A NOTE ON NEIGHBORHOODS OF ANALYTIC FUNCTIONS HAVING POSITIVE REAL PART

JANICE B. WALKER
Department of Mathematics
Xavier University
Cincinnati, Ohio 45207

(Received July 7, 1989 and in revised form October 18, 1989)

ABSTRACT. Let P denote the set of all functions analytic in the unit disk
$D = \{z \mid |z| < 1\}$ having the form $p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$ with $\text{Re}(p(z)) > 0$. For $\delta > 0$, let
$N_\delta(p)$ be those functions $q(z) = 1 + \sum_{k=1}^{\infty} q_k z^k$ analytic in D with $\sum_{k=1}^{\infty} |p_k - q_k| \leq \delta$. We
denote by P' the class of functions analytic in D having the form $p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$
with $\text{Re}[zp(z)]' > 0$. We show that P' is a subclass of P and determine δ so that
$N_\delta(p) = P$ for $p \in P'$.

KEY WORDS AND PHRASES. Functions having positive real part (Carathéodory class),
subordinate function, δ-neighborhood, and convolution (Hadamard product).

I. INTRODUCTION

Let H denote the class of functions f analytic in the unit disk $D = \{z \mid |z| < 1\}$
with $f(0) = 0$ and $f'(0) = 1$. For $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ in H and $\delta > 0$, let the
δ-neighborhood of f be given by $N_\delta(f) = \{g(z) = z + \sum_{k=2}^{\infty} b_k z^k \mid \sum_{k=2}^{\infty} |a_k - b_k| \leq \delta\}$.
For $h(z) = z$, Goodman [1] has shown that $N_1(h) = S^*$ where S^* denotes the class of
univalent functions in H which are starlike with respect to the origin. St. Ruscheweyh [2]
proved that if $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$ lies in C, where C denotes the class of convex
univalent functions in H, then $N_\delta(f) \subset S^*$ for $\delta_n = \frac{2^{2/n}}{n}$. Fournier [3] found that if
C were replaced by

$$\tilde{f} = \{g \in C \mid |\frac{g''(z)}{g'(z)}| < 1, z \in D\}$$

and S^* by

$$T = \{g \in S^* \mid |\frac{g'(z)}{g(z)} - 1| < 1, z \in D\}$$

then $N_\delta^n(f) \subset T$ for $\delta_n = e^{-1/n}$. Brown [4] extended the results of St. Ruscheweyh and
Fournier and provided simpler proofs. We shall focus on a class of functions directly
related to S^* and to other classes of univalent functions. Let P denote the class of
functions analytic in \(|z| < 1 \) having the form \(p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k \) with \(\text{Re}(p(z)) > 0 \) for \(|z| < 1 \). This family is usually called the Carathéodory class. For \(f \in H \), recall that \(f \in S^* \) if and only if \(p(z) = z f'(z)/f(z) \) lies in \(P \).

Let \(P' \) denote the class of functions analytic in \(|z| < 1 \) having the form \(p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k \) with \(\text{Re}[zp(z)]' > 0 \) for \(|z| < 1 \). In this paper we shall define a neighborhood of \(p \in P' \) and determine \(\delta > 0 \) so that \(N_\delta(p) \subseteq P' \).

2. PRELIMINARY RESULTS.

We begin by defining \(P \) and \(P' \) in terms of subordination. Recall that \(g \) is subordinate to \(h \), written \(g \prec h \), if \(g(z) = h(w(z)) \) where \(w \) is analytic in \(1 + z \), \(w(0) = 0 \) and \(|w(z)| < 1 \) for \(|z| < 1 \). Since \(\frac{1+z}{1-z} \) has positive real part in \(|z| < 1 \), is univalent, and is 1 when \(z = 0 \), it is not difficult to show that

\[
p \in P \text{ if and only if } p(z) \prec \frac{1+z}{1-z}
\]

and that

\[
p \in P' \text{ if and only if } [zp(z)]' \prec \frac{1+z}{1-z}.
\]

One can also show that \(P' \subseteq P \). For according to (2.2), if \(p \in P' \) then

\[
[zp(z)]' \prec \frac{1+z}{1-z}
\]

and thus we have

\[
[zp(z)]' \prec \frac{1+z}{1-z}.
\]

Since \(\frac{1+z}{1-z} \) is convex and univalent, we can apply a lemma (see Brown [5], p. 192) to obtain

\[
zp(z) \prec \frac{1+z}{1-z},
\]

from which it follows that

\[
p(z) \prec \frac{1+z}{1-z}.
\]

Hence, by (2.1) \(p \in P \) and \(P' \subseteq P \).

