ABSTRACT. The purpose of the present study is to characterise the Grassmann manifold $G_{p,2}(\mathbb{R})$ and its non-compact dual $G^*_{p,2}(\mathbb{R})$ by means of a particular parallel tensor field T of type $(1,3)$ and the Weingarten map on geodesic spheres.

KEY WORDS AND PHRASES. Grassman manifold, Tensor field, Riemannian curvature tensor, Symmetric space, Eigenvector, Normal neighbourhood, Kahler manifold.

1980 AMS SUBJECT CLASSIFICATION CODE. 53C25.

1. PRELIMINARIES.

Let $G_{p,2}(\mathbb{R})$ be the oriented real Grassmann manifold of 2-planes in \mathbb{R}^{p+2}. The purpose of this paper is to characterise this manifold and its non-compact dual $G^*_{p,2}(\mathbb{R})$ by means of a particular tensor field T of type $(1,3)$ and the Weingarten map on geodesic spheres.

The problem was first considered by L. Vanhecke and T.J. Willmore who characterised spaces of constant curvature and spaces of constant holomorphic sectional curvature [1]. The case $G_{p,2}(\mathbb{R})$ has considered by the second of the authors in [2]. These results were generalised by the first author and D.E. Blair in [3], [4]. In this respect the conditions we need differ from those of [2] and, as our proof shows, some of the conditions given there are redundant.

We begin with some general remarks on Jacobi vector fields and geodesic spheres. Let M be a Riemannian manifold of dimension $n \geq 2$ and let U be a normal
neighbourhood of a point $m \in M$. We may take U to be a geodesic ball of radius r. Choose an orthonormal basis for the tangent space M_m and let $\{x^i\}, i=1,\ldots,n$ be the corresponding normal coordinate system on U. Write N for the unit vector field on $U-\{m\}$ tangent to geodesics from m, thus $N = \frac{x^i}{s} \frac{\partial}{\partial x^i}$ where s denotes geodesic distance from m. Let V be the unit tangent field to a geodesic $\gamma:(-r,r) \to U$, with $\gamma(0)=m$, choose a non-zero vector $W_m = a \left(\frac{\partial}{\partial x^i} \right)_m$ normal to V_m and let $Y = a \frac{\partial}{\partial x^i}$ on U.

Then on $\gamma-\{m\}$, we have $[Y,N]=0$ and $R(N,Y)N = V_N Y = V^2 Y$. Consequently the vector field X on γ defined by $X_\gamma(s) = a \left(\frac{\partial}{\partial x^i} \right)_\gamma s$, $-r<s<r$, satisfies

$$V^i N = V_i X$$ \hspace{1cm} (1.1)

on $\gamma-\{m\}$ and, by continuity,

$$R(V,X)V = V^2 X$$ \hspace{1cm} (1.2)

Thus X is a Jacobi vector field on γ for which

$$X_m = 0 \text{ and } V_m X = W_m$$ \hspace{1cm} (1.3)

In particular, X is normal to V and, for any point Q on γ the normal space to V_Q is formed by evaluating all such Jacobi vector fields at Q. Now write $A = -V_N$. For any geodesic sphere S in U with centre m, the restriction of A to tangent vectors to S is just the Weingarten map with respect to N as unit normal vector field. Also by (1.1) - (1.2) we have on $\gamma-\{m\}$

$$R(N,X)N = -V_N A X = A^2 X - (V_N A) X$$ \hspace{1cm} (1.4)

This equation is linear in X, hence, from the above remarks, it is valid for arbitrary vector fields X on $U-\{m\}$, where we note from the definition of A that $A N = 0$.

Now suppose M is a Riemannian locally symmetric space. With the previous notation, suppose W_m satisfies

$$R(V_m, W_m)V_m = c \cdot W_m$$
Let X be the Jacobi vector field on Y satisfying (1.3) and W the parallel vector field on Y with initial value W_m. Since $\nabla R = 0$ we have $R(V, W)V = cW$ from which fW is a Jacobi vector field on Y with the same initial conditions (1.3) as X when we choose

$$f(\alpha) = \begin{cases}
\left|c\right|^{-1/2} \sin(|c| \frac{1}{2} \alpha), & \text{if } c < 0 \\
\left|c\right|^{-1/2} \sinh(c \frac{1}{2} \alpha), & \text{if } c > 0 \\
\alpha, & \text{if } c = 0
\end{cases}$$

Thus $X = fW$ and as a consequence of (1.1) and the definition of A

$$AW = -\frac{N_f}{f} W. \quad (1.5)$$

Since the Riemannian curvature at m is bounded, the set of eigenvalues c of $R(V_m, -)V_m$ taken over all unit vectors V_m is bounded, say $|c| < k^2, k > 0$. Thus if we take U to be a geodesic ball of radius $< \frac{\pi}{k}$, then $f \neq 0$ on $\gamma - \{m\}$. We now have the following immediate consequence of (1.5).

