A NOTE ON SOME SPACES L_{γ} OF DISTRIBUTIONS WITH LAPLACE TRANSFORM

SALVADOR PÉREZ ESTEVA

Instituto de Matemáticas
Universidad Nacional Autónoma de México
México, D.F. 04510 México

(Received March 2, 1989)

ABSTRACT. In this paper we calculate the dual of the spaces of distributions L_{γ} introduced in [1]. Then we prove that L_{γ} is the dual of a subspace of $C_c^\infty(\mathbb{R})$.

KEY WORDS AND PHRASES. Convolution, Laplace Transform, Strict Inductive Limit.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. Primary 44A35, Secondary 44A10

1. INTRODUCTION

Let D' and S' be the classical Schwartz's spaces of distributions in \mathbb{R} and denote by L the Laplace transformation. In (Pérez-Esteva [1]) were introduced spaces L_a^γ as follows:

L_{γ}^a is the subspace of $L^1_{\text{loc}}(\mathbb{R})$ of functions f with supp $f \subset [a,\infty)$ and $e^{-\gamma} f \in L^2(\mathbb{R})$, where $e^{-\gamma}(x)=e^{-\gamma x}$. L_{γ}^a is a Hilbert space with the inner product

$$(f,g) = \int e^{-2\gamma} f^* g \, dx$$

then we define $L_{\gamma}^a = p_{\gamma}^{D^a}$ where D^p is the distributional derivative of order p.

Since $p_{\gamma}^{D^a} \subset L_{\gamma}^a$ is bijective, we can copy the Hilbert space structure of L_{γ}^a on L_{γ}^a. We have the continuous inclusions

$L_{\gamma}^a \subset L_{\gamma}^{b}$, for $a > b$

$L_{\gamma}^a \subset L_{\gamma}^{b}$, if $p < p'$. Hence for $p = \{0,1,\ldots\}$ the strict inductive limit

$L_{\gamma} = \text{ind lim}_{a \to -\infty} L_{\gamma}^a$

makes sense. Then

$L_{\gamma} = \text{ind lim}_{p \to \infty} L_{\gamma} = \text{ind lim}_{p \to \infty} L_{\gamma}^{-p}$

is also well defined.

In [1] it was studied the spaces of distributions g for which the convolution

$f \ast fg : L_{\gamma} \to L_{\gamma}$

is continuous.
Here we describe the strong dual of L^γ, which turns out to be a subspace S^γ of $C^\infty(\mathbb{R})$. Then we prove the reflexivity of S^γ and conclude that $(S^\gamma)' = L^\gamma$, which is the main result of the paper. $\| \cdot \|_2$ will denote the norm of $L^2(\mathbb{R})$, γ will be assumed to be a positive constant, and N will be the set of nonnegative integers.

2. THE DUAL OF L^γ

DEFINITION 1. Let L^γ be the space of all complex measurable functions g in \mathbb{R} such that $\chi_{(a,\infty)} e^{-\gamma g} \in L^2(\mathbb{R})$ for every $a \in \mathbb{R}$, where $\chi_{(a,\infty)}$ stands for the characteristic function of (a,∞). We provide L^γ with the topology given by the seminorms

$$p_a(g) = \| \chi_{(a,\infty)} e^{-\gamma g} \|_2, \quad a \in \mathbb{R}.$$

Next we denote by S^γ the subspace of L^γ such that $D^n g \in L^\gamma$ for every $n \in \mathbb{N}$. Define the topology of S^γ by the system of seminorms

$$p_n(g) = \| \chi_{(a,\infty)} e^{-\gamma D^n g} \|_2, \quad a \in \mathbb{R}, \quad n \in \mathbb{N}.$$

It is clear that L^γ and S^γ are Frechet spaces and since $D^n g \in L^1_{\text{loc}}(\mathbb{R})$ for any $n \in \mathbb{N}$ and $g \in S^\gamma$, we have that $S^\gamma \subset C^\infty(\mathbb{R})$.

