MAGNETOHYDRODYNAMIC CHANNEL FLOW AND VARIATIONAL PRINCIPLES

ADNAN A. EL-HAJJ
Department of Mathematics
U.A.E. University, Al-Ain
United Arab Emirates

(Received August 26, 1986)

ABSTRACT. This paper deals with magnetohydrodynamic channel flow problems. Attention is given to a variational principle, where the boundary conditions are incorporated via a suitable functional which is stationary at the solution of the given problem; the trial functions used for the approximate solution need not satisfy any of the given boundary conditions.

KEY WORDS AND PHRASES. Variational principle, functional, boundary conditions.

1980 AMS SUBJECT CLASSIFICATION CODE. 76W05.

1. INTRODUCTION.

In a number of papers variational principles have been derived for the solution of linear magnetohydrodynamic channel flow of various types. Tani [1] has presented a variational principle for a problem involving the Hall effect. Smith [2] has derived a functional giving bounds on the flow rate. Sloan [3] has derived a variational principle which can be used to obtain sequences which converge to the real solution. More recently a variational principle has been derived by Barret [4] to the problem of viscous, incompressible, electrically conducting fluid flows steadily in a rectangular channel with a uniform transverse magnetic field parallel to one pair of walls, opposite pairs of walls being either insulators or perfect conductors. The equation for the nondimensional axial velocity \(V \), and the nondimensional induced magnetic field \(B \), are coupled and may be written as

\[
\begin{align*}
\nabla^2 V + M \frac{3B}{3x} &= -1, \\
\n\nabla^2 B + M \frac{3V}{3x} &= 0,
\end{align*}
\] (1.1)

where \(M \) is the Hartmann number. On the boundary, \(V \) is always zero and \(B \) is zero if the walls are insulators and the normal derivative of \(B \) is zero if the walls are perfect conductors.

Barrett and the above mentioned authors assume that the trial functions satisfy the same boundary conditions as the real field. Moreover, attempting to solve the problem of non-conducting walls, Barrett has restricted the choice of trial functions even more by requiring that one of the governing equations be exactly satisfied. In this paper we develop a variational principle in which the given boundary conditions of the problem...
are imposed implicitly via suitable terms in the functional and hence the expansion set
of functions need not satisfy any of them.

2. THE VARIATIONAL PRINCIPLE.

The variational technique derived in this section, applicable to a wide range of
linear non-self-adjoint problems, is used to derive a stationary principle for a magnet-
ohydrodynamic channel flow. In the particular case of (1.1) and (1.2) subject to the
boundary conditions \(V = 0 \) and \(B = 0 \) a variational principle is derived by first introduc-
ing the following adjoint problem of (1.1) and (1.2):

\[
\begin{align*}
\nabla^2 U - M \frac{\partial C}{\partial x} &= -1 \\
\nabla^2 C - M \frac{\partial U}{\partial x} &= 0, \quad |x| < 1, \quad |y| < a
\end{align*}
\]

where \(U \) and \(C \) are zero on the boundary. The functional de\(f \)ends on four variables: \(\nu, \beta, \omega, \) and \(T \) and is:

THEOREM 1. The solution to (1.1), (1.2), (2.1) and (2.2) renders the following func-
tional stationary at the solution points \(V, B, \omega, U \) and \(T = C \):

\[
J(\nu, \beta, \omega, T) = \int_{s} \left\{ - \nu \nu \nabla \cdot \nabla \nu + \beta \nu \beta + M \omega \partial \nu / \partial x + M T \partial \nu / \partial x + \nu + \omega \right\} dS
\]

\[
+ \int_{s} \left\{ \omega \nabla \nu \cdot n + T \nu \beta \nabla \cdot n + \nu \nu \omega \cdot n + \beta \nu \beta \cdot n \right\} dS
\]

\[
- \int_{a}^{a} \left([M \nu T]_{-1}^{1} + [M \beta \omega]_{-1}^{1} \right) dy
\]

where \(ds \) is the boundary of the region, \(\nabla \cdot \beta \) denotes differentiation along the normal
and \(ds \) is a boundary element.

PROOF. Let \(V \) and \(B \) be the solution of (1.1) and (1.2); \(U \) and \(C \) the solution of (2.1)
and (2.2); \(\xi_1, \xi_2, \xi_3 \) and \(\xi_4 \) arbitrary functions.

