ON SOME PROPERTIES OF POLYNOMIAL RINGS

H. AL-EZEH

Department of Mathematics
University of Jordan
Amman - Jordan

(Received February 4, 1986 and in its revised form April 29, 1986)

ABSTRACT. For a commutative ring with unity R, it is proved that R is a PF-ring if and only if the annihilator, \(\text{ann}(a) \), for each \(a \in R \) is a pure ideal in \(R \). Also it is proved that the polynomial ring, \(R[X] \), is a PF-ring if and only if \(R \) is a PF-ring. Finally, we prove that \(R \) is a PP-ring if and only if \(R[X] \) is a PP-ring.

KEY WORDS AND PHRASES. Polynomial Rings, Pure ideal, PF-ring, PP-ring, \(R \)-flatness, and idempotent elements.

1980 AMS SUBJECT CLASSIFICATION CODE: 13B.

1. INTRODUCTION.

All our rings in this paper are commutative with unity. An ideal \(I \) of a ring \(R \) is called pure if for any \(x \in I \), there exists \(y \in I \) such that \(xy = x \). A ring is called a PF-ring if every principal ideal \(aR \) is a flat \(R \)-module. A ring \(R \) is called a PP-ring if every principal ideal \(aR \) is a projective \(R \)-module. One can easily show that \(aR \) is projective if and only if the annihilator, \(\text{ann}(a) \), is generated by an idempotent element, (see [1], [2]).

First, we state a proposition characterizing flat \(R \)-modules elementwise. This is a well known result in commutative ring theory, (see [3]).

PROPOSITION 1. An \(R \)-module \(M \) is a flat \(R \)-module if and only if for any pair of finite subsets \(\{x_1, x_2, \ldots, x_n\} \) and \(\{a_1, a_2, \ldots, a_n\} \) of \(M \) and \(R \) respectively, such that \(\sum_{i=1}^{n} x_i a_i = 0 \) there exists elements \(z_1, \ldots, z_k \in M \) and \(b_{ij} \in R \); \(i = 1, 2, \ldots, k \), such that \(\sum_{j=1}^{k} b_{ij} a_i = 0 \), \(j=1, 2, \ldots, k \), and \(x_i = \sum_{j=1}^{k} z_j b_{ij} \), \(i = 1, 2, \ldots, n \).

In the following theorem we establish that \(R \) is a PF-ring if and only if \(\text{ann}(a) \) for each \(a \in R \) is a pure ideal.

THEOREM 1. For any ring \(R \), \(R \) is a PF-ring if and only if \(\text{ann}(m) \) for each \(m \in R \) is a pure ideal.

PROOF. Let \(x_1, x_2, \ldots, x_n \in mR \) and \(a_1, a_2, \ldots, a_n \in R \) with \(\sum_{i=1}^{n} x_i a_i = 0 \). Then there exists \(m_1, m_2, \ldots, m_n \in R \) such that \(x_i = m_i m_i \), \(i = 1, 2, \ldots, n \). So \(\sum_{i=1}^{n} m_i a_i = 0 \). Hence \(m \in \text{ann}(\sum_{i=1}^{n} m_i a_i) \).
Since \(\text{ann}(\sum_{i=1}^{n} m_{i}a_{i}) \) is a pure ideal, there exists \(b \in \text{ann}(\sum_{i=1}^{n} m_{i}a_{i}) \) such that \(bm = m \).

Now take \(m \in mR \) and \(bm_{1}, bm_{2}, \ldots, bm_{n} \in R \). These elements satisfy \(\sum_{i=1}^{n} bm_{i}a_{i} = 0 \) and \(bm_{1}m = m_{1}m = x_{1}, i = 1, 2, \ldots, n \). Therefore \(mR \) is a flat \(R \)-module.

