ON SOME CLASSES OF ANALYTIC FUNCTIONS

KHALIDA I. NOOR and HAILA MADIFER

Mathematics Department, Science College of Education for Girls, Sitteen Road, Malaz, Riyadh, Saudi Arabia.

(Received April 18, 1986)

ABSTRACT: Let m_1, m_2 be any numbers and let V_{m_1, m_2} be the class of functions of analytic in the unit disc $E=\{z: |z|<1\}$ for which

$$f'(z) = \frac{(S_1'(z))^{m_1}}{(S_2'(z))^{m_2}}$$

where S_1 and S_2 are analytic in E with $S_1'(0)=S_2'(0)=1$. Moulis [1] gave a sufficient condition and a necessary condition on parameters m_1 and m_2 for the class V_{m_1, m_2} to consist of univalent functions if S_1 and S_2 are taken to be convex univalent functions in E. In fact he proved that if $f \in V_{m_1, m_2}$ where S_1 and S_2 are convex and

$$m_1 = \frac{k+2}{4} e^{-i\alpha} (1-\rho) \cos \alpha, \quad m_2 = \frac{k-2}{4} (1-\rho) e^{-i\alpha} \cos \alpha, \quad 2|m_1 + m_2| \leq 1,$$

then f is univalent in E.

In this paper we consider the class V_{m_1, m_2} in more general way and show that it contains the class of functions with bounded boundary rotation and many other classes related with it. Some coefficient results, arclength problem, radius of convexity and other problems are proved for certain cases. Our results generalize many previously known ones.

KEY WORDS AND PHRASES. Univalent functions, boundary rotation, radius of convexity.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE, 30C32, 30C34

1. INTRODUCTION.

Let $V_k^\alpha(\rho)$ be the class of all functions f, analytic in $E=\{z: |z|<1\}$, $f'(0)=1, f(0)=0, f'(z)\neq 0$ such that for $z=\rho e^{i\theta}, 0<\rho<1$

$$\int_0^{2\pi} \left| \frac{\Re \left(zf'(z) \right)' - \rho \cos \alpha \rho \cos \alpha}{1-\rho} \right| d\theta < k\pi \cos \alpha,$$

where $k \geq 2, 0<\rho<1, \alpha$ real and $|\alpha| < \frac{\pi}{2}$.
The class \(V_k^\alpha(\rho) \) has been introduced and studied by Moulis in [1]. For \(\rho=0 \), we obtain the class \(V_k^\alpha \) introduced and studied in [2]. \(\rho=0 \) and \(\alpha=0 \) give us the well known class \(V_k \) of functions with bounded boundary rotation first introduced and discussed by Paatero [3] and Lowner [4]. Functions in \(V_k^\alpha \) and \(V_k^\alpha(\rho) \) may not possess boundary rotation.

Also a class \(T_k^\alpha(\rho) \) of analytic functions which is a generalization of \(V_k^\alpha(\rho) \) has been discussed in [5]. A function \(f \), analytic in \(E, f(0)=0=f'(0)-1 \) is in \(T_k^\alpha(\rho) \) if for \(z \in E \), there exists a function \(g \) in \(V_k^\alpha(\rho) \) such that

\[
\Re \frac{f'(z)}{g'(z)} > 0
\]

The cases when \(\rho=0 \) and \(\rho=0, \alpha=0 \) have been discussed in [6] and [7] respectively.

Definition 1.1

Let \(m_1 \) and \(m_2 \) be any numbers and \(S_1 \) and \(S_2 \) be analytic functions in \(E \) with \(S_1(0)=0=S_2(0) \) and \(S_1'(0)=1=S_2'(0) \). Then \(f \in V_{m_1,m_2} \) if and only if

\[
f'(z) = \frac{(S_1'(z))^{m_1}}{(S_2'(z))^{m_2}}
\]

We have the following special cases.

