ITERATIONS CONVERGING TO DISTINCT SOLUTIONS OF SOME NONLINEAR OPERATOR EQUATIONS IN BANACH SPACE

IOANNIS K. ARGYROS
Department of Mathematics
University of Iowa
Iowa City, IA 52242

(Received April 29, 1985 and in revised form April 18, 1986)

ABSTRACT. We examine the solvability of multilinear equations of the form

\[M_k(x,x,...,x) = y, \quad k = 2,3,... \]

where \(M_k \) is a \(k \)-linear operator on a Banach space \(X \) and \(y \in X \) is fixed.

KEY WORDS AND PHRASES. Multilinear operator, contraction.

1980 AMS SUBJECT CLASSIFICATION CODE. 46B15.

1. INTRODUCTION.

We study the quadratic equation

\[B(x,x) y = \quad \]

in a Banach space \(X \), where \(B \) is a bounded symmetric bilinear operator on \(X \) and \(y \) is fixed in \(X \) \([2],[3],[7],[9],[10]\). We consider two cases.

CASE 1. Let \(y = 0 \) and set \(x = \bar{x} - h \) for some \(\bar{x} \) such that the linear operator \(2B(\bar{x}) \) is invertible then (1.1) becomes

\[\vec{B}(h,h) = h - \bar{y} \]

where \(\vec{B} = (2B(\bar{x}))^{-1}B, \bar{y} = (2B(\bar{x}))^{-1}B(\bar{x},\bar{x}) \) and \(h \in X \) is to be determined.

We introduce the iteration

\[h_{n+1} = (\vec{B}(h_n))^{-1}(h_n - \bar{y}) \quad \text{for some} \quad h_0 \in X \]

(1.3)

to find a solution \(h \) of (1.2) such that \(h \neq \bar{x} \).

It turns out under certain assumptions that iteration (1.3) converges to an \(h \in X \) such that \(h \neq \bar{x} \), therefore \(x = \bar{x} - h \) is a nonzero solution of (1.1).

CASE 2. Let \(y \neq 0 \), we then introduce the iteration

\[x_{n+1} = B(x_n)^{-1}(y) \quad \text{for some} \quad x_0 \in X \]

(1.4)

to find solutions of (1.1).

The results obtained here can be generalized to include multilinear equations of the form
M_k(x, x, ..., x) = y
- k times -

where M_k is a k-linear operator on X and y is fixed in X [10].

We now state the following lemma. The proof can be found in [10].

2. EXISTENCE THEORY.

LEMMA 1. Let L_1 and L_2 be bounded linear operators in a Banach space X, where L_1 is invertible, and $\|L_1^{-1}\| \cdot \|L_2\| < 1$. Then $(L_1 + L_2)^{-1}$ exists, and

$$\|L_1 + L_2\|^{-1} \leq \frac{\|L_1^{-1}\|}{1 - \|L_2\| \cdot \|L_1^{-1}\|}.$$

LEMMA 2. Let $z \neq 0$ be fixed in X. Assume that the linear operator $\overline{B}(z)$ is invertible then $\overline{B}(x)$ is also invertible for all $x \in U(z, r) = \{x \in X | \|x-z\| < r\}$, where $r \in (0, r_0)$ and $r_0 = (\|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\|)^{-1}$.

PROOF. We have

$$\|\overline{B}(x-z)\| \cdot \|\overline{B}(z)^{-1}\| \leq \|\overline{B}\| \cdot \|x-z\| \cdot \|\overline{B}(z)^{-1}\|$$

$$\leq \|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\| \cdot r$$

$$< 1$$

for $r \in (0, r_0)$. The result now follows from Lemma 1 for $L_1 = \overline{B}(z)$, $L_2 = \overline{B}(x-z)$ and $x \in U(z, r)$.

DEFINITION 1. Assume that the linear operator $\overline{B}(z)$ is invertible.