Conversely, let \(b \in \text{ann}(m) \). Then \(mb = 0 \). Since \(bR \) is a flat \(R \)-module, there exists \(c \in bR \) such that \(dm = 0 \) and \(b = cd \). Now \(c = c_{1}b \), so \(b = cd = c_{1}d \). Moreover \(c_{1}d \in \text{ann}(m) \). Therefore \(\text{ann}(m) \) is a pure ideal.

Lemma 1. Let \(I_{1}, I_{2}, \ldots, I_{n} \) be a finite set of pure ideals of a ring \(R \), then \(\bigcap_{j=1}^{n} I_{j} \) is a pure ideal.

Proof. Let \(x \in \bigcap_{j=1}^{n} I_{j} \). Then \(x \in I_{j} \) for each \(j \). Thus there exists \(y_{1} \in I_{1}, y_{2} \in I_{2}, \ldots, y_{n} \in I_{n} \) with \(xy_{j} = x, j = 1, 2, \ldots, n \). Then \(y = y_{1}y_{2} \ldots y_{n} \in J \) and \(xy = x \).

Let \(R \) be a reduced (without nonzero nilpotent elements) ring. Let \(h(X) = h_{0} + h_{1}X + \ldots + h_{n}X^{n} \in R[X] \). Then \(\text{ann}(h(X)) \subseteq N[X] \), where \(N \) is the annihilator of the ideal generated by \(h_{0}, h_{1}, \ldots, h_{n} \), that is \(N = \text{ann}(h_{0}, h_{1}, \ldots, h_{n}) \) and \(\bigcap_{i=0}^{n} \text{ann}(h_{i}) \).

Moreover if \(f(X) = a_{0} + a_{1}X + \ldots + a_{m}X^{m} \in \text{ann}(h(X)) \) then \(a_{i}h_{j} = 0 \) for all \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \) (see [4]).

Lemma 2. Let \(R \) be a PF-ring, then \(R \) is reduced.

Proof. Let \(a \) be a nilpotent element in \(R \), \(a \neq 0 \). Let \(n \) be the least positive integer greater than 1 such that \(a^{n} = 0 \). Hence \(a \in \text{ann}(a^{n-1}) \). Since \(\text{ann}(a^{n-1}) \) is pure, there exists \(b \in \text{ann}(a^{n-1}) \) with \(ab = a \). Now \(o = ba^{-1} = a^{-1} \) since \(ba = a \). Contradiction. Thus \(R \) is reduced.

Theorem 2. The ring of polynomials, \(R[X] \), is a PF-ring if and only if \(R \) is a PF-ring.

Proof. Let \(f(X) = a_{0} + a_{1}X + \ldots + a_{m}X^{m} \in \text{ann}(h(X)) \) where \(h(X) = h_{0} + h_{1}X + \ldots + h_{n}X^{n} \in R[X] \).

Since \(R[X] \) has no nonzero nilpotent elements, \(a_{i} \in J = \bigcap_{j=0}^{n} \text{ann}(h_{j}) \), \(i = 0, 1, 2, \ldots, m \).

By Lemma 1, \(J \) is pure. Hence there exist \(b_{1}, b_{2}, \ldots, b_{m} \in J \) such that \(a_{i}b_{i} = a_{i} \) if \(i = 1, 2, \ldots, m \). Now our aim is to find \(c \in J \) such that \(c f(X) = f(X) \). We construct this element inductively.

First, \(a_{0}b_{0} = a_{0} \). Consider

\[
(a_{0} + a_{1}X) (b_{0} + b_{1} - b_{1}b_{0}) = a_{0}b_{0} + a_{0}b_{1} - a_{0}b_{1}b_{0} + a_{1}b_{0}X + a_{1}b_{1}X - a_{1}b_{0}b_{1}X
\]

\[
= a_{0} + a_{0}b_{1} - a_{0}b_{1} + a_{1}b_{0} + a_{1}b_{0}X + a_{1}X - a_{1}b_{0}X
\]

\[
= a_{0} + a_{1}X.
\]