Case A. Let \(m_1 = \frac{k+2}{4}, m_2 = \frac{k-2}{4}, k>2 \) in (1.1). Then

(i) \(V_{m_1,m_2} = V_k(0) \), the class of functions with bounded boundary rotation if \(S_1 \) and \(S_2 \) are convex univalent functions. This was proved by Brannan in [8].

(ii) \(V_{m_1,m_2} \equiv T_k^0(0) = T_k(0) \) if \(S_1 \) and \(S_2 \) are close-to-convex univalent functions, see [7].

(iii) \(V_{m_1,m_2} \) coincides with \(V_k^\alpha \) if \(zS_1' \) and \(zS_2' \) are \(\alpha \)-spirallike functions. This result is shown in [2].

(iv) \(V_{m_1,m_2} \equiv T_k^\alpha \) if \(S_1 \) and \(S_2 \in T_k^\alpha(0) \), see [6] and \(V_{m_1,m_2} \equiv T_k^\alpha(\rho) \) if \(S_1 \) and \(S_2 \in T_k^\alpha(\rho) \), see [5].

Case B. Let \(S_1 \) and \(S_2 \) be convex univalent functions in (1.1). Then we have the following subcases:

(i) If \(m_1 = \frac{k+2}{4} e^{-i\alpha} \cos \alpha, m_2 = \frac{k-2}{4} e^{-i\alpha} \cos \alpha \), then \(f \in V_k^\alpha \) in (1.1). See [2].

(ii) If \(m_1 = \frac{k+2}{4}(1-\rho) e^{-i\alpha} \cos \alpha, m_2 = \frac{k-2}{4}(1-\rho) e^{-i\alpha} \cos \alpha \), then \(f \in V_k^\alpha(\rho) \) in relation (1.1). This is shown in [1].

2. **MAIN RESULTS**

We now proceed to prove the main results for the class \(V_{m_1,m_2} \). Wherever needed, certain restrictions on the parameters \(m_1 \) and \(m_2 \) for analytic functions \(S_1 \) and \(S_2 \) will be imposed.

Theorem 2.1

Let \(f \in V_{m_1,m_2} \) such that
where S_1 and S_2 are convex univalent in E. Let

$$f'(z) = \frac{(S_1'(z))^{m_1}}{(S_2'(z))^{m_2}}$$

where $0 < r < 1$ and $2m_1 \lambda > 1$, $m_1, m_2 > 0$

Then

$$\limsup_{r \to 1} \frac{2m_1 \lambda - 1}{(1-r)} I_\lambda (r) \leq A(m_1, m_2, \lambda)$$

where

$$A(m_1, m_2, \lambda) = \frac{2m_2 \lambda}{\pi^\lambda (2m_1 \lambda - 1) \Gamma(m_1 \lambda)}$$

Proof

$$I_\lambda (r) = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{S_1'(z)}{S_2'(z)} \right|^\lambda d\theta$$

Then $|S_2'(z)| \geq \frac{1}{2}$ by the distortion theorems for convex functions [9] and S_1' is subordinate to $(1-z)^{-2}$ in E. Consequently

$$I_\lambda (r) \leq \frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{S_1'(z)}{S_2'(z)} \right|^\lambda d\theta = (1+r)^{2m_2 \lambda} J_{2m_1 \lambda} (r)$$

Now it has been shown by Pommerenke in [10] that

$$J_\lambda (r) = \frac{\Gamma(p-1)}{2^{p-1} \Gamma^2(p)} \frac{1}{(1-r)^p-1}, \quad r > 1$$

Using the recurrence and duplication formulae for the Gamma function.

Substitution of (2.3) in (2.2) completes the proof.

Corollary 2.1

Let $m_1 = \frac{k+2}{4}$, $m_2 = \frac{k-2}{4}$. Then $f \in V_k$

and

$$\limsup_{r \to 1} \frac{1}{2} (\frac{k-1}{2}) \lambda - 1 I_\lambda (r) \leq A(k, \lambda),$$

where

$$A(k, \lambda) = \frac{\Gamma(\frac{1}{2} k \lambda - \frac{1}{2})}{\pi^\lambda (\frac{1}{2} k \lambda - 1) \Gamma(\frac{1}{4} k \lambda + \frac{1}{2})}$$
This result was proved in [8].

