DiffEomorphism Groups of Connected Sum of a Product of
Spheres and Classification of Manifolds

SAMUEL OMOLAYE AJALA

School of Mathematics
The Institute for Advanced Study and University of Lagos
Princeton, New Jersey 08540 and Akoka-Yaba
Lagos-Nigeria, West Africa

(Received April 21, 1986)

ABSTRACT. In [1] and [2] a classification of a manifold M of the type (n,p,l) was
given where $H_p(M) = H_{n-p}(M) \cong \mathbb{Z}$ is the only non-trivial homology groups. In this
paper we give a complete classification of manifolds of the type $(n,p,2)$ and we
extend the result to manifolds of type (n,p,r) where r is any positive integer
and $p = 3,5,6,7 \pmod{8}$.

KEY WORDS AND PHRASES. Pseudo-diffeotopy classes of diffeomorphisms, diffeotopy.

1980 AMS SUBJECT CLASSIFICATION CODE. 57R55

0. INTRODUCTION.

In [1] Edward C. Turner worked on a classification of a manifold M of the type (n,p,r) where this means that M is simply connected smooth n-manifold and
$H_p(M) = H_{n-p}(M) \cong \mathbb{Z}$ the only non-trivial homology groups except for the top and
bottom groups. He gave a classification of such manifolds for the case $r = 1$ and
$p = 3,5,6,7 \pmod{8}$. So Turner gave a classification of M of type $(n,p,1)$ and
$p = 3,5,6,7 \pmod{8}$. In [2] Hajime Sato independently obtained similar results for
M of the type $(n,p,1)$. The question which naturally follows is: Suppose $r = 2,3,4$
and so on, what is the classification of such M? i.e., what is the classification
of M of the type $(n,p,2)$, $(n,p,3)$ and so on? In this paper we will study
manifolds for the type $(n,p,2)$ and give its complete classification and then gen-
eralize the result to manifolds M of the type (n,p,r) where r is an integer
and $p = 3,5,6,7 \pmod{8}$.

In §1 we prove the following

THEOREM 1.1 Let M be an n-dimensional oriented, closed, simply connected
manifold of the type $(n,p,2)$ with $p = 3,5,6,7 \pmod{8}$. Then M is diffeomorphic
to $S^p \times D^{q+1} \# S^p \times D^{q+1} \cup S^p \times D^{q+1} \# S^q \times D^{p+1}$ where $n = p+q+1$,
h means connected
sum along the boundary as defined by Milnor and Karvair [3] and $h : S^p \times S^q \# S^p \times S^q \to
\to S^p \times S^q \# S^p \times S^q$ is a diffeomorphism.

In §2 we compute the group $\pi_0 \text{Diff}(S^p \times S^q \# S^p \times S^q)$ of pseudo-diffeotopy
classes of diffeomorphisms of $S^p \times S^q \# S^p \times S^q$.
Let $GL(2, \mathbb{Z})$ denote the set of 2×2 unimodular matrices and H the subgroup of $GL(2, \mathbb{Z})$ consisting of matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $ad - cd = 0 \mod 2$ and \mathbb{Z}_4 the subgroup of $GL(2, \mathbb{Z})$ of order 4 generated by $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We will adopt the notation $M_{p, q} = \text{Diff}(S^p \times S^q \# S^p \times S^q)$ and $M^+_{p, q}$ the subgroup of $M_{p, q}$ consisting of diffeomorphisms which induce identity map on all homology groups. We will then prove the following

Theorem 2.1

(i) If $p + q$ is even, then

$$\mathbb{Z}_4 \oplus \mathbb{Z}_4 \text{ if } p \text{ is even, } q \text{ is even}$$

$$GL(2, \mathbb{Z}) \oplus GL(2, \mathbb{Z}) \text{ if } p, q = 1, 3, 7$$

$$H \oplus H \text{ if } p, q \text{ odd but } \not\equiv 1, 3, 7$$

$$GL(2, \mathbb{Z}) \cup \mathbb{Z}_4 \text{ if } p \text{ is even, } q \text{ is odd but } \not\equiv 1, 3, 7$$

(ii) If $p + q$ is odd then

$$\mathbb{Z}_4 \oplus H \text{ if } p \text{ is even, } q \text{ odd but } \not\equiv 1, 3, 7$$

$$\mathbb{Z}_4 \oplus GL(2, \mathbb{Z}) \text{ if } p \text{ is even and } q = 1, 3, 7$$

We will further prove the following.

Theorem 2.15 If $p < q$ and $p = 3, 5, 6, 7 \mod 8$ the order of the group $\pi_0(M^+_{p, q})$ is twice the order of the group $\pi_q(SO(p+1)) \circ \mathbb{Z}^{p+q+1}$.

In §3 we apply the result in §2 to prove the following

Theorem 3.7 Let M be an n-dimensional, smooth, closed, oriented manifold such that $n = p+q+1$ and

$$H_i(M) = \begin{cases} \mathbb{Z} & i = 0, n \\ \mathbb{Z} \oplus \mathbb{Z} & i = p, q+1 \\ 0 & \text{elsewhere} \end{cases}$$

then if $p = 3, 5, 6, 7 \mod 8$ the number of differentiable manifolds up to diffeomorphism satisfying the above is equal to twice the order of the group $\pi_q(SO(p+1)) \circ \mathbb{Z}^{p+q+1}$. With induction hypothesis and technique used in §1 and §2, one can prove the following

Theorem 3.8 If M is a smooth, closed simply connected manifold of type (n, p, r) where $n = p+q+1$ and $p = 3, 5, 6, 7 \mod 8$, then the number of differentiable manifolds up to diffeomorphism satisfying the above is equal to

$$r \times \text{order of } \pi_q(SO(p+1)) \circ \mathbb{Z}^{p+q+1}$$

1. **MANIFOLDS OF TYPE (n, p, r)**

Definition: Let M be a closed, simply connected n-manifold. M is said to be of type (n, p, r) if

$$H_i(M) = \begin{cases} \mathbb{Z} & i = 0, n \\ \mathbb{Z}^r & i = p, q+1 \\ 0 & \text{elsewhere} \end{cases}$$

where $n = p+q+1$

We recall from Milnor and Kervaire [3]

Definition: Let M_1 and M_2 be $(p+q+1)$-manifolds with boundary and H^{p+q+1}
be half-disc, i.e.,

$$H^{p+q+1} = \left\{ (x = x_1, x_2, \ldots, x_{p+q+1} \mid x_1 \leq 1, x_1 \geq 0) \right\}$$

Let D^{p+q} be the subset of H^{p+q+1} for which $x_1 = 0$. We can choose embeddings

$$i_\alpha : (H^{p+q+1}, D^{p+q}) \rightarrow (M, \partial M), \quad \alpha = 1, 2$$

so that $i_2^{-1} i_1$ reverses orientation. We then form the sum $(M_1 - i_1(0)) \cup (M_2 - i_2(0))$ by identifying $i_1(tu)$ with $i_2((1-t)u)$ for $0 < t < 1, u \in S^{p+q} \cap H^{p+q+1}$. This sum is called the connected sum along the boundary and will be denoted by $M_1 \# M_2$.

REMARK: (1) Notice that the boundary of $M_1 \# M_2$ is $\partial M_1 \# \partial M_2$.

(2) $M_1 \# M_2$ has the homotopy type of $M_1 \vee M_2$: the union with a single point in common.

THEOREM 1.1 If M is a smooth manifold of type $(n, p, 2)$ where $n = p+q+1$ and $p = 3, 5, 6, 7$ (mod 8) then there exists a diffeomorphism

$$h : S^p \times S^q \# S^p \times S^q \rightarrow S^p \times S^q \# S^p \times S^q$$

which induce identity on homology such that M is diffeomorphic to

$$S^p \times D^{q+1} \# S^p \times D^{q+1}$$

PROOF: Let $[M, \lambda_1, \lambda_2]$ be a manifold of type $(n, p, 2)$ and λ_1, λ_2 represent the generators of the first and second summands of $H_p(M) = \mathbb{Z} \oplus \mathbb{Z}$. We can choose embeddings $\varphi_1 : S^p \rightarrow M$ so as to represent the homology class $\lambda_1, i = 1, 2$. Since $p < q$, two homotopic embeddings are isotopic. Let $\alpha_1 \in \pi_{p+q}(SO(q+1))$ be the characteristic class of the embedded sphere S^p, since $p = 3, 5, 6, 7$ (mod 8), the normal bundle of the embedded sphere is trivial. It follows that φ_1 extends to an embedding $\varphi_1' : S^p \times D^{q+1} \rightarrow M$ such that its homology class is λ_1. Then we can form a connected sum along the boundary of the two embedded copies of $S^p \times D^{q+1}$ to get $S^p \times D^{q+1} \# S^p \times D^{q+1}$. We then have an embedding $i : S^p \times D^{q+1} \# S^p \times D^{q+1} \rightarrow M$ such that $i_*[S^p] = \lambda_1 + \lambda_2 \in H_p(M)$. Notice that the boundary of $S^p \times D^{q+1} \# S^p \times D^{q+1}$ is $S^p \times S^q \# S^p \times S^q$ and since $S^p \times D^{q+1} \# S^p \times D^{q+1}$ has the homotopy type of $S^p \times D^{q+1} \# S^p \times D^{q+1}$ then it is easy to see that

$$H_*(S^p \times D^{q+1} \# S^p \times D^{q+1}) = \begin{cases} \mathbb{Z} & \text{for } i = 0 \\
\mathbb{Z} \oplus \mathbb{Z} & \text{for } i = p \end{cases}$$