Proposition 1.1. Let m be a point in a Riemannian locally symmetric space of dimension > 2. Then m has a normal neighbourhood U such that, for each unit vector $V_m \in M$ and corresponding geodesic γ, the parallel translate of an eigenspace of the linear map $R(V_m, -)V_m$ along γ is contained in an eigenspace of the Weingarten map for each geodesic sphere in U with centre m.

2. **Statement of Main Theorem.**

We consider the Grassmann manifold $G_{p, 2}(R)$ as the homogeneous Riemannian symmetric space $SO(p+2)/SO(p) \times SO(2)$. The tangent space at any point $m \in G_{p, 2}(R)$ can be identified with the vector space $M_{(p \times 2)}$ of all $p \times 2$ matrices over \mathbb{R}, considered as real vector space with inner product

$$g(X, Y) = \langle X, Y \rangle = \text{tr}[XY^t] \quad (2.1)$$

which is clearly Hermitian with respect to the almost complex structure J given by

$$J(X_1, X_2) = (-X_2, X_1)$$

where X_1, X_2 are column vectors of the form $p \times 1$. An invariant Kähler metric g is then defined on $G_{p, 2}(R)$ and the corresponding Riemannian curvature tensor at m is represented by its action on $M_{(p \times 2)}$ by ([3], p. 180)

$$R(X, Y)Z = XY^t Z - YX^t Z - Z(X^t Y - Y^t X) \quad (2.2)$$

Similarly, for the non-compact dual G^*_p, the curvature tensor is just the negative of this, and it will be sufficient to consider the compact case. Of course the metric g can be replaced by any metric homothetic to it without affecting R.

The tensor T of type $(1,3)$ defined at m by

$$T(X,Y,Z) = XYZ$$

(2.3)

is invariant by the isotropy group and so extends to a parallel vector field on

$G_{p,2}(R)$, also denoted by T. We define linear endomorphisms T_{XY}, T^{XY} and T^Y_X at m by

$$T_{XY}Z = T(X,Y,Z), \quad T^{XY}Z = T(Z,X,Y), \quad T^Y_XZ = T(X,Z,Y)$$

(2.4)

which are self-adjoint. Then one easily verifies that T has the following properties at m, hence on $G_{p,2}(R)$:

2. $<T(X,Y,Z),W> = <T(Z,W,X),Y> = <T(Y,X,W),Z>$
3. For each unit vector X

\[\text{tr} \, T_{XX}^X = 2, \quad \text{ii.} \, \text{tr} \, T_{X}^X = 1, \quad \text{iii.} \, \text{tr} \, T^X_X = p, \quad p \in \mathbb{Z}^+ \]

Moreover it is known that dim$G_{p,2}(R)$ = $2p$. Particular use will be made of unit vectors X at m satisfying $T(X,X,X) = X$. Such vectors are characterised by the following:

Lemma 2.1. Suppose $X = (X_1, X_2) \in M_{p,2}$ satisfies $XX^X = 1$. Then $XX^X = X$ if and only if X_1 and X_2 are linearly dependent.

Proof. From the equation $XX^X = X$ we easily get $|X_1|^2 + |X_2|^2 (1 - \cos^2 v) = 0$, where v is the angle between X_1, X_2, from which we have $v = 0$. Conversely suppose $X_2 = \lambda X_1, \lambda \in \mathbb{R}$ therefore $(1 + \lambda^2)|X_1|^2 = 1$ from which we have $XX^X = X$.

Now choose a geodesic γ through m with unit tangent vector field V such that $T(V,V,V) = V$ on γ. This relation holds if and only if it is satisfied at m, and clearly such vectors exist at m. Then by (2.2) we have:

$$R(V,JV)V = -JV$$

(2.5)

so using Proposition 1.1 we have the following result.

Proposition 2.2. Let $m \in G_{p,2}(R)$ and choose a normal neighbourhood U of m as in Proposition 1.1. and let $\gamma \subset U$ be any geodesic ray from m with unit tangent vector N_m satisfying $T(N_m,N_m,N_m) = N_m$. Then the Weingarten map A has the following property

$$AJ_m = f(N_m), JN_m, f(N_m) \in \mathbb{R}$$

(2.6)

We now state our main result.
THEOREM 2.3. Let M be a complete simply connected Kahler manifold of dimension $2p>2$ with metric g and almost complex structure J. Let T be a parallel tensor field of type $(1,3)$ on M satisfying P_1 through P_3. Suppose for each $m \in M$ there exists a normal neighbourhood U of m such that for each geodesic sphere S in U centred at m and for each unit normal N_m to S with $T(N_m, N_m, N_m) = N_m$ the Weingarten map satisfies (2.6). Then M is homothetic to either the Euclidean space \mathbb{E}^{2p}, $G_{p,2}^*(\mathbb{R})$ or $G_{p,2}^*(\mathbb{R})$.