Now let us establish a criterion for a given function to belong to \(P \). By (2.1) \(q \in P \) if and only if \(q(z) \prec \frac{1+z}{1-z} \). Since \(\frac{1+z}{1-z} \) is univalent, then \(q \in P \) if and only if

\[
q(z) \equiv \frac{1 + e^{i\theta}}{1 - e^{i\theta}}, \text{ for } 0 < \theta < 2\pi \text{ and } |z| < 1.
\]

That is,

\[
q \in P \text{ if and only if } (1 - e^{i\theta})q(z) - (1 + e^{i\theta}) \equiv 0,
\]

for \(0 < \theta < 2\pi \), \(|z| < 1 \).

We can express (2.3) in terms of convolutions. Let \(f \) and \(g \) be analytic in the unit disk \(D \). Recall that if \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) and \(g(z) = \sum_{k=0}^{\infty} b_k z^k \), then the convolution (or Hadamard product) of \(f \) and \(g \), denoted by \(f \ast g \), is

\[
f \ast g = \sum_{k=0}^{\infty} a_k b_k z^k.
\]
Thus, \((1 - e^{i\theta})q(z) - (1 + e^{i\theta})\) can be written as

\[
(1 - e^{i\theta}) \left[\frac{1}{1-z} * q(z) \right] - (1 + e^{i\theta}) * q(z) = \left(\frac{1 - e^{i\theta}}{1-z} - (1 + e^{i\theta}) \right) * q(z).
\]

Let \(h_\theta(z)\) be defined by

\[
h_\theta(z) = -\frac{1}{2e^{i\theta}} \left[\frac{1 - e^{i\theta}}{1-z} - (1 + e^{i\theta}) \right].
\]

Then it follows that \(h_\theta(0) = 1\) and for \(0 < \theta < 2\pi, \, |z| < 1, \, q \in P\) if and only if \(h_\theta(z) * q(z) \neq 0\). (2.4)

3. THE MAIN RESULT.

We define a \(\delta\)-neighborhood of \(p\) for \(p \in P\).

DEFINITION. For any \(p(z) = 1 + \sum_k p_k z^k\) in \(P\) and \(\delta > 0\), the \(\delta\)-neighborhood of \(p\), denoted by \(N_\delta(p)\), is

\[
N_\delta(p) = \left\{ q(z) = 1 + \sum_k q_k z^k \mid \sum_k |p_k - q_k| < \delta \right\}.
\]

Our main result is the following theorem.

THEOREM. If \(p(z) = 1 + \sum_k p_k z^k\) belongs to \(P'\), then \(N_\delta(p) \subseteq P\), where \(\delta = 2 \ln 2 - 1 \approx .3862944\). This result is sharp.

We need several lemmas.

LEMMA 1. If \(p \in P'\), then \(z(p*h_\theta)\) is univalent for each \(0 < \theta < 2\pi\).

PROOF. Fix \(0 < \theta < 2\pi\). Then

\[
[z(p*h_\theta)]' = \left[\frac{-z}{2e^{i\theta}} \left((1 - e^{i\theta})p(z) - (1 + e^{i\theta}) \right) \right]'.
\]

\[
= -\frac{1}{2} \left[zp(z) - \frac{1 + e^{i\theta}}{1 - e^{i\theta}} \right] \frac{1 - e^{i\theta}}{e^{i\theta}}
\]

\[
= -\frac{1}{2} \left[(zp(z))' - \frac{1 + e^{i\theta}}{1 - e^{i\theta}} \right] (1 - e^{i\theta}) e^{-i\theta}. \quad (3.1)
\]

By definition of \(P'\), the range of \((zp(z))'\) for \(|z| < 1\) lies in \(\text{Re}(z) > 0\) and that of \(\frac{1 + e^{i\theta}}{1 - e^{i\theta}}\) lies on the imaginary axis. Thus, we can choose \(\alpha\) so that

\[
\text{Re}(e^{i\alpha}(z(p*h_\theta)(z))') > 0
\]

for \(|z| < 1\), namely \(\alpha = \arg(-(1 - e^{i\theta})^{-1}e^{i\theta})\). By the Noshiro-Warschawski Theorem (Duren [6], p. 47), \(z(p*h_\theta)\) is univalent for each \(\theta, \, 0 < \theta < 2\pi\).

LEMMA 2. If \(p \in P'\), then \(|z(p*h_\theta)|^2 > \frac{1-r}{1+r}\) for \(|z| = r < 1, \, 0 < \theta < 2\pi\).