It is also easy to see that

$$H_*(M-\text{Int}(S^p \times D^{q+1} \# S^p \times D^{q+1})) = \begin{cases} \mathbb{Z} & \text{for } i = 0 \\
\mathbb{Z} \oplus \mathbb{Z} & \text{for } i = p \end{cases}$$

Now since $S^p \times D^{q+1}$ is a trivial disc bundle over S^p then it has cross sections; hence, there exists orientation reversing diffeomorphism of $S^p \times D^{q+1} \# S^p \times D^{q+1}$ onto itself. Thus there exists an orientation reversing embedding

$$j : S^p \times D^{q+1} \# S^p \times D^{q+1} \rightarrow M-\text{Int}(S^p \times D^{q+1} \# S^p \times D^{q+1})$$
such that \(j_{p} = \lambda_{1} + \lambda_{2} \) and in fact this embedding is a homotopy equivalence. It follows by [4, Thm. 4.1] that \(S^{p} \times S^{q+1} \# S^{p} \times D^{q+1} \) is diffeomorphic to
\[
\partial M - \text{Int}(S^{p} \times D^{q+1} \# S^{p} \times D^{q+1}) .
\]
Consequently, it follows that \(M \) is diffeomorphic to
\[
S^{p} \times D^{q+1} \# S^{p} \times D^{q+1} \cup S^{p} \times D^{q+1} \# S^{p} \times D^{q+1}
\]
for an orientation preserving diffeomorphism
\[
h: S^{p} \times S^{q} \# S^{p} \times S^{q} \to S^{p} \times S^{q} \# S^{p} \times S^{q} .
\]
From the embeddings in the proof, it is clear that \(h \) induce identity on homology.

2. THE GROUP \(\tilde{\pi}_{0}(\text{Diff}(S^{p} \times S^{q} \# S^{p} \times S^{q})) \)

For convenience, we adopt the notation \(M_{p, q} = \text{Diff}(S^{p} \times S^{q} \# S^{p} \times S^{q}) \) and \(\tilde{\pi}_{0}(M_{p, q}) \) the subset of \(M_{p, q} \) consisting of diffeomorphisms of \(S^{p} \times S^{q} \# S^{p} \times S^{q} \) which induce identity on all homology groups.

DEFINITION: Let \(M \) be an oriented smooth manifold. \(\text{Diff}(M) \) is the group of orientation preserving diffeomorphisms of \(M \). Let \(f, g \in \text{Diff}(M) \), \(f \) and \(g \) are said to be pseudo-diffeotopic if there exists a diffeomorphism \(H \) of \(M \times I \) such that \(H(x, 0) = (f(x), 0) \) and \(H(x, 1) = (g(x), 1) \) for all \(x \in M \). The pseudo-diffeotopy class of diffeomorphisms of \(M \) is denoted by \(\tilde{\pi}_{0}(\text{Diff}(M)) \). We wish to compute
\[
\tilde{\pi}_{0}(M_{p, q}) \text{ for } p < q .
\]
If \(f, \in M_{p, q} \), then \(f \) induces an automorphism
\[
f_{\ast}: H_{\ast}(S^{p} \times S^{q} \# S^{p} \times S^{q}) \to H_{\ast}(S^{p} \times S^{q} \# S^{p} \times S^{q})
\]
of homology groups of \(S^{p} \times S^{q} \# S^{p} \times S^{q} \). Since pseudo-diffeotopic diffeomorphisms induce equal automorphism on homology then we have a well-defined homomorphism
\[
\hat{\psi}: \tilde{\pi}_{0}(M_{p, q}) \to \text{Auto}(H_{\ast}(S^{p} \times S^{q} \# S^{p} \times S^{q}))
\]
where \(\text{Auto}(H_{\ast}(S^{p} \times S^{q} \# S^{p} \times S^{q})) \) denotes the group of dimension preserving automorphisms of \(H_{\ast}(S^{p} \times S^{q} \# S^{p} \times S^{q}) \).

THEOREM 2.1 (i) If \(p+q \) is even then
\[
\#(\tilde{\pi}_{0})(M_{p, q}) = \begin{cases} Z_{4} \oplus Z_{4} & \text{if } p, q \text{ are even} \\ \text{GL}(2, Z) \oplus \text{GL}(2, Z) & \text{if } p, q \text{ are } 1, 3, 7 \\ H \circ H & \text{if } p, q \text{ are odd but } \neq 1, 3, 7 \\ \text{GL}(2, Z) \oplus H & \text{if } p = 1, 3, 7 \text{ and } q \text{ is odd but } \neq 1, 3, 7 \end{cases}
\]
The following propositions give the proof of Theorem 2.1.

PROPOSITION 2.1 If \(p+q \) is even, \(p \) is even, then
\[
\#(\tilde{\pi}_{0})(M_{p, q}) = Z_{4} \oplus Z_{4} .
\]

PROOF: Since \(p+q \) is even and \(p \) is even then \(q \) must also be even. We have
\[
H_{i}(S^{p} \times S^{q} \# S^{p} \times S^{q}) = \begin{cases} Z & \text{if } i = 0, p+q \\ Z \oplus Z & \text{if } i = p \text{ or } q \\ 0 & \text{elsewhere} \end{cases}
\]
Generators of \(H_{0}(S^{p} \times S^{q} \# S^{p} \times S^{q}) \) and \(H_{p+q}(S^{p} \times S^{q} \# S^{p} \times S^{q}) \) are mapped to the same generators but \(H_{p}(S^{p} \times S^{q} \# S^{p} \times S^{q}) = Z \oplus Z \). If \(f \in M_{p, q} \), we shall denote by \(\hat{\psi}(f)_{p} \) the automorphism \(f_{\ast}: H_{p}(S^{p} \times S^{q} \# S^{p} \times S^{q}) \to H_{p}(S^{p} \times S^{q} \# S^{p} \times S^{q}) \) induced by the image \(f \) under \(\hat{\psi} \) in dimension \(p \). Then \(\hat{\psi}(f)_{p} = f_{\ast}: Z \oplus Z \to Z \oplus Z \) is the induced
automorphism. If \(e_1, e_2 \) are the generators of the first and second summand of
\(H_p(S^p \times S^q \# S^p \times S^q) \) if \(\circ \) denotes the intersection then \(e_1 \circ e_1 = 0 \), \(e_2 \circ e_2 = 0 \),
\(e_1 \circ e_2 = 1 \) and \(e_2 \circ e_1 = -1 \). Let \(\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \in GL(2, Z) \), if \(\xi(f)_p \) takes \(e_1, e_2 \) to
\(e'_1, e'_2 \) respectively then \(e'_1 = a_1 e_1 + a_2 e_2 \) and \(e'_2 = a_3 e_1 + a_4 e_2 \) then
\[
\begin{align*}
e'_1 \circ e'_1 &= (a_1 e_1 + a_2 e_2) \cdot (a_1 e_1 + a_2 e_2) \\
&= a_1 a_1 e_1 \cdot e_1 + a_2 a_1 e_2 \cdot e_2 + a_2 a_2 e_2 \cdot e_1 + a_1 a_2 e_2 \cdot e_2 \\
&= a_1 a_1 e_1 \cdot e_1 + a_2 a_2 e_2 \cdot e_2 = a_1^2 - a_2^2 = 0.
\end{align*}
\]
Similarly \(e'_2 \circ e'_2 = 0 \) but
\[
\begin{align*}
e'_1 \circ e'_1 &= a_1 a_1 e_1 \cdot e_1 + a_2 a_1 e_2 \cdot e_2 + a_2 a_2 e_2 \cdot e_1 + a_1 a_2 e_2 \cdot e_2 \\
&= a_1 a_1 e_1 \cdot e_1 + a_2 a_2 e_2 \cdot e_2 = a_3 a_4 - a_3 a_4 = 1 \text{ since } GL(2, Z) \text{ is unimodular.}
\end{align*}
\]
the for \(p \) even \(\xi(f)_p \) is an element of a subgroup of \(GL(2, Z) \) generated by
\[
\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
\]
This subgroup has elements \(\{ (\pm 1 0, 0 \pm 1) \} \approx Z_4 \). Hence \(\xi(f)_p \in Z_4 \).
Similarly for \(i = q \) \(\xi(f)_q \in Z_4 \), it then follows that
\[
\xi(\pi_0(M, p, q)) = Z_4 \circ Z_4.
\]
We now show that \(Z_4 \circ Z_4 \subset \xi(\pi_0(M, p, q)) \). We need to show that the generators
of \(Z_4 \circ Z_4 \) can be realized as the image of \(\xi \). We shall adopt the notation
\((s^p \times s^q)_1 \# (s^p \times s^q)_2 \) where the subscripts 1 and 2 denote the first and second summands
of \(s^p \times s^q \# s^p \times s^q \) and let \(R_p \) and \(R_q \) be reflections of \(s^p \) and \(s^q \) respectively.
If \((x_1, y_1) \in (s^p \times s^q)_1 \) and \((x_2, y_2) \in (s^p \times s^q)_2 \), we define \(f \in M_{p, q} \)
\[
\begin{align*}
f(x_1, y_1) &= (R_p(x_2), R_q(y_2)) \\
f(x_2, y_2) &= (x_1, y_1)
\end{align*}
\]
In other words \(f((x_1, y_1)(x_2, y_2)) = ((R_p(x_2), R_q(y_2)), (x_1, y_1)) \)
\((x_1, y_1) \in (s^p \times s^q)_1 \) and \((x_2, y_2) \in (s^p \times s^q)_2 \).