Let \(c_{1} = b_{0} + b_{1} - b_{1}b_{0} \), then

\[
(a_{0} + a_{1}X + a_{2}X^{2}) (c_{1} + b_{2} - c_{1}b_{2}) = (a_{0} + a_{1}X)c_{1} + b_{2}(1 - c_{1})(a_{0} + a_{1}X) + a_{2}c_{1}X^{2} + a_{2}b_{2}X^{2} - a_{2}b_{2}c_{1}X^{2}
\]
\[a_0 + a_1 X + a_2 c_1 X^2 + a_2 b_2 X^2 - a_2 c_1 X^2 = a_0 + a_1 X + a_2 X^2 \]

Similarly, \(c_2 = c_1 + b_2 - c_1 b_2, \ldots \)

\[c_m = c_{m-1} + b_m - c_{m-1} b_m \] and

\[(a_0 + a_1 X + \ldots + a_1 X^i) c_i = a_0 + a_1 X + \ldots + a_1 X^i \]

\[i = 0, 1, 2, \ldots, m. \] Moreover \(c_0, c_1, \ldots, c_m \in J. \)

Thus there exist \(c = c_m \in J \) with \(cf(X) = f(X). \)

Conversely, assume \(R[X] \) is a PF-ring. Let \(a \in R \) and \(b \in \text{ann}(a). \)

Then \(b \in \text{ann}(a). \) Since \(R \) is a PF-ring there exists

\[g(X) = c_0 + c_1 X + \ldots + c_k X^k \in \text{ann}(a) \]

with \(b \) \(g(X) = b. \) Hence \(bc_0 = b \) and \(c_0 a = 0. \)

Consequently, \(R \) is a PF-ring.

THEOREM 3. \(R \) is a PP-ring if and only if \(R[X] \) is a PP-ring.

PROOF. It is enough to show that \(\text{ann}(f(X)) \) is generated by an idempotent \(R[X] \)

element in \(R[X], \) where \(f(X) = a_0 + a_1 X + \ldots + a_n X^n. \) Since \(R \) is reduced,

\[\text{ann}(f(X)) = N[X] \] where \(N \) is the annihilator of the ideal generated by \(R[X] \)

\[a_0, a_1, \ldots, a_n. \]

\[N = \text{ann}(a_0, a_1, \ldots, a_n) \]

\[= \bigoplus_{i=0}^{n} \text{ann}(a_i) \]

\[= \bigoplus_{i=0}^{n} e_i R, \quad e_i^2 = e_i \text{ because } R \text{ is a PP-ring.} \]

\[= (e_1 e_2 \ldots e_n) R \]

\[= e R, \] where \(e = e_1 e_2 \ldots e_n. \)

Hence \(\text{ann}(f(X)) = e R[X], \) \(e^2 = e \)

R[X]

Conversely, let \(R[X] \) be a PP-ring, let \(a \in R, \) then consider \(\text{ann}(a). \) Since \(R[X] \)

is a PP-ring, \(\text{ann}(a) = g(X) R[X], \) where \(g(X) = g(X). \) If \(g(X) = b_0 + b_1 X + \ldots + b_m X^m, \)

then \(b_0^2 = b_0. \) We claim \(\text{ann}(a) = b_0 R. \) Let \(b \in \text{ann}(a), \) then \(ba = 0. \) So \(b \in g(X) R[X]. \)

Thus \(b = (b_0 + b_1 X + \ldots + b_m X^m)(c_0 + c_1 X + \ldots + c_t X^t). \) Therefore \(b = b_0 c_0, \) that is \(b \in b_0 R. \)

For the other way around, let \(b \in b_0 R. \) Then \(b = b_0 c_0 \) for some \(c_0 \in R. \) Since \(b_0 a = 0. \) That is \(b \in \text{ann}(a). \) Thus \(\text{ann}(a) = b_0 R. \)
REFERENCES