3. A CHARACTERISATION OF T ON $M_{(p\times 2)}$

The proof of the Theorem depends largely on a characterisation of the structure described earlier on the tangent space to $G_{p,2}^*(\mathbb{R})$ at any point. For this purpose we require the following result.

PROPOSITION 3.1. Let V be a real finite dimensional vector space with inner product \langle, \rangle and let T be a tensor of type $(1,3)$ on V satisfying P_1 through P_3. Suppose $\dim V = 2p > 2$, then there is a linear isomorphism of V onto $M_{(p\times 2)}$ of all real $p \times 2$ matrices considered as vector space and under identification $T(X,Y,Z) = XY^t Z$ and $\langle X, X^t \rangle = trXX^t$.

The proof of this proposition requires several lemmas. The first of these lemmas provides a useful duality between T_{XY} and T_{XY}^t and is immediate from P_1, P_2, P_3.

LEMMA 3.2. Define a tensor S on V by $S = T(Z,Y,X)$ and write $S_{XY} = T_{XY}$, $S_{YX} = T_{YX}$, $S_{X} = T_{XX}$. Then P_1, P_2, P_3 are satisfied when T is replaced by S and P_1, P_2 are satisfied when T_{XX} and T_{XY} are replaced by S_{XX} and S_{XY} respectively provided p and 2 are interchanged.

In what follows we remark that P_1 and P_2 may be used occasionally without reference.

LEMMA 3.3. For each non-zero $X \in V$ the linear endomorphisms T_{XX} and T_X are self-adjoint and T_{XX} is not identically zero.

PROOF. The self-adjoint properties are clear from P_1. Also from $P_3(1)$ there exist Y such that $T(X,X,Y) \neq 0$. Therefore from P_1 and P_2 we have:

$$0 < \langle T(X,X,Y), T(X,X,X) \rangle \leq \langle T(X,X,X), T(X,X,Y) \rangle \leq \langle T(T(X,X,X), T(X,X,X), X, Y), Y \rangle$$

Thus $T(X,X,X) \neq 0$.

LEMMA 3.4. Suppose $X,Y \in V$ are non-zero and $T(X,Y,Z) = \lambda Y$. Then $im T_{XX}$ is contained in the λ-eigenspace of T_{XX}. If $T(X,X,X) = \lambda X$ then λ is the only non-zero eigenvalue of T_{XX}.

PROOF. We have to prove that for any $Z \in V$, $T_{XX}(T(Y,Y,Z)) = \lambda T(Y,Y,Z)$. In fact,

$$T_{XX}(T(Y,Y,Z)) = T(X,X,T(Y,Y,Z)) = T(T(X,X,X), Y, Z) = \lambda T(Y,Y,Z).$$
Suppose now that there exist \(\mu, Z \neq 0 \) such that \(T_{XX}Z = \mu Z \) then \(T_{XX}(\frac{1}{\mu} Z) = Z \), so \(Z \in \text{im} T_{XX} \) and from the first part of the lemma \(Z \in \lambda \)-eigenspace of \(T_{XX} \). Therefore \(T_{XX}Z = \lambda Z \), so \(\lambda Z = \mu Z \) and then \(\mu = \lambda \).

From now on we use the following notation: Define \(D \subset V \) by \(X \in D \) if and only if \(X \neq 0 \) or \(\text{rk} T_{XX} = \min \{ \text{rk} T_{YY} : Y \in V \text{ and } Y \neq 0 \} \). Then for each non-zero \(X \in D \) write \(V_X = \text{im} T_{XX} \).

Dually we define \(D' \subset V \) by replacing \(T_{XX} \) above by \(T_{XX}^* \) and writing \(V_X^* = \text{im} T_{XX}^* \) for \(X \neq 0 \). Finally, we write \(V_X^* \cap V_X = \emptyset \).

Lemma 3.5. Let \(X \) and \(Y \) be non-zero vectors such that \(X \in D \) and \(Y \in V_X \). Then (i) \(V_X \subset D \), (ii) \(V_X = V_Y \), (iii) \(T(X,X,X) = k \|X\|^2 X \), where \(k \|X\|^2 \text{rk} T_{XX} = 2 \) and \(k = \max \{ \mu / T(Z,Z,Z) : Z \neq 0 \} = \|z\|^1 \) or \(1 \), conversely, any vector \(U \) satisfying this equation belongs to \(D \). (iv) \(T_{XX}(V_X^*) = 0 \), where \(V_X^* \) is the orthogonal complement of \(V_X \) in \(V \).

