A VARIATIONAL PRINCIPLE FOR COMPLEX BOUNDARY VALUE PROBLEMS

ADNAN ATEF HAJJ

Department of Mathematics
U.A.E.University,Al-Ain
United Arab Emirates
(Received November 18, 1986)

ABSTRACT This paper provides a variational formalism for boundary value problems which arise in certain fields of research such as that of electricity, where the associated boundary conditions contain complex periodic conditions. A functional is provided which embodies the boundary conditions of the problem and hence the expansion (trial) functions need not satisfy any of them.

KEY WORDS AND PHRASES Variational principle, functional, stationary, boundary conditions complex functions, line integral.

1980 AMS SUBJECT CLASSIFICATION CODE. 35A15.

1. INTRODUCTION.

Motivated by complex periodic boundary conditions which arise in certain problems such as those of modelling the stator of a turbogenerator (see next section for detail), we give in this paper a variational formalism which takes into consideration such boundary conditions. We produce a functional which is stationary at the solution of a given boundary value problem for a class of expansion functions which do not satisfy any of the boundary conditions; these are satisfied only at the solution point. Three types of conditions are considered: 1) Dirichlet conditions, 2) Neumann or mixed conditions and 3) periodic conditions on parallel segments of the boundary.

Let R be a given complex domain with boundary Γ. Following the work of Delves and Hall [1], we split the boundary into four non-overlapping segments Γi, i = 1,2,3,4 and assume that periodicity conditions are imposed on the segments Γ3 and Γ4 such that for some fixed a, Γa = {y = x + a | x ∈ Γ3}. In this case we have the relations:

\[n_4(x + a) = (n_3, n_4)n_3(x) \]

and

\[\int_{Γ_4} I(y) \, ds = \int_{Γ_3} I(x + a) \, ds \] \hspace{1cm} (1.1)

where \(n_3 \) and \(n_4 \) are the unit outward normals to \(Γ_3 \) and \(Γ_4 \) respectively and \(\int ds \) is a line integral along the boundary with positive direction taken counterclockwise.

2. THE PROBLEM

Let the problem whose solution is sought be of the following form:
with the prescribed boundary conditions:

\[u(x) = g_1(x), \ x \in \Gamma_1 \]

\[\nabla u \cdot n(x) = qu(x) + g_2(x), \ x \in \Gamma_2 \]

\[u(x) = e^{i\theta} u(x + a), \ x \in \Gamma_3 \]

\[\nabla u \cdot n(x) = -e^{-i\theta} u_{n}(x + a), \ x \in \Gamma_3 \]

where \(\Gamma_2 \) and/or \(\Gamma_3 \) may be void.

In modelling the stator of a turbogenerator where the rotor rotates at angular frequency and is effectively a bar magnet generating a rotating magnetic field, periodic boundary conditions of the form:

\[\nabla u = \nabla u \]

arise for the first harmonic component; and the normal gradient condition has:

\[\nabla u \cdot n(x) = -e^{i\theta} \nabla u \cdot n(x + a) \]

where \(\theta \) is the sector angle. These two conditions are exactly the last two conditions of (2.1.b).

3. A FUNCTIONAL EMBODIFYING THE BOUNDARY CONDITIONS.

In this section we produce a functional which is stationary at the solution of (2.1) for a class of functions which do not satisfy any of the boundary conditions since these conditions are incorporated via suitable terms in the functional \(J \) given as:

\[
J(V) = \int_R [g^2 + BV^2 - 2gV] \, dx \\
+ 2 \int_{\Gamma_1} (g_1 - V)(\nabla V \cdot n) \, ds \\
- 2 \int_{\Gamma_2} [g_2 V^2 + g_3 V^2] \, ds \\
- \int_{\Gamma_3} \left[V(x) - e^{i\theta} V(x + a) \right] \left[\nabla V(x) - (n_3 \cdot n_4) e^{-i\theta} \nabla V(x + a) \right] \cdot n \, ds
\]

Next, it will be shown that if we expand the trial function \(V \) about the true solution \(u \) of (2.1): \(V = u + \varepsilon w \), where \(\varepsilon \) is a scalar and \(w \) is an arbitrary variation, then \(J(V) \) is stationary.

Define

\[G(\varepsilon) = J(u + \varepsilon w) \]

then

\[
\frac{dG(0)}{d\varepsilon} = 2 \int_R \left[\nabla w \cdot \nabla u + Bw u - gw \right] \cdot n \, dx \\
+ 2 \int_{\Gamma_1} [(g_1 - u)\nabla w - w\nabla u] \cdot n \, ds \\
- 2 \int_{\Gamma_2} (qu + g_2)w \, ds \\
- \int_{\Gamma_3} \left[u(x) - e^{i\theta} u(x + a) \right] \left[\nabla w(x) - (n_3 \cdot n_4) e^{-i\theta} \nabla u(x + a) \right] \cdot n \, ds \\
- \int_{\Gamma_3} \left[w(x) - e^{i\theta} w(x + a) \right] \left[\nabla u(x) - (n_3 \cdot n_4) e^{-i\theta} \nabla u(x + a) \right] \cdot n \, ds
\]