Define the operators P, T on $U(z, r)$ for some $r > 0$ by

$$P(x) = \overline{B}(x, x) + \overline{y} - x, T(x) = (\overline{B}(x))^{-1}(x-\overline{y})$$

and the real polynomials $f(r), g(r)$ on R by

$$f(r) = a'r^2 + b'r + c', \quad g(r) = ar^2 + br + c,$$

$$a' = (\|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\|)^2,$$

$$b' = -2\|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\|,$$

$$c' = 1 - \|\overline{B}(z)^{-1}\| - \|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\|^2 \cdot \|z-\overline{y}\|,$$

$$a = \|\overline{B}\| \cdot \|\overline{B}(z)^{-1}\|,$$

$$b = \|\overline{B}(z)^{-1}(I-\overline{B}(z))\| - 1,$$

and

$$c = \|\overline{B}(z)^{-1}P(z)\|.$$

THEOREM 1. Let $z \in X$ be such that $\overline{B}(z)$ is invertible and that the following are true:

a) $c' > 0$;

b) $b < 0, b^2 - 4ac > 0$, and

c) there exists $r > 0$ such that $f(r) > 0$ and $f(r) \leq 0$

then the iteration

$$h_{n+1} = \overline{B}(h_n)^{-1}(h_n - \overline{y}), \quad n = 0, 1, 2, ...$$
is well defined and it converges to a unique solution h of (1.2) in $\overline{U}(z,r)$ for any $h_0 \in \overline{U}(z,r)$.

PROOF. T is well defined by Lemma 2.

CLAIM 1. T maps $\overline{U}(z,r)$ into $\overline{U}(z,r)$.

If $x \in \overline{U}(z,r)$ then

$$T(x) - z = \overline{E}(x)^{-1}(x-y) - z$$

$$= \overline{E}(x)^{-1}[(1 - \overline{E}(z))(x-z) - F(z)]$$

so

$$\|T(x) - z\| \leq r$$

if

$$\frac{1}{1 - \|E\| \cdot \|\overline{E}(z)^{-1}\| \cdot r} ([\|\overline{E}(z)^{-1}(1 - \overline{E}(z))\| \cdot r + \|\overline{E}(z)^{-1}F(z)\|] \leq r$$

(uses Lemma 1 for $L_1 = \overline{E}(z)$ and $L_2 = \overline{E}(x-z)$) or $g(r) \leq 0$ which is true by hypothesis.

CLAIM 2. T is a contraction operator on $\overline{U}(z,r)$.

If $w, v \in \overline{U}(z,r)$ then

$$\|T(w) - T(v)\|$$

$$= \|\overline{E}(w)^{-1}(w-y) - \overline{E}(v)^{-1}(v-y)\|$$

$$= \|\overline{E}(w)^{-1}[1 - \overline{E}(\overline{E}(v)^{-1}(v-y))](w-v)\|$$

$$\leq \frac{1}{1 - \|E\| \cdot \|\overline{E}(z)^{-1}\| \cdot r} \left[\|\overline{E}(z)^{-1}\| + \|E\| \cdot \|\overline{E}(z)^{-1}\|^2 \cdot r + \|E\| \cdot \|\overline{E}(z)^{-1}\|^2 \cdot z \cdot \overline{E}\| \right] \cdot \|w-v\|$$

$$= q \cdot \|w-v\|.$$

So T is a contraction on $\overline{U}(z,r)$ if $0 < q < 1$, where

$$q = \frac{1}{1 - \|E\| \cdot \|\overline{E}(z)^{-1}\| \cdot r} \left[\|\overline{E}(z)^{-1}\| + \|E\| \cdot \|\overline{E}(z)^{-1}\|^2 \cdot r + \|E\| \cdot \|\overline{E}(z)^{-1}\|^2 \cdot z \cdot \overline{E}\| \right] \cdot \|w-v\|$$

which is true since $f(r) > 0$.

THEOREM 2. Assume that there exist $r > 0$, $z, \overline{x} \in X$ satisfying the hypotheses of Theorem 1 and

(a) $0 < \|\overline{x}\| < -1 + \frac{\sqrt{1 + 4\|E\| \cdot \|\overline{E}\|}}{2\|\overline{E}\|}$;

(b) $r + \|z\| < \frac{\|\overline{y}\|}{1 + \|\overline{E}\| \cdot \|\overline{x}\|}$

then if $\|\overline{x}\| < h_0 \leq r + \|z\|$, the solution h if (1.2) is such that

$\|\overline{x}\| < \|h\| \leq r + \|z\|$.