Proof. We may assume that \(\|X\| = \|Y\| = 1 \). As a consequence of Lemmas 3.3 and 3.4, \(T_{XX} \) has exactly one nonzero eigenvalue, say \(\lambda \) possibly with multiplicity > 1. Since \(T(X,X,Y) = \lambda Y \) then from the definition of \(X \) and Lemma 3.4 \(\text{im} T_{YY} \subset \lambda \)-eigenspace of \(T_{XX} \), therefore \(\text{rk} T_{YY} = \dim \text{im} T_{YY} = \dim (\lambda \text{-eigenspace of } T_{XX}) = \text{rk} T_{XX} \); but \(\text{rk} T_{XX} \) is a minimum, thus \(\text{rk} T_{YY} = \text{rk} T_{XX} \), so \(Y \in D \) and \(T_{YY} \) has a unique non-zero eigenvalue \(\nu \) and \(\text{im} T_{XX} = \text{im} T_{YY} \), which proves (i) and (ii). From the last equation we have \(\text{rk} T_{XX} = \text{rk} T_{YY} = r \); suppose \(T_{XX} \) has the \(\lambda \)-eigenvalue and \(T_{YY} \) the \(\nu \)-eigenvalue, then \(T_{XX}^* = \text{sum} \{ \text{eigenvalues} = r \lambda, r \nu \} \), so \(\nu = \lambda \) and therefore \(T(Y,Y,Y) = \nu Y \).

Next, let \(X_1 \) be the orthogonal projection of \(X \) onto the \(\lambda \)-eigenspace of \(T_{XX} \) the \(T_{XX}X_1 = \lambda X_1 \). Let \(X = X_1 + X_2 \) such that \(X_1 \) belongs to the \(\lambda \)-eigenspace and \(X_2 \) to the \(0 \)-eigenspace. Then \(T_{XX}X = T_{XX}X_1 + T_{XX}X_2 = \lambda X_1 \). Therefore \(X \neq 0 \) because if \(X_1 = 0 \) then \(T_{XX}X = 0 \) which is impossible because we proved that \(T_{XX}X \neq 0 \). Furthermore,

\[
\lambda^3 \|X_1\|^2 X_1 = \lambda^2 T(X_1,X_1,X_1) = T(\lambda X_1, \lambda X_1, X_1) = T(T(X,X,X), T(X,X,X), X_1) = T(X,X,T(X,X,X), X_1) = T(X,X,T(X,X,X), X_1) = T(X,X,T(X,X,X)) = \lambda^2 T(X,X,X) = \lambda^3 X_1
\]

Thus \(\|X_1\| = 1 \) so \(X = X_1 \) and \(T(X,X,X) = \lambda X \). Since \(\text{rk} T_{XX} = 2 \) and is a minimum the first part of (iii) follows. Conversely, if \(T(U,U,U) = \|U\|^2 U \) then \(\text{rk} T_{UU} = \text{rk} T_{XX} \) so \(U \in D \) as required. Finally (iv) is immediate since \(T_{XX} \) is self-adjoint and \(V_X^* \) is the \(k \)-eigenspace of \(T_{XX}^* \).

Lemma 3.6. If \(Y \in V_X \) and \(U, W \in V \) then \(T(Y,Y,W) = T(Y,X,W) \).

Proof. There exist \(Z \in V \) such that \(T(X,X,Z) = Y \). Hence from \(P_2^* \), \(T(Y,Y,W) = T(T(X,X,Z), Y, W) = T(X,X,T(Z,Y,W)) \).

In the rest of this section let \(U \) be a unit vector in \(D \). Then for any
\[X, Y \in V_U, T(X, X, Y) + T(Y, X, X) = k \|X\|^2. \]

In particular,
\[T(X, X, Y) + T(Y, X, X) = 2k \langle X, Y \rangle. \]

These equations imply.

Lemma 3.7. For all \(X, Y \in V_U \),
\[T(X, X, Y) + T(Y, X, X) = 2k \langle X, Y \rangle. \]
On the other hand we have
\[T(X, X, Y) + T(Y, X, X) = 2k \langle X, Y \rangle. \]

The following result for \((V_U^\perp)^\perp \).

Lemma 3.8. If \(X \in V_U \) and \(Y \in (V_U^\perp)^\perp \), then \(T_X Y = 0 \).

Proof. Since \(T_X \) is self-adjoint it is sufficient to prove \((T_X)^2 Y = 0 \). Let
\[Z \in V_U, \]
then \((T_X)^2 Z = T_X (T_X Z) = T_X (T(X, X, X)) = T(X, T(X, X, X), X) = T(X, T(X, X, X), X) = T(X, X, T(Z, X, X)) = T_X X X Z = T_X X \]

\[T_X X Z, \]
so \((T_X)^2 Z \in V_U \). Hence \(\langle (T_X)^2 Y, Z \rangle = \langle Y, (T_X)^2 Z \rangle = 0 \) which proves the lemma.

Lemma 3.9. (i) For any non-zero vector \(X \in V_U \), \(V_X = V_U = T_X X \), (ii) \(k = 1 \), (iii) if \(Y \ni X \) is non-zero then \(\dim V_X = 1 \).

Proof. From Lemma 3.5 (ii) and its dual \(\langle V_X X \rangle = \langle V_U X \rangle \) from Lemma 3.7, this proves (i). From Lemmas 3.7 and 3.8 the non-zero eigenvalues of \(T_U \) are \(k \) and \(-k\) with multiplicity 1 and \(d-1 \), where \(d = \dim V_U \). Therefore \(k - k(d-1) = 1 \) or \(k(2-d) = 1 \) and due to the fact that \(k > 0 \) and \(d \) is an integer we conclude that \(d = 1 \), therefore \(k = 1 \) and \(\dim V_U = 1 \). This proves (ii) and (iii) follows since the choice of unit vector \(U \in D \) is arbitrary.

Lemma 3.10. Suppose \(X, Y \) are unit vectors in \(V_U \) with \(Y \) orthogonal to \(V_X \). Then
\[
\langle V_X, V_Y \rangle = 0, \quad \text{and} \quad \langle T(V_X, V_Y), V \rangle = 0.
\]

Proof. Let \(V \in V_X \) and \(W \in V_Y \). Then from Lemma 3.6 and its dual \(\langle T(X, V, X), T(Y, W, Y) \rangle = \langle T(W, X, X), Y \rangle = \langle T(W, T(V, X, Y), X), Y \rangle = 0 \) and (i) follows using Lemma 3.9 (i).

Next for \(Y \in V, \langle T(X, Y, Y), T(X, Y, Y) \rangle = \langle T(Y, X, X, Y), V \rangle = \langle T(Y, X, X, Y), V \rangle \) is \(V \) so from Lemma 3.8 \(T(Y, X, X) = T(T(X, X, X), X, X) = (T_X X)^2 Y = 0 \). Hence \(T(X, Y, V) = 0 \) and (ii) follows using (i).

Lemma 3.11. \(V_U \) admits a multiplication, with respect to which, it is isomorphic to \(R \).

Proof. Define a bilinear operation on \(V_U \) by \(X, Y = T(X, Y, Y) \). We show that \(V_U \) becomes a real associative division algebra and the lemma follows using the Frobenius Theorem. Clearly \(U \) is a unit vector because \(k = 1 \). Also multiplication is associative since \((X, Y), Z = T(T(X, U, Y), U, Z) = U, Z \) and \((X, Y), Z = T(U, Y, Z) = X, Z \). Moreover any non-zero \(X \) has an inverse \(X^{-1} = 2 X \) and the proof is complete.

Proof of Proposition 3.1. From Lemmas 3.9 and 3.10 together with their duals \(V_U (\text{resp. } V_U^\perp) \) is an orthogonal direct sum of subspaces of the form \(V_X, X \in V_U \) (resp. \(X \in V_U^\perp \)) each of dimension \(\omega = 1 \). Since \(k = 1 \), we obtain using Lemma 3.5 and its dual \(\dim V_U = k T_{UU} = 2 \) and \(\dim V_U^\perp = k T_{UU}^\perp = p, p \in Z^+ \). For convenience of notation, write \(U = e_1 \). From Lemma 3.11 we may consider \(V_U^\perp \) as a 1-dimensional vector space over \(R \)
with vectors \(f, g \in \mathbb{R} \). Next we may choose sets of orthogonal unit vectors
\[
\{\ell_1, \ell_2\} \subset V \quad \text{and} \quad \{\ell_1, \ldots, \ell_p\} \subset V^e
\]
such that \(V^e = V_1^e \cdot V_2^e \) and \(V^e = V_1^e \cdot \cdots \cdot V_p^e \) where
\[
V_1^e = \{\ell_1^e\} \quad \text{and} \quad V_2^e = \{\ell_2^e\}
\]
for \(a = 1, 2; i = 1, \ldots, p \) and the direct sums are orthogonal. Now define \(e_{i\alpha}^e T(e_{i\alpha}^e, e_{j\alpha}^e) \) for \(i, j = 1, \ldots, p; \alpha = 1, 2 \) noting consistency when \(i = I \) or \(\alpha = 1 \). Then
\[
e_{i\alpha}^e T(e_{i\alpha}^e, e_{j\alpha}^e) \subset V^e \quad \text{and} \quad e_{i\alpha}^e \times e_{j\alpha}^e \subset D
\]
and we write \(e_{i\alpha}^e = e_{i\alpha}^a \). From Lemma 3.9 (iii) each \(V_i^\alpha \) has dimension \(\omega = 1 \).