For \(\xi(f)_p \in Aut H_p(M, p, q) \), if \(e_1, e_2 \) are the generators of the first and
second summands of \(H_p(s^p \times s^q \# s^p \times s^q) = Z \circ Z \) since \(f \) takes \(x_1 \) to \(R_p(x_2) \)
and \(f \) takes \(x_2 \) to \(x_1 \), then it is easily seen that \(\xi(f)_p(e_1) = -e_2 \) and
\(\xi(f)_p(e_2) = e_1 \). Hence \(e'_1 = -e_2 \) and \(e'_2 = e_1 \) so an \(e'_0 e'_1 = -e_2 \circ e_2 = 0 \),
\(e'_2 e'_1 = e_0 e_1 = 0 \), \(e'_0 e'_2 = -e_2 \circ e_1 = 1 \) and \(e'_0 e'_1 = e_0 \circ e_2 = -1 \) . Hence \(\xi \)
maps \(f \) in dimension \(p \) to \((0 1) \) which generates \(Z_4 \). Similar argument shows
that \(\xi \) maps \(f \) in dimension \(q \) to \((1 0 -1 -1) \) which generates \(Z_4 \). Then \(\xi \) maps
onto \(Z_4 \circ Z_4 \) hence the proof.

Proposition 2.2 If \(p+q \) is even but \(p, q = 1, 3, 7 \) then
\[
\xi(\pi_0(M, p, q)) = GL(2, Z) \circ GL(2, Z)
\]

Proof: From [5, Appendix B] and [6] one sees that \(GL(2, Z) \) is generated by
\[
\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
\]
Since \(p, q = 1, 3, 7 \) it follows by [7, §1] that there exist maps \(f: s^p \rightarrow SO(p+1) \) and
\(g: s^q \rightarrow SO(q+1) \) such that \(f \) and \(g \) have index +1.
We then define \(h \in M_{p,q} \)

\[
\begin{align*}
 h(x_1, y_1) &= (x_1, y_1) \\
 h(x_2, y_2) &= (f(x_1) \cdot x_2, g(y_1) \cdot y_2)
\end{align*}
\]

i.e., \(h((x_1, y_1), (x_2, y_2)) = ((x_1, y_1), (f(x_1) \cdot x_2, g(y_1) \cdot y_2)) \)

Since \(f \) has index +1 and \(h \) takes \(x_1 \) to \(x_1 \) and \(x_2 \) to \(f(x_1) \cdot x_2 \) then it follows by an easy application of \([7, \text{Prop. 1.2}] \) or \([6, \text{Prop. 2.3}] \) that \(\hat{\gamma}(h)_p \) is \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) also since \(g \) has index +1 and \(h \) takes \(y_1 \) to \(y_1 \) and \(y_2 \) to \(g(y_1) \cdot y_2 \)

then \(\hat{\gamma}(h)_q \) is \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \). Hence \(\hat{\gamma} \) maps \(h \) to \(\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\} \). We now define \(\alpha \in M_{p,q} \) by

\[
\begin{align*}
 \alpha(x_1, y_1) &= (R_p(x_2), R_q(y_2)) \\
 \alpha(x_2, y_2) &= (x_1, y_1)
\end{align*}
\]

i.e., \(\alpha((x_1, y_1), (x_2, y_2)) = ((R_p(x_2), R_q(y_2)), (x_1, y_1)) \)

Since \(\alpha \) takes \(x_1 \) to \(R_p(x_2) \) and \(x_2 \) to \(x_1 \) it follows from Proposition 2.1 that \(\hat{\gamma}(\alpha)_p \) is \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) and by similar reasoning \(\hat{\gamma}(\alpha)_q \) is \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \). This means that \(\hat{\gamma} \) maps \(\alpha \) to \(\left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\} \). Since \(GL(2, Z) \) is generated by \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) then it follows that for \(p, q = 1, 3, 7 \)

\[
\hat{\gamma}(\alpha((M_{p,q})) \approx GL(2, Z) \otimes GL(2, Z).
\]

Proposition 2.3 If \(p+q \) is even but \(p \) and \(q \) are odd but \(p, q \neq 1, 3, 7 \), then \(\hat{\gamma}(\alpha((M_{p,q})) \approx H \otimes H \).

Proof: By using Proposition 2.1 and \([8, \text{Lemma 5}] \) it is enough to produce a diffeomorphism in \(M_{p,q} \) whose image under \(\hat{\gamma} \) is \(\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \) in each of the dimensions \(p \) and \(q \). This is because \(\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) generate \(H \). However, \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) is trivially the image under \(\hat{\gamma} \) of identity map and reflections on each coordinate while \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) is by Proposition 2.1 the image under \(\hat{\gamma} \) of an element of \(M_{p,q} \). However, there exists a map \(\alpha : S^p \rightarrow SO(p+1) \) of index 2 by \([8] \) also is a map \(\beta : S^q \rightarrow SO(q+1) \) of index 2 and then we can define \(f \in M_{p,q} \) thus.

\[
\begin{align*}
 f(x_1, y_1) &= (x_1, y_1) \\
 f(x_2, y_2) &= (\alpha(x_1) \cdot x_2, \beta(y_1) \cdot y_2)
\end{align*}
\]

i.e., \(f((x_1, y_1), (x_2, y_2)) = ((x_1, y_1), (\alpha(x_1) \cdot x_2, \beta(y_1) \cdot y_2)) \).

It easily follows that since \(f \) takes \(x_1 \) to \(x_1 \) and takes \(x_2 \) to \(\alpha(x_1) \cdot x_2 \) with \(\alpha \) having index 2 then it follows by applying \([7, \text{Lemma 5}] \) that \(\hat{\gamma}(f)_p \) is \(\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \). Similar argument shows that \(\hat{\gamma}(f)_q \) is \(\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \); hence \(\hat{\gamma}(\alpha((M_{p,q})) \approx H \otimes H \).

Proposition 2.4 If \(p+q \) is even, \(p=1, 3, 7 \) but \(q \) is odd and \(\neq 1, 3, 7 \) then \(\hat{\gamma}(\alpha((M_{p,q})) = GL(2, Z) \otimes H \).

Proof: \(\left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \right\} \) generates \(GL(2, Z) \) while \(\left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \right\} \) generates \(H \), since \(q \neq 1, 3, 7 \) and by \([8] \) there exists \(\alpha : S^q \rightarrow SO(q+1) \) of index 2. If \(R_p \) is reflection of \(S^p \) then we define \(h \in M_{p,q} \).
DIFFEROMORPHISM GROUPS OF CONNECTED SUM

\[h(x_1, y_1) = (R_p(x_2), y_1) \quad (x_1, y_1) \in (S^p \times S^q)_1 \]
\[h(x_2, y_2) = (x_1, \alpha(y_1), y_2) \quad (x_2, y_2) \in (S^p \times S^q)_2 \]

Since \(h \) takes \(x_1 \) to \(R_p(x_2) \) and takes \(x_2 \) to \(x_1 \) it follows by Proposition 2.1 that \(\hat{h}(p)_p = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \); similarly \(h \) takes \(y_1 \) to \(y \), and \(y_2 \) to \(\alpha(y_1) \cdot y_2 \) and since \(\alpha \) has index 2, it follows that \(\hat{h}(q)_q = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \).

Now if \(R_q \) is a reflection on \(S^q \) and \(\beta : S^p \to SO_{p+1} \) is of index +1 then we define \(f \in \mathcal{M}_{p,q} \)

\[f(x_1, y_1) = (x_1, R_q(y_2)) \quad (x_1, y_1) \in (S^p \times S^q)_1 \]
\[f(x_2, y_2) = (\beta(x_1), x_2, y_1) \quad (x_2, y_2) \in (S^p \times S^q)_2 \]

then it is easy to see that \(\hat{f}(p)_p = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) and \(\hat{f}(q)_q = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) so the image of \(h \) under \(\hat{f} \) is \(\left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \right\} \) and the image of \(f \) under \(\hat{f} \) is \(\left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\} \) which generates \(H \) and \(\left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \) which generates \(GL(2,\mathbb{Z}) \) then it follows that \(\hat{f}(\mathcal{M}_{p,q}) \cong GL(2,\mathbb{Z}) \) \(\oplus H \). Hence the proof.

REMARK. For \(p \) odd but \(\neq 1,3,7 \) and \(q=1,3,7 \), we have the same result as above using the same method but since by assumption \(p < q \) only one dimension (consequently one manifold) comes in here, viz \(p=5 \), \(q=7 \), i.e., \(S^5 \times S^7 \# S^5 \times S^7 \).

Combination of Propositions 2.1, 2.2, 2.3, and 2.4 proves Theorem 2.1(i).