Define \(F_1(\varepsilon) = J(V + \varepsilon \xi_1, B, U, C); \quad F_2(\varepsilon) = J(V, B + \varepsilon \xi_2, U, C); \)
\(F_3(\varepsilon) = J(V, B, U + \varepsilon \xi_3, C); \quad F_4(\varepsilon) = J(V, B, U, C + \varepsilon \xi_4), \)

then the functional \(J \) is stationary at \(V, B, U \) and \(C \) if

\[
\frac{dF_i(0)}{d\varepsilon} = 0, \quad i = 1, 2, 3, 4.
\]

Now,

\[
\frac{dF_i(0)}{d\varepsilon} = \int_{s} \left\{ - \nu \nu \nabla \xi_1 + C \left(M \frac{\partial \xi_1}{\partial x} \right) + \xi_1 \right\} dS
\]

\[
+ \int_{s} \left\{ U \nabla \xi_1 \cdot n + \xi_1 \nu \nabla \cdot n \right\} dS
\]

\[
- \int_{-a}^{a} \left[\xi_1 M \nu + \xi_1 M \nu \right]_{-1}^{1} dy
\]

Using Green's theorem:

\[
\int_{s} \left\{ - \nu \nu \nabla \xi_1 \right\} dS = \int_{s} \xi_1 \nabla^2 U dS - \int_{s} \xi_1 \nu \nabla \cdot n dS
\]

and the fact that:
we get upon substituting (2.5) and (2.6) in (2.4) and recalling that on the boundary $U = 0$

$$\frac{dF_i(0)}{d\epsilon} = \int_s [\xi_1(\nabla^2 U - M\frac{\partial C}{\partial x} + 1) dS - \int_s [\xi_1 \nabla \cdot n]_0^a dS + \int_a^{+a} [\xi_1 M C]_0^{+1} dy,$$

The first integral in (2.7) is equal to zero by (2.1) and it is obvious that the line integrals cancel one another. Hence, $dF_i(0)/d\epsilon = 0$.

In much the same way, it can easily be shown that $dF_i(0)/d\epsilon = 0$ for $i = 2, 3, 4$. Hence, the functional J is stationary at the solutions of the given problem and its adjoint.

3. MATHEMATICAL SET-UP.

The variational principle derived in the previous section will now be used to obtain the defining equations for the approximate solution to the problem of channel flow with non-conducting walls.

We introduce appropriate basis functions — typically, a set of product orthogonal polynomials and a global expansion of the solution is made:

$$v^{(N)}(x,y) = \sum_{i=1}^{N} a_{1}^{(i)} h_{i}(x,y); \quad \beta^{(N)}(x,y) = \sum_{i=1}^{N} a_{2}^{(i)} h_{i}(x,y)$$

and

$$\omega^{(N)}(x,y) = \sum_{i=1}^{N} b_{1}^{(i)} h_{i}(x,y); \quad \gamma^{(N)}(x,y) = \sum_{i=1}^{N} b_{2}^{(i)} h_{i}(x,y).$$

Inserting these expansions into (2.3) and finding the stationary value of the functional leads to the symmetric block matrix equation for the coefficients $a_{(k)}, k = 1, 2$:

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} a_{1}^{(1)} \\ a_{2}^{(1)} \end{pmatrix} = \begin{pmatrix} Q \\ 0 \end{pmatrix}$$

Where for $i, j = 1, 2, \ldots, N$

$$A = \int_s (\nabla h_{i} \nabla h_{j}) dS + \int_s (h_{i} \nabla h_{j} + h_{j} \nabla h_{i}) \cdot n dS$$

$$B = \int_s M h_{i} \frac{\partial h_{j}}{\partial x} dS - \int_a^{+a} [M h_{i} h_{j}]_0^{+1} dy$$

$$Q = \int_s -h_{i} dS$$

An important feature of our technique is that the basis functions $h_{i}(x,y)$ are not required to satisfy any of the boundary conditions of the problem; these conditions are imposed implicitly by the functional, and are satisfied exactly only at the solution point. We only require, for stability reasons (see Mikhiln [5]), that the set of basis functions be a set of product orthogonal polynomials.
To solve (3.2) a numerical technique which reduces the operation count and leads to economic use of storage will be used in a forthcoming paper together with the present variational formalism to produce numerical results for the magnetohydrodynamic channel flow problem.

REFERENCES

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>