PROOF. Using expression (3.1) for \(|z(p*h_\theta)|^2\), we define \(F(w) = e^{-i\theta}(1 - e^{i\theta}) (\frac{1 + e^{i\theta}}{1 - e^{i\theta}} - w)\), where \(w = \frac{1 + re^{it}}{1-re^{it}}, \, 0 \leq t \leq 2\pi\). Now \(F(w)\) may be rewritten as

\[
F(w) = e^{-i\theta}(1 + e^{i\theta}) - (1 - e^{i\theta})w, \, 0 < \theta < 2\pi.
\]

Thus,

\[
|F(w)| = |1 + w| \left| \frac{1 - w + e^{i\theta}}{1 + w} \right|
\]
Since \(|1 + w| = \left| 1 + \frac{1 + re^{it}}{1 - re^{it}} \right| = \left| \frac{2}{1 - re^{it}} \right| \geq \frac{2}{1 + r} \), it is clear that
\[|F(w)| \geq 2 \frac{1 - r}{1 + r}. \]

Since \(p \in P' \) and (3.1) holds, by letting \(w = [zp(z)]' \) we get the desired inequality. That is
\[\left| [z(p*h_0)]' \right| \geq \frac{1 - r}{1 + r}. \]

The lemma is proved.

LEMMA 3. If \(p \in P' \), then \(|p*h_0| > \delta \), where \(\delta = \int_0^1 \frac{1 - t}{1 + t} dt = 2 \ln 2 - 1. \)

PROOF. Let \(p \in P' \). Then by Lemma 1, \(z(p*h_0) \) is univalent. For fixed \(0 < r < 1 \), choose \(z_0 \) with \(|z_0| = r \) such that
\[\min |z(p*h_0)| = |z_0(p*h_0)(z_0)|. \]

Since \(z(p*h_0) \) is univalent, the preimage \(L \) of the line segment from 0 to \(z_0(p*h_0)(z_0) \) is an arc inside \(|z| < r \). Hence, for \(|z| < r \) we have
\[|z(p*h_0)| \geq |z_0(p*h_0)| = \int_0^r \left| [z(p*h_0)]' \right| dz. \]

Accordingly, we apply Lemma 2 to get
\[\left| [p*h_0](z) \right| \geq \frac{1}{r} \int_0^r \left| [z(p*h_0)]' \right| dz. \]

The function \(g(r) = \frac{2}{r} \ln (1 + r) - 1 \) is decreasing for \(r > 0 \) if \(g'(r) = \frac{-2}{r^2} \ln (1 + r) + \frac{2}{r^2(1 + r)} \). It is not difficult to show that \(r - (1 + r) \ln (1 + r) \leq 0 \) for \(r > 0 \), from which it follows that \(g'(r) < 0 \) for \(r > 0 \). Hence
\[|p*h_0| \geq 2 \ln 2 - 1. \]

This completes the proof of Lemma 3. Now we may prove the theorem.

PROOF (OF THEOREM). Let \(p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k \in P' \) and let \(\delta \) be as in Lemma 3. We want to show that every \(q \in N_\delta(p) \) belongs to \(P \), where \(q(z) = 1 + \sum_{k=1}^{\infty} q_k z^k \) is an arbitrary but fixed function in \(N_\delta(p) \). Hence, \(\sum_{k=1}^{\infty} |p_k - q_k| \leq \delta \). Observe that
\[|h_0*q| = |(h_0*p) + h_0*(q - p)| \]
\[|h_0(p) - h_0(q - p)| \]
\[\geq \delta - \frac{1}{2} \sum_{k=1}^{\infty} |q_k - p_k| \]
\[\geq \delta - \sum_{k=1}^{\infty} (q_k - p_k)z^k > \delta - \delta = 0. \]

Therefore, \(h_0(q) \neq 0 \) for \(|z| < 1 \). By (2.4), it follows that \(q \in F \). Consequently, \(N_0(p) = F \).

Now we prove that the result is sharp. Let \(p(z) \) be defined by \((zp(z))' = \frac{1+z}{1-z} \).
Then \(p(z) = -1 - \frac{2}{z} \ln (1 - z) \). Now let \(q(z) = p(z) + \delta z = -1 - \frac{2}{z} \ln (1 - z) + \delta z \).
Clearly, \(q \in N_0(p) \). However, as \(z \to -1 \), then \(q(z) \to -1 + 2 \ln 2 - \delta = q(-1) \).
Therefore, if \(\delta > 2 \ln 2 - 1 \), then \(q(-1) < 0 \) and consequently \(\Re q(z) < 0 \) for \(z \) near \(-1\). This contradicts \(\Re q(z) > 0 \) for \(|z| < 1 \). This completes the proof of the theorem.

REFERENCES