PROPOSITION 2.5 Suppose \(p+q \) is odd and \(p \) is even and \(q \) odd \(\neq 1,3,7 \) then
\[\hat{f}(\mathcal{M}_{p,q}) \cong Z_4 \oplus H \]
PROOF: Again since \(q = 1, 3, 7 \) by [6, Prop. 2.4] there exists a map \(\alpha: S^q \to SO(q+1) \) of index 1. Since \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) generates \(Z_4 \) and \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) generate \(GL(2, Z) \) we define elements of \(M_{p, q} \) that are mapped onto these generators. Let \(h \in M_{p, q} \) be defined thus

\[
\begin{align*}
&h(x_1, y_1) = (R_p(x_2), y_1) \quad \text{where} \quad (x_1, y_1) \in (S^p \times S^q)_1 \\
&h(x_2, y_2) = (x_1, \alpha(y_1), y_2) \quad (x_2, y_2) \in (S^p \times S^q)_2
\end{align*}
\]

i.e., \(h(x_1, y_1), (x_2, y_2) = ((R_p(x_2), y_1), (x_1, \alpha(y_1), y_2)) \) where \(R_p \) is the reflection of \(S^p \) Then it is easy to see that \(\hat{\psi}(h) = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \) while \(\hat{\psi}(h) = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \) Also one can define \(f \in M_{p, q} \) as

\[
\begin{align*}
&f(x_1, y_1) = (x_1, R_q(x_2)) \quad \text{where} \quad (x_1, y_1) \in (S^p \times S^q)_1, (x_2, y_2) \in (S^p \times S^q)_2 \\
&f(x_2, y_2) = (x_2, y_1)
\end{align*}
\]

i.e., \(f((x_1, y_1), (x_2, y_2)) = ((x_1, R_q(x_2)), (x_2, y_1)) \) where \(R_q \) is a reflection of \(S^q \) and so it is easily seen that \(\hat{\psi}(f) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) while \(\hat{\psi}(f) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) so \(h \) is mapped by \(\hat{\psi} \) to \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) while \(f \) is mapped by \(\hat{\psi} \) to \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) and since these sets of matrices generate \(GL(2, Z) \) and \(Z_4 \) respectively then \(\hat{\psi}(M_{p, q}) \approx Z_4 \otimes GL(2, Z) \). Combining Propositions 2.5 and 2.6, we obtain Theorem 2.1 (ii).

REMARK. If \(p \) is odd but \(\neq 1, 3, 7 \) and \(q \) is even, we get the same result as in Proposition 2.5 using equivalent method. Also if \(p = 1, 3, 7 \) and \(q \) is even, we obtain the same result as that of Proposition 2.6.

Since \(M_{p, q}^+ \) denotes the subgroup of \(M_{p, q} \) consisting of diffeomorphisms of \(S^p \times S^q \# S^p \times S^q \) which induce identity map on all homology groups, it follows that \(M_{p, q}^+ \) is the kernel of the homomorphism \(\hat{\psi} \). We now compute \(M_{p, q}^+ \). We define a homomorphism

\[
G: \widetilde{\pi}_0(M_{p, q}^+) \longrightarrow \pi_p SO(q+1)
\]

Given an element \([f] \in \widetilde{\pi}_0(M_{p, q}^+) \), since \(\hat{\psi}(f) \) is identity, it means that if \(i(S^p \times \{p_0\}) \) is the usual identity embedding of \(S^p \times \{p_0\} \) into \(S^p \times S^q \# S^p \times S^q \) where \(p_0 \) is a fixed point in \(S^q \) far away from the connected sum, then the sphere \(S^p \times \{p_0\} \) in \(S^p \times S^q \# S^p \times S^q \) represents a generator of the homology \(H_p(S^p \times S^q \# S^p \times S^q) \approx \mathbb{Z} \otimes \mathbb{Z} \). Since \(\hat{\psi}(f) \) is identity, it follows that \(f(S^p \times p_0) \) is homologous to \(i(S^p \times p_0) \) and since \(p < q \) and by Hurewicz theorem, \(f \) and \(i \) are homotopic and in fact with the dimension restriction, they are diffeotopic. By tubular neighborhood theorem, \(f \) is diffeotopic to a map say \(f'' \) such that \(f''(S^p \times D^q) = S^p \times S^q \) where \(f''(x, y) = (x, \alpha(f''(x)) \cdot y) \) and \(\alpha(f'') : S^p \longrightarrow SO(q) \). Let \(i : SO(q) \longrightarrow SO(q+1) \) be the inclusion map and \(i_* : \pi_p SO(q) \longrightarrow \pi_p SO(q+1) \) the induced map on the homotopy groups. Then we define

\[
G[f] = i_* (\alpha(f''))
\]

LEMMA 2.7 \(G \) is well-defined.

PROOF: Let \(f, h \in M_{p, q}^+ \) such that \(f \) and \(h \) are pseudo-diffeotopic then \(f \cdot h^{-1} \in M_{p, q}^+ \) is pseudo-diffeotopic to the identity. If \(G[f] = i_* \alpha(f'') \) and
Diffeomorphism Groups of Connected Sum

Let \(f(x,y) = (x, \alpha(f')(x) \cdot y) \) and \(h(x,y) = (x, \alpha(h')(x) \cdot y) \) for \((x,y) \in \mathbb{S}^p \times \mathbb{S}^q\) then it follows that

\[
f^{-1}(x,y) = (x, \alpha(f')(x) \cdot y) \quad (x,y) \in \mathbb{S}^p \times \mathbb{S}^q.
\]

We wish to show that \(i_* \alpha(f') = i_* \alpha(h') \). Since \(G(f) = i_* \alpha(f') \in \pi_p \mathbb{S}^{p+1} \) and \(G(h) = i_* \alpha(h') \in \pi_p \mathbb{S}^{p+1} \) then we can define maps \(f_1, h_1 \in \text{Diff}(\mathbb{S}^p \times \mathbb{S}^q) \) such that

\[
f_1(x,y) = (x, \alpha(f')(x) \cdot y) \quad \text{and} \quad h_1(x,y) = (x, \alpha(h')(x) \cdot y)
\]

then consider \(f_1^{-1} h_1 \in \text{Diff}(\mathbb{S}^p \times \mathbb{S}^q) \). Since \(f^{-1} h^{-1} \) is pseudo-diffeotopic to identity so is \(f_1 h^{-1} \) by its definition.

Hence \(f_1^{-1} h_1 \in \text{Diff}(\mathbb{S}^p \times \mathbb{S}^q) \) is diffeotopic to the identity hence it extends to a diffeomorphism \(g \in \text{Diff}(\mathbb{S}^p \times \mathbb{S}^q) \) such that \(g|\text{Diff}(\mathbb{S}^p \times \mathbb{S}^q) = f_1^{-1} h_1 \). Let \(S_\beta \) denote the q-sphere bundle over \(p+1 \)-sphere with characteristic map \(\beta : \mathbb{S}^p \rightarrow \mathbb{S}^{p+1} \). Then we have

\[
S = \mathbb{S}^{p+1} \times \mathbb{S}^q = \mathbb{D}^{p+1} \times \mathbb{S}^q \cup \mathbb{D}^{p+1} \times \mathbb{S}^q
\]

so this gives a q-sphere bundle over a \(p+1 \)-sphere with the characteristic class of the equivalent plane bundle being \(i_* \alpha(f') \cdot i_* \alpha(h')^{-1} \). However, \(f_1^{-1} h_1 \) extends to \(g \in \text{Diff}(\mathbb{S}^p \times \mathbb{S}^q) \) then we have

\[
S = \mathbb{S}^{p+1} \times \mathbb{S}^q = \mathbb{D}^{p+1} \times \mathbb{S}^q \cup \mathbb{D}^{p+1} \times \mathbb{S}^q
\]

Hence we define a map \(H : \mathbb{S}^{p+1} \times \mathbb{S}^q \rightarrow S \)

\[
H(x,y) = \begin{cases}
(x,y) & \text{if } (x,y) \in \mathbb{D}^{p+1} \times \mathbb{S}^q \\
(x,y) & \text{if } (x,y) \in \mathbb{D}^{p+1} \times \mathbb{S}^q
\end{cases}
\]

\(H \) is well-defined and is a diffeomorphism. This means that \(S = i_* \alpha(f') \cdot i_* \alpha(h')^{-1} \) is a trivial q-sphere bundle over \(S = i_* \alpha(f') \cdot i_* \alpha(h')^{-1} \).

It then follows from \([1, \text{Lemma 3.6(b)}]\) that \(i_* \alpha(f') = i_* \alpha(h') \). Hence \(G \) is well-defined. It is easy to see that \(G \) is a homomorphism.

Lemma 2.8 \(G(\pi_0(\mathbb{M}^+_{p,q})) = i_* (\pi_p(\mathbb{S}^{p+1})) \).

Proof: By the definition of \(G \), \(G(\pi_0(\mathbb{M}^+_{p,q})) = i_* (\pi_p(\mathbb{S}^{p+1})) \) we then show that \(i_* (\pi_p(\mathbb{S}^{p+1})) \subseteq G(\pi_0(\mathbb{M}^+_{p,q})) \). If \(\alpha \in \pi_p(\mathbb{S}^{p+1}) \) then \(a = \alpha \) where \(a : \mathbb{S}^p \rightarrow \mathbb{S}^{p+1} \) then we can define \(f \in \pi_p(\mathbb{M}^+_{p,q}) \) by

\[
f(x,y) = \begin{cases}
(x, a(x) \cdot y) & \text{if } (x,y) \in (\mathbb{S}^p \times \mathbb{S}^q)_1 \\
(x,y) & \text{if } (x,y) \in (\mathbb{S}^p \times \mathbb{S}^q)_2
\end{cases}
\]

since \(a \in \pi_p(\mathbb{M}^+_{p,q}) \) then \(f \in \pi_0(\mathbb{M}^+_{p,q}) \) and so \(G(f) = \alpha \in \pi_p(\mathbb{S}^{p+1}) \).