Theorem 2.2

Let $f \in V_{m_1, m_2}$ and S_1, S_2 be convex functions. Let $L(r)$ denote the length of the arc $f(r) = r$ given by the formula for $z = re^{i\theta}$.

$$L(r) = \int_0^{2\pi} |zf'(z)| d\theta$$

Then, for $m_1 > \frac{1}{2}$, $m_2 > 0$, we have

$$L(r) = \frac{1}{(1-r)^{2m_1-1}}$$

where $0(1)$ is a constant depending only on m_1 and m_2.

The proof follows immediately from Theorem 2.1 by taking $\lambda = 1$.

From Theorem 2.1 and the standard inequality [9, p. 11],

$$|a_n| \leq \frac{\pi}{n} (1- \frac{1}{2})$$

we have the following.

Theorem 2.3

Let $f \in V_{m_1, m_2}$ and be given by (1.1) with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ where S_1 and S_2 in (2.1) are convex, $m_1 > \frac{1}{2}, m_2 > 0$. Then for $n \geq 2$

$$\lim_{n \to \infty} \sup n^{2-2m_1} |a_n| \leq \frac{e^{2m_2} \Gamma(m_1 + \frac{1}{2})}{(2m_1-1) \Gamma(m_1)}$$

Corollary 2.2

If $m_1 = \frac{k+2}{4}$, $m_2 = \frac{k-2}{4}$ in Theorem 2.3 then $f \in V_k$ and

$$\lim_{n \to \infty} \sup \frac{1}{n^{\frac{1-k}{2}}} |a_n| \leq \frac{e^{\frac{1}{2}k} \Gamma(k+1)}{\pi^k (k) \Gamma(k+\frac{1}{2})}$$

This result was proved in [8].

Theorem 2.4

Let $f \in V_{m_1, m_2}$ with S_1 and S_2 convex and $m_1 > 1$, $m_2 > 0$. Let f be given by $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then for $n \geq 1$

$$|a_{n+1}| - |a_n| \leq C(m_1, m_2)^{2m_1-3} n$$

where $C(m_1, m_2)$ is a constant depending only on m_1 and m_2.

Proof

For $z_1 \in \mathbb{E}$ and $n \geq 1$, we have

$$|(n+1)z_1 a_{n+1} - na_n| = \frac{1}{2\pi n^{m_1+1}} \int_0^{2\pi} |z-z_1| |zf'(z)| d\theta, \quad z = re^{i\theta}$$

$$= \frac{1}{2\pi n^3} \int_0^{2\pi} |z-z_1| |S_1'(z)|^{m_1} |S_2'(z)|^{m_2} d\theta$$

(2.4)
It is known [9] that for convex univalent functions S_2
\[|S'_2(z)| \geq \frac{1}{(1+r)^2} \tag{2.5} \]

Also, by a result of Golusin [11], there exists a $z_1 \in \mathbb{E}$ with $|z_1| = r$
such that for all z, $|z| = r$
\[|z-z_1| |S_1^*(z)| \leq \frac{2r^2}{1-r^2}, \tag{2.6} \]

where $S_1^*(z) = zS_1'(z)$ is univalent

Using (2.5) and (2.6), (2.4) becomes
\[2m \frac{(n+1)a_{n+1} - na_n}{2\pi r^{n-1}} \left(\frac{2r^2}{1-r^2} \right) \leq \frac{2m_2-1}{\pi r^{n-3}} \cdot \frac{1}{2m_1-2} \]

where we have used subordination for the function S_1'.

Putting $|z_1| = r$, $r = \frac{n}{n+1}$, we obtain the required result.

Corollary 2.3

Taking $m_1 = \frac{k+2}{4}$, $m_2 = \frac{k-2}{4}$, $k \geq 2$, we obtain $f \in V_k$ and $\|a_n\| \leq C(k) n^{\frac{k-2}{2}}$, where $C(k)$ is a constant depending only on k.