LEMMA 1. Let $\phi \in L^\gamma'$, then for every $p \in \mathbb{N}$, there exists $g_p \in L^\gamma$ such that

$$\phi(D^p f) = \int_{\mathbb{R}} e^{-2\gamma f} g_p dx, \quad f \in L^\gamma_{\Theta^y}$$

The sequence $\{g_p\}_{p \in \mathbb{N}}$ satisfies

$$g_{p+1} = -Dg_p + 2\gamma g_p, \quad p \in \mathbb{N} \tag{2.1}$$

Hence ϕ is determined by $g_0 \in S^\gamma$.

PROOF. Fix $a \in \mathbb{R}$ and $p \in \mathbb{N}$. Then $\phi \in (L^a_{\Theta^y})'$, and there exists $g_{pa} \in L^a_{\Theta^y}$ such that

$$(D^p f) = \int_{\mathbb{R}} e^{-2\gamma f} g_{pa} dx, \quad D^p f \in L^a_{\Theta^y}$$

If $a < b$, we have $L^b_{\Theta^y} \subset L^a_{\Theta^y}$, then

$$\phi(D^p f) = \int_{\mathbb{R}} e^{-2\gamma f} g_{pb} dx = \int_{\mathbb{R}} e^{-2\gamma f} \chi_{(b,\infty)} g_{pa} dx$$

for $D^p f \in L^b_{\Theta^y}$, which shows that

$$g_{pb} = \chi_{(b,\infty)} g_{pa}$$

If g_{pa} is the restriction of g_{pa} to (a,∞), then $g_p = \bigcup_a g_{pa}$ is well defined, belongs to L^γ and

$$\phi(D^p f) = \int_{\mathbb{R}} e^{-2\gamma f} g_{p} dx, \quad D^p f \in L^\gamma_{\Theta^y}$$

Let $\varphi \in \mathcal{D}$. Since $D^{p+1}\varphi \in L^{p+1}_{\Theta^y} \cap L^\gamma_{\Theta^y}$, we have
\[\phi(p^{+1}\varphi) = \int e^{-2\gamma p + 1} \varphi g_p \, dx = \int e^{-2\gamma D} \varphi g_p \, dx \]
\[= \int [D(e^{-2\gamma \varphi}) + 2\gamma e^{-2\gamma \varphi}] g_p \, dx \]
\[= <e^{-2\gamma D} g_p + 2\gamma e^{-2\gamma g_p}, \varphi> \]

where \(<,\rangle\) represents the duality between \(D\) and \(D'\). It follows that

\[g_{p+1} = -D g_p + 2\gamma g_p \]
or

\[e^{-2\gamma} g_{p+1} = -D(e^{-2\gamma} g_p) \]

Hence, every \(g_p\) belongs to \(S_\gamma\).

Lemma 2. Let \(g \in S_\gamma\) and \(H\) be the differential operator defined by \(H = -D + 2\gamma I\). Then the functional

\[\phi(D^p f) = \int e^{-2\gamma f} H(p) g dx, \quad f \in \mathcal{L}_{\mathcal{O}_\gamma} \]

is well defined in \(\mathcal{L}\) and is continuous.

Proof. Let \(f \in \mathcal{L}^a_{\mathcal{O}_\gamma}\) be such that \(f = Dh\) with \(h \in \mathcal{L}_{\mathcal{O}_\gamma}\). There exists a sequence \(\{f_n\}_{n \in \mathbb{N}} \subset \mathcal{D}\) converging to \(f\) in \(L^b_{\mathcal{O}_\gamma}\) if \(b < a\).