In fact since \(p < q \), then \(\pi_p(\mathbb{S}^q) = 0 \) hence it follows from the exact sequence \(\pi_p \mathbb{S}^1 \rightarrow \pi_p \mathbb{S}^q \rightarrow \pi_p(\mathbb{S}^{p+1}) \rightarrow \pi_p \mathbb{S}^q \rightarrow \cdots \) that \(i_* \) is an epimorphism and so it is easily seen that \(G \) is surjective. Hence the proof.
The next lemma is similar to [6, Lemma 3.3].

Lemma 2.9 Let \(u \in \ker G \), then there exists a representative \(f \in M^+_{p,q} \) of \(u \) such that \(f \) is identity on \(S^p \times D^q \).

Proof: If \(p < q-1 \), then \(\pi_{p+1}(S^q) = 0 \) and also \(\pi_p(S^q) = 0 \) and so it follows from the exact sequence

\[
\cdots \to \pi_{p+1}(S^q) \to \pi_p(S \cap D^q) \to \pi_p(S \cap D^q+1) \to \pi_p(S^q) \to \cdots
\]

that \(\iota^*_p \) is an isomorphism hence if \(u = \{ f \} \in \ker G \) then \(G(u) = \iota^*_p(\alpha(f')) = 0 \) implies \(\alpha(f') = 0 \). Since \(f(x,y) = (x, \alpha(f')(x), y) \) for \((x,y) \in S^p \times D^q \) then it means \(f(x,y) = (x,y) \) hence \(f \) is identity on \(S^p \times D^q \). However, in general let \(g \in M^+_{p,q} \) be defined thus, if \(S^p \times D^q_+ \), \(S^p \times D^q_- \) are subsets of \((S^p \times S^q)_1 \), away from the connected sum in \(M^+_{p,q} \), we then define

\[
g(x,y) = \begin{cases} (x, \alpha(f')^{-1}(x), y) & \text{for } (x,y) \in S^p \times D^q_+ \text{ and } S^p \times D^q_- \subset (S^p \times S^q)_1 \\ (x,y) & \text{for } (x,y) \in (S^p \times S^q)_2
\end{cases}
\]

since \(\iota^*_p(\alpha(f')) \in \pi_p(S \cap (S^q_1+1)) \) we define \(g' \in M^+_{p,q} \) by

\[
g'(x,y) = \begin{cases} (x, \iota^*_p(\alpha(f'))^{-1}(x), y) & \text{if } (x,y) \in (S^p \times S^q)_1 \\ (x,y) & \text{if } (x,y) \in (S^p \times S^q)_2
\end{cases}
\]

then \(g \) and \(g' \) are diffeotopic and since \(u \in \ker G \), \(G(u) = 0 = \iota^*_p(\alpha(f')) \) then \(g' \) is pseudo-diffeotopic to the identity and so follows that \(g \) is also pseudo-diffeotopic to the identity in \(M^+_{p,q} \). Then the composition \(g \circ f \) is pseudo-diffeotopic to \(f \) and clearly by the definition of \(g \), \(g \circ f \) keeps \(S^p \times D^q_+ \) fixed and represents \(u \) because it is pseudo-diffeotopic to \(f \). Hence the proof.

We now wish to compute \(\ker G \). To do this, we define a homomorphism

\[
N : \text{Ker } G \longrightarrow \text{ker } (\text{Diff}^+(S^p \times S^q))
\]

and show that \(N \) is surjective. Here we adopt the notation \(\text{Diff}^+(S^p \times S^q) \) to mean the set of all diffeomorphisms of \(S^p \times S^q \) to itself which induce identity on all homology groups. Given \(u \in \text{Ker } G \), let \(f \in M^+_{p,q} \) be its representative then it follows from Lemma 2.9 that we can take \(f \) to be identity on \(S^p \times D^q \). So we have a map

\[
f : (S^p \times S^q)_1 \# (S^p \times S^q)_2 \longrightarrow (S^p \times S^q)_3 \# (S^p \times S^q)_4 \,
\]

such that \(f \) is identity on \(S^p \times D^q \subset (S^p \times S^q)_1 \).

Using the technique introduced by Milnor [9] and [3], we perform the spherical modification on the domain \((S^p \times S^q)_1 \# (S^p \times S^q)_2 \) that removes \(S^p \times D^q \subset (S^p \times S^q)_1 \) and replaces it with \(S^p+1 \times S^q-1 \). Clearly we obtain \((S^p \times S^q)_2 \) since \(S^p \times D^q \subset S^p+1 \times S^q-1 \) is diffeomorphic to \(S^p+q \). Since \(f \) is the identity on \(S^p \times D^q \), we can assume that \(f(S^p \times D^q) = S^p \times D^q \subset (S^p \times S^q)_3 \) and then perform the corresponding spherical modification on the range \((S^p \times S^q)_3 \# (S^p \times S^q)_4 \) to obtain \((S^p \times S^q)_4 \). After this modification we are then left with a diffeomorphism say \(f' \) of \((S^p \times S^q)_1 \) onto \((S^p \times S^q)_4 \), i.e., \(f' \in \text{Diff}(S^p \times S^q) \) since \(f \in M^+_{p,q} \) then \(f' \in \text{Diff}^+(S^p \times S^q) \).

So we define \(N[f] = \{ f' \} \).
LEMMA 2.10 N is well-defined.

Proof: Let \(f, g \in \text{Ker } G \) such that \(f \) is pseudo-diffeotopic to \(g \), then \(f \) is identity on \(S^p \times D^q \) and \(g \) is also identity on \(S^p \times D^q \). Since \(f \) is pseudo-diffeotopic to \(g \) then there exists a diffeomorphism

\[
F \in \text{Diff}((S^p \times S^q \# S^p \times S^q) \times I)
\]

such that \(F \) is identity on \(S^p \times D^q \times I \) and \(F | (S^p \times S^q \# S^p \times S^q) \times 0 = f \) while \(F | (S^p \times S^q \# S^p \times S^q) \times 1 = g \). If we now perform the spherical modification on the domain \((S^p \times S^q)_1 \# (S^p \times S^q)_2 \times I \) of \(F \) by removing \(S^p \times D^q \times I \subset (S^p \times S^q)_1 \times I \) and replacing it with \(S^p \times D^q \times I \subset (S^p \times S^q)_2 \times I \), we then obtain the manifold \((S^p \times S^q)_2 \times I \) and since \(F \) is identity on \(S^p \times D^q \times I \), we then perform the corresponding modification on the range \((S^p \times S^q)_2 \# (S^p \times S^q)_4 \times I \) by removing \(S^p \times D^q \times I \subset (S^p \times S^q)_3 \times I \) and replacing it with \(D^p+1 \times S^q \times I \) to obtain \((S^p \times S^q)_4 \times I \). We then obtain a diffeomorphism

\[
F' : (S^p \times S^q) \times I \longrightarrow (S^p \times S^q) \times I
\]

i.e., \(F' \in \text{Diff}^+((S^p \times S^q) \times I) \) hence \(N(F) = F' \) and \(F' | (S^p \times S^q) \times 0 = f' \) and \(F' | (S^p \times S^q) \times 1 = g' \) hence \(f' \) is pseudo-diffeotopic to \(g' \) and so \(N \) is well-defined.

It is easy to see that \(N \) is a homomorphism.

LEMMA 2.11 \(N \) is surjective.

Proof: Let \(h' \in \text{Diff}^+((S^p \times S^q)) \), we need to find a diffeomorphism \(h \in \mathbb{M}^p_{q,q} \) such that \(N(h) = h' \). If \(D^{p+q} \) is a disc in \(S^p \times S^q \) then we can assume \(h' \) is identity on \(D^{p+q} \) then we have \(h' \in \text{Diff}^+((S^p \times S^q) - D^{p+q}) \). We then define \(h \in \mathbb{M}^p_{q,q} \) thus

\[
h(x, y) = \begin{cases}
(x, y) & \text{if } (x, y) \in (S^p \times S^q)_1 - D^{p+q} \\
h'(x, y) & \text{if } (x, y) \in (S^p \times S^q)_2 - D^{p+q}
\end{cases}
\]

where \(\mathbb{M}^p_{q,q} = \text{Diff}^+((S^p \times S^q)_1 \# (S^p \times S^q)_2 \times I) \) as earlier stated. \(h \) is well-defined and \(h \in \mathbb{M}^p_{q,q} \). Since \(h \) is identity on \((S^p \times S^q)_1 \) then it is identity on \(S^p \times D^q \subset (S^p \times S^q)_1 \) hence \(h \in \text{Ker } G \) and clearly \(N(h) = h' \) and so \(N \) is surjective.

We recall from \([6, \S 3]\) the homomorphism

\[
B : \pi_0 \text{Diff}^+((S^p \times S^q)) \longrightarrow \pi_0 \text{SO}(q+1)
\]

which is similarly defined as homomorphism \(G \) and where Sato gave a computation of \(\text{Ker } B \). We will apply this result of \(\text{Ker } B \) to the next lemma.

LEMMA 2.12 \(\text{Ker } N \) is in one-to-one correspondence with \(\text{Ker } B \).