Now we give the radius of convexity problem for the class V_{m_1, m_2}

where the functions S_1 and S_2 are in V_k.

Theorem 2.5

Let $f \in V_{m_1, m_2}$ such that
\[f'(z) = \frac{(S_1'(z))^{m_1}}{(S_2'(z))^{m_2}}, \]

where $S_1, S_2 \in V_k$ and $m_1, m_2 > 0$ and real. Then f is convex for $|z| < r$ where
\[r = \frac{1+m_2(1-\frac{k}{2})}{k(m_1+m_2)+2m_1-m_2(1+\frac{k}{2})-1} \tag{2.7} \]

Proof

From definition it easily follows that
\[\frac{(zf'(z))'}{f'(z)} = m_1 \frac{(zS_1'(z))'}{S_1'(z)} - m_2 \frac{(zS_2'(z))'}{S_2'(z)} + (1-m_1 + m_2) \]

Now, for $S_1 \in V_k$ it is known [12] that
\[\text{Re} \left(\frac{(zS_1'(z))'}{S_1'(z)} \right) \geq \frac{1-kr+r^2}{1-r^2} \tag{2.8} \]
Also, by the Paatero representation theorem [3] we have, for $S_2 \in V_k$,

\[
\frac{(zS_2'(z))'}{S_2'(z)} = \frac{k+2}{4} h_1(z) - \frac{k-2}{4} h_2(z), \text{ Re } h_1(z) > 0, \quad i=1,2, \text{ and } h_1(0) = 1
\]

so that

\[
\text{Re} \left(\frac{(zS_2'(z))'}{S_2'(z)} \right) \leq \left| \frac{(zS_2'(z))'}{S_2'(z)} \right| \leq \frac{k}{2} \frac{1+r}{1-r}
\]

Thus, using (2.8) and (2.9), we have

\[
\text{Re} \left(\frac{zf'(z)}{f'(z)} \right) < \frac{[1+m_2(1-\frac{k}{2}) - k(m_1+m_2)r + [2m_1-m_2(1+\frac{k}{2})-1]r^2}{1-r^2}
\]

and this gives us the required result.

Corollary 2.4

If $k=2$, then $S_1, S_2 \in V_2 = \mathbb{C}$, the class of convex functions and equation (2.7) reduces to

\[
1-2(m_1+m_2)r+(2m_1-2m_2-1)r^2=0
\]

and in this case if $m_1 = \frac{k+2}{4}, m_2 = \frac{k-2}{4}$ then V_{m_1, m_2} reduces to V_k and equation (2.7) reduces to the known result

\[
1-kr+r^2 = 0
\]

which was given in [12].

Corollary 2.5

If $m_1 > 0, m_2=0$, then f is convex for $|z| < r$, where r is the least positive root of

\[
1-kr+(2a-1)r^2 = 0
\]

This result has been proved in [13].

Theorem 2.6

Let $f \in V_{m_1, m_2}$ such that

\[
f'(z) = \frac{(zS_1'(z))^{m_1}}{(zS_2'(z))^{m_2}}
\]

and $S_1, S_2 \in V_k, m_1, m_2 > 0, m_1-m_2 \leq 1$.

Then $f \in V_{k'},$ where $k' = \{ m_1(k-2)+m_2(k+2)+2 \}$

From the above result, we deduce the following:

(i) If $S_1, S_2 \in V_2$, then $f \in V_{4m_2+2}$ and in this case if $m_1 = \frac{k+2}{4}, m_2 = \frac{k-2}{4}$, we have the well known result [8] that $f \in V_k$.

(ii) If $m_1 = \alpha, m_2=0, 0 \leq \alpha \leq 1$, then $f \in V_{\alpha(k-2)+2}$.
REFERENCES

4. LOWNER, K. Untersuchungen über die verzerrung die Konformen Abbildungen des Einheitskreises |z|<1, die durch Funktionen, mit nicht verschwindender Ableitert geleifert werden, Leip. Ber. 69 (1917), 99-106.