The first line integral in (3.2) reduces by Green's theorem and (2.1.a) to:
where we have written the line integral of (3.3) as the sum of four line integrals along the boundaries into which Γ has been decomposed. The integrals over Γ_1 and Γ_2 of (3.4) cancel the corresponding integrals over Γ_3 and Γ_4 in (3.2) taking into consideration the boundary conditions in (2.1.b). Also from (2.1.b), it is obvious that the first of the two line integrals over Γ_3 in (3.2) is equal to zero. What is left is to show that the last integral in (3.2) (hereafter referred to as LI) cancels the line integrals over Γ_3 and Γ_4 in (3.4). But

\[LI = -\int_{\Gamma_3} w(x) \nabla u(x) \cdot \mathbf{n} \, ds \]
\[-\int_{\Gamma_3} w(x)[-e^{-i\theta} \nabla u(x + a)] \cdot \mathbf{n} \, ds \]
\[-\int_{\Gamma_3} w(x + a)[-e^{i\theta} \nabla u(x)] \cdot \mathbf{n} \, ds \]
\[-\int_{\Gamma_3} (\nabla u(x + a)] \cdot \mathbf{n} \, ds \]

Using the relations (1.1) and the boundary conditions (2.1.b), we get:

\[LI = -2 \int_{\Gamma_3} w(x) \nabla u(x) \cdot \mathbf{n} \, ds - 2 \int_{\Gamma_4} w(x) \nabla u(x) \cdot \mathbf{n} \, ds \]

These line integrals over Γ_3 and Γ_4 cancel the corresponding ones in (3.4). Hence the functional J is stationary at the solution u.

4. MATRIX SET-UP.

To describe the matrix set-up stage, we consider for convenience and simplicity the solution of the following one-dimensional problem:

\[\frac{d^2}{dx^2} f(zx) + B(zx) f(zx) = G(zx), \quad -1 < x < 1 \]

(4.1.a)

Together with the boundary conditions:

\[f(-z) = a, \quad f(z) = \beta \]

(4.1.b)

where z is regarded as a parameter that takes any complex value.

We seek an approximate solution $f_N(zx)$ to $f(zx)$ of the form:

\[f_N(zx) = \sum_{n=1}^{N} a_n(z) h_n(x), \quad -1 < x < 1 \]

(4.2)

Then the problem represents a one-dimensional form of (2.1); and the functional J given in (3.1) reduces to:

\[J(V) = \int_{-1}^{1} [(V')^2 + BV^2 - 2GV] \, dx - 2[a - V(-1)]V'(-1) + 2[\beta - V(1)]V'(1) \]

(4.3)

The coefficients $a_n(z)$ are defined by the stationary point of J (at the solution where $V = f$); that is, by the equations:

\[L \tilde{a} = [A + B + S] \tilde{a} = \tilde{G} + \tilde{H} \]

(4.4.a)
where A, \ldots, and S are 3×3 matrices; h and μ are n-vectors, with components:

$$
A_{1,j} = \int_{-1}^{1} h_{1} h'_{j} \, dx, \quad B_{1,j} = \int_{-1}^{1} h_{1} B(zx) h_{j} \, dx, \quad G_{i} = \int_{-1}^{1} h_{i} G(zx) \, dx,
$$

$$
S_{1,j} = h_{1}(-1) h'_{j}(-1) + h_{j}(-1) h'_{1}(-1) - h_{1}(1) h'_{j}(1) - h_{j}(1) h'_{1}(1), \tag{4.4.b}
$$

$$
H_{i} = \alpha h'_{i}(-1) - \beta h'_{i}(1), \quad i,j = 1,2,\ldots,N.
$$

When using global expansion functions, it is desirable for stability reasons to use orthogonal polynomials (see Mikhlin [2]). Accordingly, in (4.2) we take

$$
h_{-2} = 1; \quad h_{-1} = x; \quad h_{n} = (1-x^2) T_{n}(x), \quad n = 0,1,2,\ldots,r \tag{4.5}
$$

where $r = N-3$ and $T_{n}(x)$ is the nth Chebyshev polynomial of the first kind. The reason for this choice of basis is the need to handle the derivative terms in the matrix A without introducing artificial singularities. To calculate the elements in (4.4.b), we expand the functions $B(zx)$ and $G(zx)$ by Chebyshev series and use Fast Fourier Techniques to approximate the expansion coefficients. Thence we relate the elements A_{ij}, B_{ij} and G_{i} of (4.4.b) to the coefficients of these expansions. This together with a numerical example will be considered in a subsequent paper.

While we do not attempt an error analysis here, the rapidity of convergence in calculating the matrix equation (4.4) has been considered formally by Delves and Mead [3], Freeman et al [4] and Delves and Bain [5]. In these papers it is shown that a complete characterisation of the convergence of the calculation can be given in terms of an assumed structure of the matrix L in (4.4) and the convergence of the Fourier coefficients of the right hand function $G(zx)$ in (4.1.a). Both a priori and a posteriori error estimates are provided by Delves [6] where a very similar treatment to the one given in this section is used for Fredholm integral equations and from which we take (ignoring the a priori estimate since it contains an unknown constant):

$$
A \text{ posteriori estimate: } \sim \frac{C}{s-1} N^{-(s-1)} \sim Na_{N} \tag{4.6}
$$

which is a standard bound; $s = \min(p,q)$ where p and q depend on the differentiability of $B(zx)$ and $G(zx)$. The procedure given in this section can easily be extended to two dimensions in a straightforward manner and details are omitted.

REFERENCES

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>March 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>September 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com