Proof: Let \(f \in \text{Ker } B \), we will produce a diffeomorphism \(f' \in \mathbb{M}^p_{q,q} \) such that \(f' \in \text{Ker } N \). Since \(f \in \text{Ker } B \) then \(f \in \text{Diff}^+((S^p \times S^q)) \) and \(f | S^p \times D^q = \text{identity} \). We define a diffeomorphism \(f' : (S^p \times S^q)_1 \# (S^p \times S^q)_2 \times I \longrightarrow (S^p \times S^q)_3 \# (S^p \times S^q)_4 \times I \) by

\[
f'(x, y) = \begin{cases}
f(x, y) & \text{if } (x, y) \in (S^p \times S^q)_1 - D^{p+q} \\
(x, y) & \text{if } (x, y) \in (S^p \times S^q)_2 - D^{p+q}
\end{cases}
\]

\(f' \) is well-defined and \(f' \in \mathbb{M}^p_{q,q} \). Since \(f' = f \) on \((S^p \times S^q)_1 \), and since \(f | (S^p \times D^q) \subset (S^p \times S^q)_1 \) is identity then it follows that \(f' | (S^p \times D^q) = \text{identity} \) and so \(f' \in \text{Ker } G \). However, using \(S^p \times D^q \subset (S^p \times S^q)_1 \) to perform spherical modification on both sides of the domain and range of \(f' \) and the fact that \(f' \) is the identity on \((S^p \times S^q)_2 \) we clearly see that \(N(f') = \text{identity} \in \text{Diff}((S^p \times S^q)_2 \times I) \) hence \(f' \in \text{Ker } N \).
Conversely let \(f \in \text{Ker } N \), then \(N(f) = f' \in \tilde{\pi}_0^{\text{Diff}^+(S^p \times S^q)} \). We want to show that \(f' \in \text{Ker } B \). Since \(f \in \text{Ker } N \) then it means the image of \(f \) under \(N \) is trivial hence \(N(f) = f' \) is pseudo-diffeotopic to the identity. We now consider \(B(f') \) where \(B : \tilde{\pi}_0^{\text{Diff}^+(S^p \times S^q)} \rightarrow \pi_p^{\text{SO}(q+1)} \) is defined in [6] similar to our homomorphism \(G \). Since \(f' \in \text{Diff}^+(S^p \times S^q) \) and \(p < q \) then \(f'|S^p \times S^q = S^p \times S^q \) where \(f'(x,y) = (x, b(f')(x), y) \) for \((x,y) \in S^p \times S^q \) and \(b(f') : S^p \rightarrow \text{SO}(q) \). If \(i : \text{SO}(q) \rightarrow \text{SO}(q+1) \) is the inclusion map and \(i_* : \pi_p^{\text{SO}(q)} \rightarrow \pi_p^{\text{SO}(q+1)} \) is the induced homomorphism then \(B(f') = i_* b(f') \in \pi_p^{\text{SO}(q+1)} \).

However since \(f' \) is pseudo-diffeotopic to the identity then let \(H : S^p \times S^q \rightarrow S^p \times S^q \times I \) be the pseudo-diffeotopy between \(f' \) and identity \(\text{id} \).

Then \[
\begin{align*}
D^{p+1} \times S^q & \rightarrow D^{p+1} \times S^q \rightarrow D^{p+1} \times S^q \times I \\
\text{id} & \rightarrow \text{id} \\
\text{id}_1 & \rightarrow \text{id}_2 \\
\end{align*}
\]
is the required diffeomorphism between \(D^{p+1} \times S^q \times I \rightarrow D^{p+1} \times S^q \times S^q \). where \(\text{id}_1(x, y, z) = (x,y,1), \text{id}_2(x, y, z) = (x,y) \) and \(\text{id}_2(x, y, z) = (x,y,1) = (x,y) \). However, consider \(S^{q+1}_b(f') \) the q-sphere bundle over a \((p+1)\)-sphere whose characteristic class of the equivalent normal bundle is \(i_* b(f') \in \pi_p^{\text{SO}(q+1)} \) hence \(S^{q+1}_b(f') = D^{p+1} \times S^q \cup D^{p+1} \times S^q \approx S^{p+1} \times S^q \) by the above diffeomorphism and since \(p < q \) it follows by [1, Prop. 3.6] that \(i_* b(f') = 0 \).

Hence \(f' \in \text{Ker } B \) and so \(\text{Ker } B \) is in one-to-one correspondence with \(\text{Ker } B \).

Since \(N \) is surjective by Lemma 2.11 then we have

Lemma 2.13 The order of the group \(\text{Ker } G \) equals the order of the direct sum group

\[
\text{Ker } B \oplus \tilde{\pi}_0^{\text{Diff}^+(S^p \times S^q)}
\]

Also since \(G \) is surjective by Lemma 2.8 then it is easily seen that

Lemma 2.14 The order of \(\tilde{\pi}_0^{\text{Diff}^+(M^+_{p,q})} \) is equal to the order of the direct sum group

\[
\pi_p^{\text{SO}(q+1)} \oplus \text{Ker } B \oplus \tilde{\pi}_0^{\text{Diff}^+(S^p \times S^q)}
\]

However one can easily deduce from [6, §4]

Lemma 2.15 \(\text{ker } B \approx \pi_q^{\text{SO}(p+1)} \oplus \emptyset^{p+q+1} \)

Also from [6, Thm. II] and [1, Thm. 3.10] we have

Lemma 2.16 \(\tilde{\pi}_0^{\text{Diff}^+(S^p \times S^q)} = \pi_p^{\text{SO}(q+1)} \oplus \pi_q^{\text{SO}(p+1)} \oplus \emptyset^{p+q+1} \)

Combining Lemmas 2.12, 2.13, 2.14, 2.15, and 2.16, we obtain

Theorem 2.17 For \(p < q \), the order of the group \(\tilde{\pi}_0^{\text{Diff}^+(M^+_{p,q})} \) equals twice the order of the group \(\pi_p^{\text{SO}(q+1)} \oplus \pi_q^{\text{SO}(p+1)} \oplus \emptyset^{p+q+1} \).

3. CLASSIFICATION OF MANIFOLDS

Consider the class of manifolds \(\{M, \lambda_1, \lambda_2\} \) where \(M \) is a manifold of type
(n, p, 2) where \(n = p+q+1 \) and \(p = 3, 5, 6, 7 \) (mod 8) and \(\lambda_1, \lambda_2 \) are the generators of \(H_p(M) = \mathbb{Z} \oplus \mathbb{Z} \). By the proof of Theorem 1.1 we have an embedding \(\varphi_i : S^p \times D^{q+1} \to M \) which represents the homology class \(\lambda_i \) \(i = 1, 2 \). If we then take the connected sum along the boundary of the two embedded copies of \(S^p \times D^{q+1} \) we have an embedding

\[
i : S^p \times D^{q+1} \# S^p \times D^{q+1} \to M
\]

such that \(i_*[S^p] = \lambda_1 + \lambda_2 \)

Two of such manifolds \(\{M, \lambda_1, \lambda_2\} \) and \(\{M', \lambda_1', \lambda_2'\} \) will be said to be equivalent if there is an orientation preserving diffeomorphism of \(M \) onto \(M' \) which takes \(\lambda_1 \) to \(\lambda_1' \) \(i = 1, 2 \). Let \(\mathcal{M}_n \) be the equivalent class of manifolds satisfying these conditions. This equivalent class which is also the diffeomorphism class has a group structure. The operation is connected sum along the boundary \(S^p \times S^{q+1} \# S^p \times S^q \) of \(S^p \times D^{q+1} \# S^p \times D^{q+1} \). If \(\{M, \lambda_1, \lambda_2\}, \{M', \lambda_1', \lambda_2'\} \in \mathcal{M}_n \), then let

\[
i_1 : S^p \times D^{q+1} \# S^p \times D^{q+1} \to M
\]

be an orientation preserving embedding such that

\[
i_1_*[S^p] = \lambda_1 + \lambda_2 \]

and since there is an orientation reversing diffeomorphism of \(S^p \times D^{q+1} \# S^p \times D^{q+1} \) to itself (because \(S^p \times D^{q+1} \) is a trivial \(q+1 \)-disc bundle over \(S^p \)) then we have an orientation reversing embedding \(i_2 : S^p \times D^{q+1} \# S^p \times D^{q+1} \to M' \) such that

\[
i_2_*[S^p] = \lambda_1' + \lambda_2'.
\]

We now obtain \(M \# M' \) from the disjoint sum

\[
(M - \text{Int } i_1(S^p \times D^{q+1} \# S^p \times D^{q+1})) \cup (M' - \text{Int } i_2(S^p \times D^{q+1} \# S^p \times D^{q+1}))
\]

by identifying \(i_1(x) \) with \(i_2(x) \) for \(x \in S^p \times S^q \# S^p \times S^q \). We will call this operation the connected sum along double p-cycle. Where the \(2p \) in \(M \# M' \) means that we are identifying along the boundary of embedded copies of connected sum along the boundary of two copies of \(S^p \times D^{q+1} \). It is easy to see that \(H_p(M \# M') \approx \mathbb{Z} \oplus \mathbb{Z} \). Since we have identified \(i_1_*[S^p] \) with \(i_2_*[S^p] \) we can define

\[
i_*[S^p] = \lambda_1 + \lambda_2 \]

the generators of \(H_p(M \# M') \) then we see that \(M \# M' \in \mathcal{M}_n \).

Lemma 3.1 The connected sum along the double p-cycle is well-defined and associative.

