEMENT. I am thankful to Dr. M.S. Khan for his valuable advice.

REFERENCES