Moreover, $x = \overline{x} - h$ is a nonzero solution of (1.1).

PROOF. By Theorem 1 $h \in \overline{U}(z,r)$ therefore

$\|h\| \leq r + \|z\|$.
Assume that \(\|h_k\| > \|x\| \) for \(k = 0, 1, 2, \ldots, n \). By iteration (1.3) we have
\[
B(h_{n+1}, h_n) = h_n - \bar{y}
\]
or
\[
\|B\| \|h_{n+1}\| \cdot \|h_n\| \geq \|h_n - \bar{y}\| \geq \|\bar{y}\| - \|h_n\|
\]
so
\[
\|h_{n+1}\| \geq \frac{\|\bar{y}\| - \|h_n\|}{\|B\| \cdot \|h_n\|},
\]
to show that
\[
\|h_{n+1}\| > \|x\|,
\]
it suffices to show
\[
\frac{\|\bar{y}\| - \|h_n\|}{\|B\| \cdot \|h_n\|} > \|x\|
\]
which is true by (b). For consistency we must have
\[
\|x\| < \frac{\|\bar{y}\|}{1 + \|B\| \cdot \|h_n\|}
\]
which is true by (a). The result now follows by taking the limit as \(n \to \infty \) in (2.1).

Finally note that since \(\|h\| > \|x\| \), \(x - h \neq 0 \) therefore \(x = \bar{x} - h \) is a non-zero solution of (1.1).

DEFINITION 2. Assume that the linear operator \(B(z) \) is invertible for some \(z \in X \). Define the operator \(\bar{P} \) on \(U(z, r) \) for some \(r > 0 \) by
\[
\bar{P}(x) = B(x, x) - y, \; y \neq 0
\]
and the real polynomials \(\bar{f}(r), \bar{g}(r) \) on \(R \) by
\[
\bar{f}(r) = s_1 r^2 + s_2 r + s_3, \; \bar{g}(r) = s_1 r - s_2 r + s_3,
\]
where
\[
\begin{align*}
&s_1' = (\|B\| \cdot \|B(z)^{-1}\|)^2 \\
&s_2' = -2\|B\| \cdot \|B(z)^{-1}\| \\
&s_3' = 1 - \|B\| \cdot \|B(z)^{-1}\| \\
&s_1 = \|B\| \cdot \|B(z)^{-1}\| \\
&s_2 = \|B\| \\
&s_3 = \|B(z)^{-1}\|.
\end{align*}
\]

The proofs of the following theorems are omitted as similar to Theorems 1 and 2.

THEOREM 3. Let \(z \in X \) be such that the linear operator \(B(z) \) is invertible and that the following are true:

a) \(s_3' > 0 \);

b) \(s_2 > 0, s_2' - \frac{s_1 s_2}{s_3} > 0 \), and

c) there exists \(r > 0 \) such that \(\bar{f}(r) > 0 \) and \(\bar{g}(r) \leq 0 \).
then the iteration
\[x_{n+1} = B(x_n)^{-1}(y) \]
for some \(x_0 \in X \) is well defined and it converges to a solution \(x \) of (1.1) which is unique in \(
U(z,r) \) for any \(x_0 \in U(z,r) \).

THEOREM 4. Let \(z, r \) be such that the hypotheses of Theorem 3 are satisfied. Let \(p < q \) be positive numbers such that
\[p \|B\| \leq \|y\| ; \]
\[\frac{\|B(z)^{-1}\|}{1 - \|B\| \cdot \|B(z)^{-1}\|r} \leq q \leq r + \|z\| \]
then if \(p \leq \|x_0\| \leq q \) then the solution \(x \) of (1.1) is such that
\[p \leq \|x\| \leq q. \]

REFERENCES

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3U, UK; grebogi@abdn.ac.uk