Proof: We need to show that the operation does not depend on the choice of the embeddings. Suppose there is another embedding \(\varphi'_i : S^p \times D^{q+1} \to M \) which represents the homology class \(\lambda_i \) \(i = 1, 2 \) and gives a corresponding embedding \(i'_1 : S^p \times D^{q+1} \# S^p \times D^{q+1} \to M \). By the tubular neighborhood theorem \(\varphi'_1(S^p \times D^{q+1}) \) and \(\varphi'_1(S^p \times D^{q+1}) \) differ only by rotation of their fiber, i.e., by an element of \(\pi_p SO(q+1) = 0 \) since \(p = 3, 5, 6, 7 \) (mod 8) hence the two embeddings are isotopic and so the corresponding embeddings

\[
i_1 : S^p \times D^{q+1} \# S^p \times D^{q+1} \to M \quad \text{and} \quad i'_1 : S^p \times D^{q+1} \# S^p \times D^{q+1} \to M
\]

are isotopic.

The definition does not therefore depend on the choice of \(i_1 \). With similar argument it does not depend on \(i_2 \). The connected sum is therefore well-defined.

Associativity is easy to check.
LEMMA 3.2 If \([M, \lambda_1, \lambda_2], [M_1, \lambda_1, \lambda_2] \in \mathcal{M}_n\), such that they are equivalent. If \([M', \lambda_1', \lambda_2'] \in \mathcal{M}_n\) then \((M, #M', \lambda_1, \lambda_2, \# \lambda_1', \# \lambda_2')\) is equivalent to \((M_2, #M', \lambda_1', \lambda_2, \# \lambda_1', \# \lambda_2')\).

PROOF: Since \(M, M_1\) are equivalent in \(\mathcal{M}_n\) then there exists an orientation preserving diffeomorphism \(f: M \rightarrow M_1\) which carries \(\lambda_1\) to \(\lambda_1\) and \(\lambda_2\) to \(\lambda_2\) hence it carries the embedding \(\varphi_i(S^p \times D^{q+1})\) to the corresponding embedding \(\varphi_i'(S^p \times D^{q+1})\) \(i = 1, 2\) and so \(f\) carries the embedding \(i(S^p \times D^{q+1} # S^p \times D^{q+1}) \subset M\) to the embedding \(i'(S^p \times D^{q+1} # S^p \times D^{q+1}) \subset M_1\) hence \(f\) induces a diffeomorphism

\[
f': M - Int i(S^p \times D^{q+1} # S^p \times D^{q+1}) \rightarrow M_1 - Int i'(S^p \times D^{q+1} # S^p \times D^{q+1})
\]

which carries \(\lambda_1\) to \(\lambda_1\) and \(\lambda_2\) to \(\lambda_2\).

Trivially we have the identity map

\[
id: M' - Int i'(S^p \times D^{q+1} # S^p \times D^{q+1}) \rightarrow M' - Int i(S^p \times D^{q+1} # S^p \times D^{q+1})
\]

which carries \(\lambda_1\) to \(\lambda_1\) and \(\lambda_2\) to \(\lambda_2\). We then take the connected sum along their boundary \(S^p \times S^q \# S^p \times S^q\) to have \(M \# M'\) which is disjoint sum of \(2p\)

\[M - Int i(S^p \times D^{q+1} # S^p \times D^{q+1}) \cup M' - Int i'(S^p \times D^{q+1} # S^p \times D^{q+1})\]

by identifying \(i(x)\) and \(i'(x)\) for \(x \in S^p \times S^q \# S^p \times S^q\). Similarly \(M_1 \# M_2\) is the disjoint sum of

\[M_1 - Int i_1(S^p \times D^{q+1} # S^p \times D^{q+1}) \cup M' - Int i_1'(S^p \times D^{q+1} # S^p \times D^{q+1})\]

by identifying \(i_1(x)\) and \(i_1'(x)\) for \(x \in S^p \times S^q \# S^p \times S^q\). Clearly we have a diffeomorphism

\[g: M \# M' \rightarrow M_1 \# M_2\]

which is \(f'\) on \(M\) and identity of \(M'\) and \(g\) carries \(\lambda_1, \# \lambda_1\) to \(\lambda_1, \# \lambda_1\) and \(\lambda_2, \# \lambda_2\) to \(\lambda_2, \# \lambda_2\). Hence \([M \# M', \lambda_1, \# \lambda_1, \lambda_2, \# \lambda_2]\) is equivalent to \([M_1 \# M_2, \lambda_1, \# \lambda_1, \lambda_2, \# \lambda_2]\) in \(\mathcal{M}_n\). That proves the lemma.

If we now take two copies of \(S^p \times D^{q+1} # S^p \times D^{q+1}\) and identify the two copies on their common boundaries by the identity map, we will obtain the manifold \(S^p \times S^q \# S^p \times S^q\), i.e., \(S^p \times S^q \# S^p \times S^q = (S^p \times D^{q+1} # S^p \times D^{q+1}) \cup (S^p \times D^{q+1} # S^p \times D^{q+1})\) where \(id=\text{identity: } S^p \times S^q \# S^p \times S^q \rightarrow S^p \times S^q \# S^p \times S^q\). If \(\lambda_0, \lambda_0\) are the generators of \(H_p(S^p \times S^q # S^p \times S^q) = \mathbb{Z} \oplus \mathbb{Z}\) and \(-\lambda_1 + (-\lambda_2) \in H_p(-M) = \mathbb{Z} \oplus \mathbb{Z}\) where \(i_1[S^p] = -\lambda_1 + \lambda_2\) and \(i: M \rightarrow -M\) is the orientation reversing diffeomorphism then we have the following.

LEMMA 3.3 \(\mathcal{M}_n\) is a group with identity element \((S^p \times S^{q+1} # S^p \times S^{q+1}, \lambda_0, \lambda_0)\) and for \((M, \lambda_1, \lambda_2) \in \mathcal{M}_n\) \((-M, -\lambda_1, -\lambda_2)\) is the inverse element.

To be able to prove our main theorem later, we need to investigate \(\tilde{\text{Diff}}(S^p \times D^{q+1} # S^p \times D^{q+1})\). As in the case of \(\tilde{\text{Diff}}(M, p, q)\), we define a homomorphism \(\tilde{\phi} : \tilde{\text{Diff}}(S^p \times D^{q+1} # S^p \times D^{q+1}) \rightarrow \text{Auto}\,(H_*(S^p \times D^{q+1} # S^p \times D^{q+1}))\) by induced automorphism of homology groups. Since \(S^p \times D^{q+1} # S^p \times D^{q+1}\) has the homotopy type of \(S^p \times D^{q+1} \vee S^p \times D^{q+1}\) then

\[
H_\ast(S^p \times D^{q+1} # S^p \times D^{q+1}) = \begin{cases} \mathbb{Z} & \text{if } i = 0 \\ \mathbb{Z} \oplus \mathbb{Z} & \text{if } i = p \end{cases}
\]
Using similar ideas in §2, it is easy to prove the following.

Lemma 3.4

\[
\tilde{\tau}'(\tilde{\alpha}_0(Diff(S^p \times D^{q+1} # S^p \times D^{q+1}))) = \begin{cases}
 \mathbb{Z}_4 & \text{if } p \text{ is even} \\
 GL(2, \mathbb{Z}) & \text{if } p = 1, 3, 7 \\
 \mathbb{H} & \text{if } p \text{ is odd but } \neq 1, 3, 7
\end{cases}
\]

Let \(\tilde{\alpha}_0(Diff(S^p \times D^{q+1} # S^p \times D^{q+1})) \) be the set of all diffeomorphisms of \(S^p \times D^{q+1} # S^p \times D^{q+1} \) which induce identity automorphisms on its homology. Then it follows that \(\tilde{\tau}'_0(Diff(S^p \times D^{q+1} # S^p \times D^{q+1})) \) is the kernel of \(\tilde{\tau}' \). We define a homomorphism

\[
G' : \pi_0 SO(q+1) \longrightarrow \tilde{\tau}_0 Diff_r^+(S^p \times D^{q+1} # S^p \times D^{q+1})
\]

If \(\alpha \in \pi_0 SO(q+1) \) and \(\alpha = [a] \) then we define a map

\[
g_a : S^p \times D^{q+1} # S^p \times D^{q+1} \longrightarrow S^p \times D^{q+1} # S^p \times D^{q+1}
\]

by

\[
g_a(x, y) = \begin{cases}
 (x, a(x), y) & \text{for } (x, y) \in (S^p \times D^{q+1})_1 \\
 (x, a(x), y) & \text{for } (x, y) \in (S^p \times D^{q+1})_2
\end{cases}
\]

\(g_a \) is clearly well-defined and it is a diffeomorphism and since \(g_a \) keeps \(S^p \) fixed, it induces identity on all homology groups hence \(g_a \in Diff_r^+(S^p \times D^{q+1} # S^p \times D^{q+1}) \).

We will define \(G'([\alpha]) = \{g_a\} \)

Lemma 3.5 \(G' \) is well defined.

Proof: If \(a' \in \pi_0 SO(q+1) \) such that \(a \) is homotopic to \(a' \) and let \(H : S^p \times I \longrightarrow SO(q+1) \) be the homotopy such that \(H(S^p \times 0) = a \) and \(H(S^p \times 1) = a' \) then we construct a diffeomorphism \(F \) of \((S^p \times D^{q+1} # S^p \times D^{q+1}) \times I \) by

\[
F(x, y, t) = \begin{cases}
 (x, H(x, t), y) & (x, y) \in (S^p \times D^{q+1})_1 \\
 (x, H(x, t), y) & (x, y) \in (S^p \times D^{q+1})_2
\end{cases}
\]

This is the diffeotopy which connects \(g_a \) and \(g_{a'} \).