Also we note from Lemma 3.1 (ii) and its dual form that for \(\alpha \neq \beta \) and \(i \neq j \)
\[
T(e_{i\alpha}^1, e_{j\beta}^1) = T(V_1^1, e_{i1}, e_{j1}) = \{0\}
\]
and it follows easily that \(V_1^\alpha \) and \(V_2^\beta \) are orthogonal if \(\alpha \neq \beta \) or \(i \neq j \). Since \(\dim V = 2p \), \(V \) is the orthogonal direct sum of the subspaces \(V_i^\alpha, i = 1, \ldots, p; \alpha = 1, 2 \). Next for any \(f, g, h \in \mathbb{R} \) we define \(e_{i\alpha}^f T(e_{i\alpha}^f, e_{j\alpha}^f, e_{k\alpha}^f) \).

Then for \(f, g, h \in \mathbb{R} \),
\[
T(e_{i\alpha}^f, e_{j\beta}^g, e_{k\gamma}^h) = T(T(e_{i\alpha}^f, e_{j\beta}^g, e_{k\gamma}^h), e_{l\alpha}^f, e_{m\beta}^g, e_{n\gamma}^h) = T(e_{i\alpha}^f, e_{j\alpha}^g, e_{k\alpha}^h)
\]
and it follows that \(V_i^\alpha \) can be considered as a vector space over \(\mathbb{R} \) with basis \(\{e_{i\alpha}^1\} \). Then by considering \(M(p \times 2) \) as a vector space over \(\mathbb{R} \) we have an \(\mathbb{R} \)-linear isomorphism:
\[
\phi : V \rightarrow M(p \times 2); e_{i\alpha}^1 x_{i\alpha}^1 + (x_{i\alpha}^1)
\]
From (3.1)

\[T(e_{i_1} x_{i_1} e_{j_1} y_{j_1} e_{k_1} z_{k_1}) = x_{i_1} y_{j_1} z_{k_1} e_{l_1} \]

Thus, if elements of \(V \) are represented by their corresponding matrices then \(T(X,Y,Z) \) corresponds to \(XYZ \). Finally, using Lemma 3.11,

\[X_{i_1} x_{j_1} = X_{i_1} y_{j_1} = X_{i_1} z_{j_1} = T(e_{i_1} e_{j_1} e_{k_1}) \]

Finally, using Lemma 3.11,

\[\langle e_{i_1} x_{i_1} e_{j_1} y_{j_1} e_{k_1} z_{k_1} \rangle \]

\[\langle e_{l_1} x_{i_1} e_{j_1} y_{j_1} e_{k_1} z_{k_1} \rangle \]

Thus, \(T(e_{i_1} e_{j_1} e_{k_1} e_{l_1}) \) corresponds to \(XYZ \) and the proof is complete.

Remark 3.12. Proposition 3.1 has a dual form obtained essentially by exchanging \(p,2 \) and replacing \(T \) by \(S \) as defined in Lemma 3.2. Thus write each basic vector \(e_{i_1} \) as \(e_{a_1} \) and write any \(X \in V \) as \(e_{a_1} x_{a_1} \). Then an \(R \)-linear isomorphism

\[\Psi: M_{(2p)} \rightarrow M_{(2x)} \]

is defined by \(e_{a_1} x_{a_1} \rightarrow (x_{a_1}) \); clearly \(\Psi \) to \(\phi \) where \(t: M_{(2p)} \rightarrow M_{(2x)} \) is the transpose. If elements of \(V \) are represented by their corresponding matrices in \(M_{(2p)} \), then \(S(X,Y,Z) = T(Z,Y,X) \) corresponds to \(XYZ \) and \(\langle e_{i_1} x_{i_1} e_{j_1} y_{j_1} \rangle = t \).

4. **Proof of the Main Theorem.**

Before proving the Theorem we require some further lemmas. In what follows we denote \(D = \{ X \in V / T(X,X,X) = ||X||^2 X \} \) and write as \(e_{i_1} \) the matrix in \(M_{(2p)} \) with 1 in row \(i \) column \(a \) and zeros elsewhere.

Lemma 4.1. Let \(X \in V \) be non-zero. Then (i) \(X \in D \) if and only if \(\phi(X) \) has rank one. (ii) \(\|X\| = 1 \) and \(X,Y \in D \) then \(X+Y \in D \) if and only if \(Y = X \) on \(U \).

Proof. (i) Elementary considerations show that if \(A \in M_{(2p)} \) is non-zero then \(\lambda \lambda^T = (\lambda A^T \lambda^T) A \), if and only if \(A \) has rank one. Analogously we conclude (ii).

Lemma 4.2. Let \(R \) be a tensor of type \((1,3) \) on \(V \) with the symmetry properties of a Riemannian curvature tensor and satisfying \(\langle R(JX,JY)Z,W \rangle = \langle R(X,Y)Z,W \rangle \) on \(V \). Suppose for each \(X \in D \) and \(Y \in V \) orthogonal to \(X \), \(\langle R(X,JX)JY \rangle = 0 \). Then the sectional curvature determined by \(R \) is constant on \(D \).

Proof. Write \(K(X) \) for the holomorphic sectional curvature for any unit vector \(X \in V \). Also write \(R(X,Y,Z,W) = \langle R(Z,W)Y,X \rangle \). Now choose a unit vector \(X \in D \). Let \(Y = \psi X \) be a unit vector orthogonal to \(X \). Then \(X+Y \), \(X-Y \in D \), so by hypothesis \(\langle R(X+Y,J(X+Y)) \rangle \) \((X+Y), J(X-Y) \rangle = 0 \) and it follows easy that \(K(X) = K(Y) \). If \(X \in D \) then \(V = 2 \) and there exist only one sectional curvature for \((X,JX) \) and the case is trivial. If \(X \in D \) then \(V = 2 \). We prove that in this case we also have \(K(X) = K(Y) \) for all \(Y \). Let \(Y \) be perpedicular to \(X \) and \(Y \) belongs to \(V \). If \(p = 2 \) then the case is obvious and we have \(K(X) = K(Y) \), if \(p > 2 \) then given \(X \) and any \(Z \in V \) we have for any \(U \) perpedicular to \(X \) and \(Z \), \(K(U) = K(Z) \) and \(K(U) = K(X) \), therefore \(K(X) = K(Z) = K(U) \). Thus \(K \) is constant on \(D \), as required.
LEMMA 4.3. Define R as in Lemma 4.2 and suppose $R(X,JX)X = 0$ and $R(X,Y)T = 0$ for all $X, Y \in D$. Then $R = 0$ on V.

PROOF. We first show for any $U \in D$, $R(U^U, V^U)V^U = 0$. This depends only on the first of the above two conditions on R. Thus, by linearising the equation $R(X,JX)X = 0$ we obtain, for all $X, Y \in V^U$, $R(X+Y, JX+JY)(X+Y) = 0$.

Therefore

$$R(X,JX)X + 2R(X,JY)X = 0$$

(4.1)

Then (4.1) together with the Bianchi's identity applied to $R(X,JX)Y$, gives $R(X,Y)X = 0$. On replacing X, in this last equation, by $X+Z$ it follows that $R(X,Y)Z = 0$ for all $X, Y, Z \in V$. The second condition on R implies that, for any unit $U \in D$ and $X, Y \in V$

Then from Lemma 3.6 and its dual together with Lemma 3.8 we obtain $R(X,Y)U \in V_U + V_U$.

Next choose the basis $\{e_{i\alpha}\}$, $i = 1, \ldots, p; \alpha = 1, 2$ for V. We denote the subspace $V_{i\alpha}$ (resp. $V_{\overline{i}\overline{\alpha}}$) as V_i (resp. $V_{\overline{i}}$). We must show that R acting on basis vectors is zero. Since the above properties of R still apply when U is replaced by any basis vector, we know that for $i = 1, \ldots, p; \alpha = 1, 2$ and $X, Y \in V$,

$$R(V_i, V_i)V_i = R(V_i^\alpha, V_i^\alpha)V_i = 0,$$

(4.2)

$$R(X,Y)e_{i\alpha} \in V_\overline{i} + V_i$$

(4.3)

We now prove that each $R(V_i, V)V_i = 0$. Clearly, $e_{ja} + e_{jb} \in V_{1\alpha} + V_{2\alpha}$, so by (4.2) and (4.3)

$$0 = R(e_{1\alpha} + e_{2\alpha}, e_{ja} + e_{jb})(e_{1\alpha} + e_{2\alpha}) = R(e_{1\alpha}, e_{ja})e_{1\alpha} + R(e_{2\alpha}, e_{jb})e_{1\alpha}.$$

But (4.3) implies that $R(e_{1\alpha}, e_{ja})e_{1\alpha} \in V_{\overline{1}}$ and $R(e_{1\alpha}, e_{ja})e_{1\alpha} \in V_{\overline{2}}$. It follows that

$$R(e_{1\alpha}, e_{ja})e_{1\alpha} = 0, \quad i, j = 1, \ldots, p; \alpha, \beta = 1, 2$$