Let

\[\varphi_n(x) = \int_{-\infty}^{x} f_n \, dy \]

Then \(f \in L^b_{\mathcal{O}_\gamma}\), \(D(\varphi_n - h) = f_n - f\), and since the inclusion \(L^b_{\mathcal{O}_\gamma} \subset \mathcal{L}^b_{\mathcal{O}_\gamma}\) is continuous, we have that \(\{\varphi_n\}_{n \in \mathbb{N}}\) converges to \(h\) in \(\mathcal{L}_{\mathcal{O}_\gamma}\). It follows that

\[\int e^{-2\gamma h} H(g) dx = \lim_{n \to \infty} \int e^{-2\gamma \varphi_n} H(g) dx \quad (2.2) \]

and

\[\int e^{-2\gamma f_n g} dx = \lim_{n \to \infty} \int e^{-2\gamma f_n g} dx \quad (2.3) \]

On the other hand

\[\int_{-\infty}^{B} e^{-2\gamma \varphi_n} H(g) dx = \int_{-\infty}^{B} \varphi_n D(e^{-2\gamma g}) dx \]
\[= -\varphi_n(B)e^{-2\gamma(B)}g(B) + \int_{-\infty}^{B} f_n e^{-2\gamma g} dx \quad (2.4) \]

But we have the estimate

\[|g(x)| \leq |g(b)| + e^{\gamma(x)} \|\chi_{[b,\omega]} e^{-\gamma(Dg - \gamma g)}\|_2 (x-b)^{1/2} \quad \text{for } x > b \]

Hence

\[\int e^{-2\gamma \varphi_n} H(g) dx = \int e^{-2\gamma f_n g} dx \]

From (2.2) and (2.3) it follows that

\[\int e^{-2\gamma f_n g} dx = \int e^{-2\gamma h} H(g) dx \quad (2.5) \]
By induction we obtain
\[\int e^{-2\gamma} f \, g \, dx = \int e^{-2\gamma} h \, H^p(g) \, dx \quad (2.6) \]
if \(f = D^p h \) and \(f, h \in L_{oY} \).

Finally, if \(D^p f = D^q h \) with \(f, h \in L_{oY} \) and \(q \geq p \), then \(f = D^{q-p} h \), hence by (2.6) we have
\[\int e^{-2\gamma} f \, H^p(g) \, dx = \int e^{-2\gamma} h \, H^q(g) \, dx \]
Thus \(\Phi \) is well defined and it is clearly continuous.

THEOREM 1. The strong dual of \(L_{aY} \) is \(S_{aY} \).

PROOF. By lemmas and 2 we know that \(L_{aY}^* = S_{aY} \). It remains to prove that the strong topology \(\mathcal{A}(L_{aY}^*, L_{aY}) \) coincides with the topology \(\tau \) of \(S_{aY} \). First notice that \(\tau \) is defined by the system of seminorms
\[q_{ap}(g) = \| x(a, \omega) e^{-\gamma} H^p(g) \|_2, \quad a \in \mathbb{R}, \quad p \in \mathbb{N} \]
Fix \(a \in \mathbb{R} \) and \(p \in \mathbb{N} \). Let \(V = \{ g \in S_{aY} : q_{ap}(g) \leq 1 \} \). Denote by \(U \) the unit ball in \(f_{oY}^* \), then the set \(B = D^p U \) is bounded in \(L_{oY}^* \) and hence in \(L_{oY} \). If \(g \in B^0 \) (the polar of \(B \)), then for every \(f \in U \) we have
\[\| e^{-2\gamma} f \, H^p(g) \|_2 \leq 1 \]
Thus
\[\| e^{-2\gamma} x(a, \omega) \, H^p(g) \|_2 \leq 1 \]
It follows that \(B^0 \subset V \) and \(\tau \subset \beta(L_{oY}^*, L_{oY}) \). Now, let \(B \) be a bounded set in \(L_{oY} \). Then for some \(p \in \mathbb{N}, B \subset L_{oY}^p \) and is bounded there (see Kucera, McKennon [2]). Hence \(B \subset D^p U \) for some \(p \in \mathbb{N} \) and is bounded there (see Kucera, McKennon [2]).

COROLLARY 1. \(L_{aY} \) is the strong dual of \(S_{aY} \).

PROOF. By (Kucera, McKennon [2], Theorem 4) we know that \(L_{aY} \) is reflexive. Hence the corollary follows from Theorem 1.

REFERENCES