Lemma 3.6 \(G' \) is surjective.

Proof: Let \(\{f\} \in \tilde{\tau}_0 Diff_r^+(S^p \times D^{q+1} # S^p \times D^{q+1}) \) then \(f \) induces identity on all homology groups. However \(H_\delta(S^p \times D^{q+1} # S^p \times D^{q+1}) \approx \mathbb{Z} \oplus \mathbb{Z} \) and so if \(\lambda_1 \) and \(\lambda_2 \) represents the generators of the first and second summand and the embeddings

\[
i_1 : S^p \times \{p_0\} \longrightarrow S^p \times D^{q+1} # S^p \times D^{q+1} \quad \text{and} \quad i_2 : S^p \times \{p_0\} \longrightarrow S^p \times D^{q+1} # S^p \times D^{q+1}
\]

represents the homology class \(\lambda_1 \) and \(\lambda_2 \) respectively, since \(f \) induces identity on homology then \(f(S^p \times \{p_0\}) \) and \(i_1(S^p \times \{p_0\}) \) are homologous. Since \(p < q \) and by Hurewicz theorem \(i_1 \) and \(f \circ i_1 \) are homotopic, by Haefliger [10] and by the diffeotopy extension theorem and tubular neighborhood theorem, there exists \(f' \) in the diffeotopy class of \(f \) such that \(f'(x, y) = (x, a(x), y) \) for \((x, y) \in (S^p \times D^{q+1})_1 \) where \(S^p \times D^{q+1} \) is the tubular neighborhood of \(S^p \times \{p_0\} \) and \(a : S^p \longrightarrow SO(q+1) \). Similar argument applies to the embedding \(i_2 : S^p \times \{p_0\} \longrightarrow S^p \times D^{q+1} # S^p \times D^{q+1} \) and
so we have a map \(f" \) in the diffeotopy class of \(f \) hence in the diffeotopy class of \(f' \) and so \(f" \) must be of the form \(f"(x,y) = (x,a(x) \cdot y) \) where \((x,y) \in (S^p \times D^{q+1})_2 \).

It follows that

\[
((x,a(x) \cdot y) \quad (x,y) \in (S^p \times D^{q+1})_1
\]

\[
((x,a(x) \cdot y) \quad (x,y) \in (S^p \times D^{q+1})_2
\]

Hence \(G' \) is surjective.

One can easily deduce from Lemma 3.6 that \(\tilde{\pi}_0 \text{Diff}^+(S^p \times D^{q+1} \# S^p \times D^{q+1}) \) is a factor group of \(\pi_p(SO(p+q+1)) \).

THEOREM 3.7 Let \(M \) be an \(n \)-dimensional closed simply connected manifold of type \((n,p,2)\) where \(n = p+q+1 \) with \(p = 3,5,6,7 \) \((\mod 8)\) then the number of differentiable manifolds satisfying the above conditions up to diffeomorphism is twice the order of the direct sum group \(\pi_p(SO(p+q+1)) \).

PROOF: We define a map \(C : \tilde{\pi}_0(M^+_{p,q}) \rightarrow \mathcal{M}_n \) and show that \(C \) is an isomorphism. Let \(\{f\} \in \pi_0(M^+_{p,q}) \) then \(f \) is a diffeomorphism of \(S^p \times S^q \# S^p \times S^q \) which induce identity on homology. We then take two copies \((S^p \times D^{q+1} \# S^p \times D^{q+1})_1 \) and \((S^p \times D^{q+1} \# S^p \times D^{q+1})_2 \) of \(S^p \times D^{q+1} \# S^p \times D^{q+1} \) and attach them on the boundary by \(f \) to have \((S^p \times D^{q+1} \# S^p \times D^{q+1})_1 \cup (S^p \times D^{q+1} \# S^p \times D^{q+1})_2 \). An orientation is chosen to be compatible with \((S^p \times D^{q+1} \# S^p \times D^{q+1})_1 \) and the manifold obtained belongs to the group \(\mathcal{M}_n \). The generators of the \(p \)-dimensional homology group is fixed to be the one represented by the usual embedding \(S^p \times \{p_0\} \rightarrow (S^p \times D^{q+1})_1 \subset (S^p \times D^{q+1} \# S^p \times D^{q+1})_1 \) and \(S^p \times \{p_0\} \rightarrow (S^p \times D^{q+1})_2 \subset (S^p \times D^{q+1} \# S^p \times D^{q+1})_1 \). We then define

\[
C[f] = (S^p \times D^{q+1} \# S^p \times D^{q+1})_1 \cup (S^p \times D^{q+1} \# S^p \times D^{q+1})_2 \cdot \mathcal{M}_n \text{ where } \mathcal{M}_n \text{ is well-defined.}
\]

Let \(f_0, f_1 \in M^+_{p,q} \) such that \(f_0 \) is pseudo-diffeotopic to \(f_1 \) then there exists a homotopy \(H : (S^p \times S^q \# S^p \times S^q) \times I \rightarrow (S^p \times S^q \# S^p \times S^q) \times I \) such that \(H(x,y,0) = f_0 \) and \(H(x,y,1) = f_1 \) then we wish to show that \((S^p \times D^{q+1} \# S^p \times D^{q+1})_1 \cup (S^p \times D^{q+1} \# S^p \times D^{q+1})_2 \) is diffeomorphic to \((S^p \times D^{q+1} \# S^p \times D^{q+1})_1 \cup (S^p \times D^{q+1} \# S^p \times D^{q+1})_2 \). We then define a map

\[
(f_0, f_1, H, \text{id}_0, \text{id}_1) \rightarrow \mathcal{M}_n
\]

where \(\text{id}_0(x,y) = (x,y,1), \text{id}_1(x,y,0) = (x,y), f_0(x,y,0) = f_0(x,y) \) and \(f_1(x,y) = f_1(x,y,1) \).

This is a well-defined map and is the required diffeomorphism from \((S^p \times D^{q+1} \# S^p \times D^{q+1})_1 \cup (S^p \times D^{q+1} \# S^p \times D^{q+1})_2 \) to \((S^p \times D^{q+1} \# S^p \times D^{q+1})_1 \cup (S^p \times D^{q+1} \# S^p \times D^{q+1})_2 \). Hence \(C \) is well-defined and it is easy to see that \(C \) is a homomorphism. By Theorem 1.1 it follows that \(C \) is surjective. We now need to show that \(C \) is injective. Suppose \(\{f\} \in \tilde{\pi}_0(M^+_{p,q}) \) and \(C(f) = (M, \lambda_1, \lambda_2) \) is trivial, then it follows that
M = \((S^p \times D^{q+1} \# S^p \times D^{q+1}) \cup (S^p \times D^{q+1} \# S^p \times D^{q+1}) \) is diffeomorphic to
\[(S^p \times D^{q+1} \# S^p \times D^{q+1}) \cup (S^p \times D^{q+1} \# S^p \times D^{q+1}) = S^p \times S^{q+1} \# S^p \times S^{q+1} \] with p-dimensional homology generators \(\lambda_0, \lambda_2 \), by a diffeomorphism \(d \) which carries \(\lambda_1 \) to \(\lambda_0 \) and \(\lambda_2 \) to \(\lambda_2 \), i.e.,
\[
(S^p \times D^{q+1} \# S^p \times D^{q+1}) \cup (S^p \times D^{q+1} \# S^p \times D^{q+1})
\]
It is easy to see that since \(d \) carries \(\lambda_1 \) to \(\lambda_0 \) and \(\lambda_2 \) to \(\lambda_2 \) and because \(p = 3, 5, 6, 7 \) (mod 8) then \(d \) is the identity on \((S^p \times D^{q+1} \# S^p \times D^{q+1}) \). On the boundary \(S^p \times S^{q+1} \# S^p \times S^{q+1} \), \(d \) is just \(f \). Since \(d \) is a diffeomorphism it follows that \(f \) extends to a diffeomorphism of \((S^p \times D^{q+1} \# S^p \times D^{q+1}) \), which means
\[
f \in \text{Diff}^+(S^p \times S^{q+1} \# S^p \times S^{q+1})
\]
is extendable to \(\text{Diff}^+(S^p \times D^{q+1} \# S^p \times D^{q+1}) \), but by Lemma 3.5, \(\pi_0 \text{Diff}^+(S^p \times D^{q+1} \# S^p \times D^{q+1}) \) is a factor group of \(\pi_p (SO(q+1)) \) but since \(p = 3, 5, 6, 7 \), mod 8 then \(\pi_p (SO(q+1)) = 0 \). Hence \(f \) is pseudo-diffeotopic to the identity and so \(C \) is injective. It then follows that \(C \) is an isomorphism. By Theorem 2.17 and since \(p = 3, 5, 6, 7 \) (mod 8) it follows that the order of the group \(\pi_0 (M^{p+1}_{p,q}) \) is twice the order of the group \(\pi_0 SO(p+1) \) and since \(C \) is an isomorphism the theorem is proved. The methods used here if carefully applied can be used to obtain a general result.

Theorem 3.8 If \(M \) is a smooth, closed simply connected manifold of type \((n, p, r) \) where \(n = p + q + 1 \) and \(p = 3, 5, 6, 7 \) (mod 8) then the number of differentiable manifolds up to diffeomorphism satisfying the above is equal to \(r \) times the order of \(\pi_0 SO(p+1) \).

References