(4.4)

Also if $i \neq j$ and $\alpha \neq \gamma$ then (4.3) implies that for all $X, Y \in V$

$$<R(e_{1\alpha}, e_{j\gamma})X, Y> = <R(Y, X)e_{j\gamma}, e_{1\alpha}> = 0.$$

Thus for $i \neq j$ and $\alpha \neq \gamma$

$$R(e_{1\alpha}, e_{j\gamma}) = 0$$

(4.5)

Then as a consequence of (4.4) and (4.5) each $R(V_i, V)V_i = 0$. Since equations (4.2) and (4.3) are symmetric in V_i and V_i the same proof applies to give $R(V_i^\alpha, V_i^\alpha)V_i = 0$ for $\alpha = 1, 2$. The Bianchi identity then shows that...
R(V_1,V_1)V=R(V^2,V^2)V=0, and these two equations together with (4.5) prove that R=0 on V as required.

PROOF OF THEOREM 2.3. Under the conditions of the Theorem, suppose the unit vector V \in M satisfies T(V,V_m,V)=V and let V be the unit tangent vector field to the geodesic \gamma from m with initial tangent vector V_m. Then T(V,V,V)=V along \gamma and from equation (2.5) AJV=f(V)JV for some smooth function f on \gamma-{m}. It follows using equation (1.4) that if Y is a parallel vector field along \gamma normal to V then \langle R(V,JV)V,JY \rangle=0 on \gamma-{m} and hence at m by continuity. Now consider M_m as the vector space V in Proposition 3.1. The tensor T at m satisfies P_1,P_2,P_3 and, with the notation of Lemma 4.2 for each X\in D and Y orthogonal to X, \langle R(X,JX)X, JY \rangle = 0. Hence from Lemma 4.2, K is a constant, say c on D, and for all unit vectors X\in D, R(X,JX)X = -cJX. Next, it is clear from Proposition 3.1 and equation (2.2) that a second curvature R_1 is defined on M_m by

\[R_1(X,Y)Z = T(X,Y,Z) + T(Z,Y,X) - T(Y,X,Z) - T(Z,X,Y) \]

(4.6)

and R_1 also satisfies the conditions of Lemma 4.2 with respect to the given almost complex structure J on M restricted to M_m. Moreover R_1(X,JX)X = -cJX for any unit vector X\in D. The tensor R_2=R-cR_1 then satisfies the conditions of Lemma 4.2 and Lemma 4.3 note that R(X,Y)T=0 since T is a parallel tensor field on M and R_1(X,Y)T=0 is the corresponding algebraic property of any point of G_p,2(R). Thus by Lemma 4.3,

\[R=cR_1 \]

(4.7)

on M_m. But m is arbitrary so, defining R_1 on M by (4.6) we see that on M

\[R=fR_1 \]

(4.8)

for some function f, the Ricci tensor corresponding to R_1 is a multiple of the metric g, as can be seen either by direct computation ([6]) or by noting that G_p,2(\mathbb{R}) is an Einstein space. Hence from (4.8), (M,g) is an Einstein space and f=c on M. Then VR_1=0 implies VR=0 so (M,g) is locally symmetric space.

Suppose c=0, then (M,g) is flat. Conversely on any flat Kahler manifold M we can define T by

\[T(X,Y,Z)=g(X,Y)Z+g(X,JY)Z. \]

(4.9)

With M complete and simply connected as in the theorem, M is isometric to Euclidean space \mathbb{E}^{2p}. Next, suppose c > 0 and define g' and T' on (M,g) by g'=cg and T' = cT. Then the conditions of the theorem are satisfied with g',T' replacing g,T; further, since the curvature tensor R is unchanged by the homothety, we have from (4.6) and (4.7)
\(R(X,Y)Z = T'(X,Y,Z) + T'(Z,Y,X) - T'(Y,X,Z) - T'(Z,X,Y) \) \hspace{1cm} (4.10)

on \((M,g')\). We know that \((M,g')\) is a locally symmetric space and it is clear from Proposition 3.1 and equations (2.1), (2.2) and (4.10) that the tangent spaces at any two points of \(\mathbb{G}_{p,2}(\mathbb{R}) \) and \(M \) are related by a linear isomorphism which preserves inner products and the curvature tensors. Hence \(\mathbb{G}_{p,2}(\mathbb{R}) \) and \(M \) are locally isometric ([5], p. 265) and this extends to a global isometry when \(M \) is complete and simply connected since \(\mathbb{G}_{p,2}(\mathbb{R}) \) has these properties. Finally if \(c < 0 \) we clearly obtain the same result for the non compact dual of \(\mathbb{G}_{p,2}(\mathbb{R}) \) and the proof is complete.

REFERENCES