A NOTE ON ALMOST CONTINUOUS MAPPINGS AND BAIRE SPACES

JING CHENG TONG
Department of Mathematics
Wayne State University
Detroit, Michigan 48202

(Received April 20, 1982 and in revised form June 4, 1982)

ABSTRACT. We prove the following theorem:

THEOREM. Let Y be a second countable, infinite R_0-space. If there are countably many open sets $O_1, O_2, \ldots, O_n, \ldots$ in Y such that $O_1 \not= O_2 \not= \ldots \not= O_n \not= \ldots$, then a topological space X is a Baire space if and only if every mapping $f: X \rightarrow Y$ is almost continuous on a dense subset of X. It is an improvement of a theorem due to Lin and Lin [2].

KEY WORDS AND PHRASES. Separation axiom R_0, almost continuous mapping, Baire space.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 54C10, 54F65; Secondary 54D10.

1. INTRODUCTION.

This note is directed to mathematical specialists or non-specialists familiar with general topology [1].

Lin and Lin [2] proved the following theorem:

THEOREM 1. Let Y be an arbitrary infinite Hausdorff space. If X is a topological space such that every mapping $f: X \rightarrow Y$ is almost continuous on a dense subset $D(f)$ of X, then X is a Baire space.

In the theorem above, the almost continuity is in the sense of Husain [3]. The proof of the theorem depends on the following lemma (cf. Long [1, Prob. 14, p. 147]):

LEMA 1. Every infinite Hausdorff space contains a countably infinite discrete subspace.
In this note, we prove a lemma similar to Lemma 1 under weaker conditions, and use it to improve Theorem 1.

2. PRELIMINARIES AND RESULTS.

Before stating the result, we first recall the definition of the separation axiom R_0 (cf. [4], [5], [6, p. 49]).

DEFINITION 1. A topological space X is R_0 if and only if for each $x \in X$ and open subset U, $x \in U$ implies $\overline{\{x\}} \in U$.

It is known [1] that R_0 is weaker than T_1 and is independent of T_0, in fact $T_1 = T_0 + R_0$. A Hausdorff space is R_0.

LEMMA 2. If an infinite space X is R_0, and there are countably infinite open sets $0_1, 0_2, \ldots, 0_n, \ldots$ such that $0_1 \not\subset 0_2 \not\subset \ldots \not\subset 0_n \not\subset \ldots$, then there is a countably infinite distinct set $S = \{y_1, y_2, \ldots, y_n, \ldots\}$ in X such that for each n, there is an open set V_n satisfying $V_n \cap S = \{y_n\}$.

PROOF. Without loss of generality we may assume that 0_1 is not empty. Let $y_1 \in 0_1$ be an arbitrary point. Since X is R_0, $\overline{\{y_1\}} \subset 0_1$. Let $V_1 = \overline{\{y_1\}}$(0_1 \setminus \{y_1\})$. Then V_2 is an open set and $y_2 \in V_2$. If y_n-1 is chosen and $V_{n-1} = 0_{n-1} \cap (0_{n-2} \setminus \{y_{n-2}\})$, then since $y_{n-1} \not\subset 0_n$, we may choose $y_n \in 0_n$ such that $y_n \not\in 0_{n-1} \cap (0_{n-2} \setminus \{y_{n-2}\})$. Thus we have a countably infinite distinct set $S = \{y_1, y_2, \ldots, y_n, \ldots\}$ and countably infinite distinct open sets $V_1, V_2, \ldots, V_n, \ldots$ such that $y_n \in V_n$ (n = 1, 2, ...). Since $V_n = 0_n \cap (0_{n-1} \setminus \overline{\{y_i\}})$, we have $y_i \not\in V_n$ for $i = 1, 2, \ldots, n-1$. Since $y_{n+m} \in 0_{n+m}$ (m > 1), $y_{n+m} \not\in 0_{n+m-1}$, but $0_n \not\subset 0_{n+m-1}$, hence $y_{n+m} \not\in 0_n, y_{n+m} \not\in V_n$. Therefore, $V_n \cap S = \{y_n\}$.

For convenience we say that a space X has an ascending chain of open sets if there are countably infinite open sets $0_1, 0_2, \ldots, 0_n, \ldots$ such that $0_1 \not\subset 0_2 \not\subset \ldots \not\subset 0_n \not\subset \ldots$.

LEMMA 3. An infinite Hausdorff space X is an R_0-space with an ascending chain of open sets.

PROOF. We need only to show that X has an ascending chain of open sets. By Lemma 1, there is a countably infinite discrete subspace $\{y_1, y_2, \ldots, y_n, \ldots\}$, hence
there are disjoint open sets $U_1, U_2, ..., U_n, ...$ such that $y_n \in U_n$. Let $0_n = \bigcup_{i=1}^{n} U_i$ $(n = 1, 2, ...)$. Then $0_1, 0_2, ..., 0_n, ...$ is an ascending chain of open sets.

The converse of Lemma 3 is not true.

EXAMPLE 1. Let $X = [0, 1]$ with topology $\tau = \{X \backslash N; N \text{ is a countable set}\}$. Then X is R_0 and $0_1 = X \backslash \{\frac{1}{i}, \frac{1}{i+1}, ...\} (i = 1, 2, ...)$ is an ascending chain of open sets. X is not Hausdorff.

Now Theorem 1 can be improved as

THEOREM 2. Let Y be an infinite R_0-space with an ascending chain of open sets. If X is a topological space such that every mapping $f: X \to Y$ is almost continuous on a dense subset of X, then X is a Baire space.

The proof is all the same as the proof of Theorem 2 in [2].

Similar to Theorem 3 in [2], we have

THEOREM 3. Let Y be a second countable infinite R_0-space with an ascending chain of open sets. Then a topological space X is a Baire space if and only if every mapping $f: X \to Y$ is almost continuous on a dense subset of X.

REFERENCES

Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk