Sunlet Decomposition of Certain Equipartite Graphs

Abolape D. Akwu and Deborah O. A. Ajayi

1 Department of Mathematics, University of Agriculture, Makurdi 970001, Nigeria
2 Department of Mathematics, University of Ibadan, Ibadan 200001, Nigeria

Correspondence should be addressed to Deborah O. A. Ajayi; adelaideajayi@yahoo.com

Received 28 September 2012; Accepted 5 February 2013

Copyright © 2013 A. D. Akwu and D. O. A. Ajayi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let \(C_r, K_n, \overline{K}_m \) denote cycle of length \(r \), complete graph on \(n \) vertices, and complement of complete graph on \(m \) vertices. For \(n \) even, \(K_n + I \) denotes the multigraph obtained by adding the edges of a 1-factor to \(K_n \), thus duplicating \(n/2 \) edges. The total number of edges in \(K_n + I \) is \(n^2/2 \). The lexicographic product, \(G \circ H \), of graphs \(G \) and \(H \), is the graph obtained by replacing every vertex of \(G \) by a copy of \(H \) and every edge of \(G \) by the complete bipartite graph \(K_{|G|,|H|} \).

For a graph \(H \), an \(H \)-decomposition of a graph \(G, H \mid G \), is a set of subgraphs of \(G \), each isomorphic to \(H \), whose edge set partitions the edge set of \(G \). Note that for any graph \(G \) and \(H \) and any positive integer \(m \), if \(H \mid G \) then \((H \circ \overline{K}_m) \mid (G \circ \overline{K}_m) \).

Let \(G \) be a graph of order \(n \) and \(H \) any graph. The corona (crown) of \(G \) with \(H \), denoted by \(G \odot H \), is the graph obtained by taking one copy of \(G \) and \(n \) copies of \(H \) and joining the \(i \)th vertex of \(G \) with every vertex in the \(i \)th copy of \(H \). A special corona graph is \(C_r \odot K_1 \), that is, a cycle with pendant points which has \(2n \) vertices. This is called sunlet graph and denoted by \(L_{r,q} \), where \(q = 2n \).

Obvious necessary condition for the existence of a \(k \)-cycle decomposition of a simple connected graph \(G \) is that \(G \) has at least \(k \) vertices (or trivially, just one vertex), the degree of every vertex in \(G \) is even, and the total number of edges in \(G \) is a multiple of the cycle length \(k \). These conditions have been shown to be sufficient in the case that \(G \) is the complete graph \(K_n \), the complete graph minus a 1-factor \(K_n - I \) [1, 2], and the complete graph plus a 1-factor \(K_n + I \) [3].

The study of cycle decomposition of \(K_n \circ \overline{K}_m \) was initiated by Hoffman et al. [4]. The necessary and sufficient conditions for the existence of a \(C_p \)-decomposition of \(K_n \circ \overline{K}_m \), where \(p \geq 5 \) (\(p \) is prime) that (i) \(m(n - 1) \) is even and (ii) \(p \) divides \(n(n - 1)m^2 \), were obtained by Manikandan and Paulraja [5, 6]. Similarly, when \(p \geq 3 \) is a prime, the necessary and sufficient conditions for the existence of a \(C_{2p} \)-decomposition of \(K_n \circ \overline{K}_m \) were given by Smith [7]. For a prime number \(p \geq 3 \), Smith [8] showed that \(C_{3p} \)-decomposition of \(K_n \circ \overline{K}_m \) exists if the obvious necessary conditions are satisfied. In [9], Anitha and Lekshmi proved that the complete graph \(K_n \) and the complete bipartite graph \(K_n, n \) for \(n \) even have decompositions into sunlet graph \(L_n \). Similarly, in [10], it was shown that the complete equipartite graph \(K_n \circ \overline{K}_m \) has a decomposition into sunlet graph of length \(2p \), for a prime \(p \).

We extend these results by considering the decomposition of \(K_n + I \circ \overline{K}_m \) into sunlet graph and prove the following result.

Let \(m \geq 2, n > 2, \) and \(q \geq 6 \) be even integers. The graph \(K_n + I \circ \overline{K}_m \) can be decomposed into sunlet graph of length \(q \) if and only if \(q \) divides \(n^2m^2/2 \), the number of edges in \(K_n + I \circ \overline{K}_m \).
2. Proof of the Result

To prove the result, we need the following.

Lemma 1 (see [10]). For $r \geq 3$, L_n decomposes $C_r \ast K_2$.

Lemma 2. For any integer $r > 2$ and a positive even integer m, the graph $C_r \ast \overline{K}_m$ has a decomposition into sunlet graph L_q, for $q = rm$.

Proof

Case 1 (r is even). First observe that $C_r \ast \overline{K}_2$ can be decomposed into 2 sunlet graphs with 2r vertices. Now, set $m = 2t$ and decompose $C_r \ast \overline{K}_2$ into cycles C_{rt}, to decompose $C_r \ast \overline{K}_2$ into t-cycles C_{rt}, denote vertices in ith part of $C_r \ast \overline{K}_2$ by x_{ij}, for $j = 1, \ldots, t$, $i = 1, 2, \ldots, r$ and create t base cycles $x_1x_2x_3 \cdots x_r$. Next, combine these base cycles into one cycle C_{rt}, by replacing each edge $x_{i}x_{i+1}$ with x_i,x_{i+2}. To create the remaining cycles C_{rt}, we apply mappings ϕ_i for $s = 0, 1, \ldots, t - 1$ defined on the vertices as follows.

Subcase 1.1 (i odd). Consider

$$\phi_i(x_{ij}) = x_{ij}.$$

This is the desired decomposition into cycles C_{rt}.

Subcase 1.2 (i even). Consider

$$\phi_i(x_{ij}) = x_{i+1j},$$

This is the desired decomposition into cycles C_{rt}.

Now take each cycle C_{rt}, and make it back into $C_r \ast \overline{K}_2$. Each $C_r \ast \overline{K}_2$ decomposes into 2 sunlet graphs L_{2t} (by Lemma 1), and we have $C_r \ast \overline{K}_m$ decomposing into sunlet graphs with length rm for r even. Note that

$$C_r \ast \overline{K}_{2t} = (C_r \ast \overline{K}_t) \ast \overline{K}_2.$$

Case 2 (r is odd)

Subcase 2.1 ($m \equiv 2$ (mod 4)). Set $m = 2t$. First create t cycles $C_{(r-1)t}$ in $C_{(r-1)t} \ast \overline{K}_2$, as in Case 1. Then, take complete tripartite graph K_{tj} with partite sets $X_i = \{x_{ij}\}$ for $i = 1, r-1, r$ and $j = 1, \ldots, t$ and decompose it into triangles using well-known construction via Latin square, that is, construct $t \times t$ Latin square and consider each element in the form (a, b, c) where a denotes the row, b denotes the column, and c denotes the entry with $1 \leq a, b, c \leq t$. Each cycle is of the form $x_{11}x_{21}x_{31}x_{41} \cdots x_{ri}$, where, for every triangle $x_{1a}x_{1b}x_{1c}, x_{2a}x_{2b}x_{2c}, \ldots, x_{ri}x_{ri+1}x_{ri+2}$, replace the edge $x_{1a}x_{1b}$ in each $C_{(r-1)t}$, by the edges $x_{2a}x_{2b}$ and $x_{2c}x_{ri}$, to obtain cycles C_{rt}. Therefore, $C_{rt} \ast \overline{K}_2$. Now take each cycle C_{rt}, make it into $C_r \ast \overline{K}_2$, and by Lemma 1, $C_r \ast \overline{K}_2$ has a decomposition into sunlet graphs $L_{2rt} = L_q$.

Subcase 2.2 ($m \equiv 0$ (mod 4)). Set $m = 2t$. The graph $C_r \ast \overline{K}_2$ decomposes into Hamilton cycle C_{rt} by [11]. Next, make each cycle C_{rt} into $C_r \ast \overline{K}_2$. Each graph $C_r \ast \overline{K}_2$ decomposes into sunlet graph L_{2rt} by Lemma 1.

Theorem 3. Let r, m be positive integers satisfying $r, m \equiv 0$ (mod 4), then L_r decomposes $C_r \ast \overline{K}_m$.

Proof. Let the partite sets (layers) of the r-partite graph $C_r \ast \overline{K}_m$ be U_1, U_2, \ldots, U_r. Set $m = 2t$. Obtain a new graph from $C_r \ast \overline{K}_m$ as follows.

Identify the subsets of vertices $\{x_{ij}\}$, for $1 \leq i \leq r$ and $1 \leq j \leq m/2$ into new vertices x_{ij}^1, and identify the subset of vertices $\{x_{ij}\}$ for $1 \leq i \leq r$ and $m/2 + 1 \leq j \leq m$ into new vertices x_{ij}^2, and two of these vertices x_{ij}^k, where $k = 1, 2$, are adjacent if and only if the corresponding subsets of vertices in $C_r \ast \overline{K}_m$ induce $K_{r,t}$. The resulting graph is isomorphic to $C_r \ast \overline{K}_2$. Next, decompose $C_r \ast \overline{K}_2$ into cycles $C_{rt/2}$ as follows:

$$k = 1, \frac{r}{4} + 1, \frac{r}{2} + 1, \frac{3r}{4} + 1, \ldots, -\frac{r}{4} + 1, \quad d = \frac{r}{4} + k,$$

where k, d are calculated modulo r.

To construct the remaining cycles, apply mapping ϕ defined on the vertices.

Subcase 1.1 (i odd in each cycle). Consider

$$\phi(x_{ij}) = x_{i,j+1}.$$

This is the desired decomposition of $C_r \ast \overline{K}_2$ into cycles $C_{rt/2}$.

Subcase 1.2 (i even in each cycle). Consider

$$\phi(x_{ij}) = x_{i,j}.$$

This is the desired decomposition of $C_r \ast \overline{K}_2$ into cycles $C_{rt/2}$.

By lifting back these cycles $C_{rt/2}$ of $C_r \ast \overline{K}_2$ to $C_r \ast \overline{K}_m$, we get edge-disjoint subgraphs isomorphic to $C_{rt/2} \ast \overline{K}_1$. Obtain a new graph again from $C_{rt/2} \ast \overline{K}_m$ as follows.

For each j, $1 \leq j \leq t/2$, identify the subsets of vertices $\{x_{(2j-1),1}, \ldots, x_{(2j-1),t}\}$, where $1 \leq i \leq r/2$ into new vertices x_{ij}^1, and two of these vertices x_{ij}^1 are adjacent if and only if the corresponding subsets of vertices in $C_{rt/2} \ast \overline{K}_m$ induce $K_{r,t/2}$. The resulting graph is isomorphic to $C_{rt/2} \ast \overline{K}_{t/2}$. Then, decompose $C_{rt/2} \ast \overline{K}_{t/2}$ into cycles $C_{rt/2}$. Each $C_{rt/2} \ast \overline{K}_{t/2}$ decomposes into cycles $C_{rt/2}$ by [12]. By lifting back these cycles $C_{rt/2}$ of $C_{rt/2} \ast \overline{K}_{t/2}$ to $C_{rt/2} \ast \overline{K}_1$, we get edge-disjoint subgraph isomorphic to $C_{rt/2} \ast \overline{K}_1$. Finally, each $C_{rt/2} \ast \overline{K}_1$ decomposes into two sunlet graphs L_r (by Lemma 1), and we have $C_r \ast \overline{K}_m$ decomposing into sunlet graphs L_r, as required.

Theorem 4 (see [12]). The cycle C_m decomposes $C_k \ast \overline{K}_m$ for every even $m > 3$.

Theorem 5 (see [12]). If m and $k \geq 3$ are odd integers, then C_m decomposes $C_k \ast \overline{K}_m$.

Theorem 6. The sunlet graph L_m decomposes $C_r * \overline{K}_m$ if and only if either one of the following conditions is satisfied.

1. r is a positive odd integer, and m is a positive even integer.
2. r, m are positive even integers with $m \equiv 0 \pmod{4}$.

Proof. (1) Set $m = 2t$, where t is a positive integer. Let the partite sets (layers) of the r-partite graph $C_r * K_m$ be U_1, U_2, \ldots, U_r. For each j, where $1 \leq j \leq t$, identify the subsets of vertices $\{x_{1,2j-1}, x_{1,2j}\}$, for $1 \leq i \leq r$ into new vertices x'_i, and two of these vertices x'_i are adjacent if and only if the corresponding subsets of vertices in $C_r * \overline{K}_m$ induce K_2. The resulting graph is isomorphic to $C_r * \overline{K}_r$. Then, decompose $C_r * \overline{K}_r$ into sunlet graphs, where t is a positive integer.

Now, $C_r | C_r * \overline{K}_r$ by Theorems 4 and 5.

By lifting back these t-cycles of $C_r * \overline{K}_r$, we get edge-disjoint subgraphs isomorphic to $C_r * \overline{K}_2$. Each copy of $C_r * \overline{K}_2$ decomposes into sunlet graphs of length $2t$ (by Lemma 1), and we have $C_r * \overline{K}_r$ decomposing into sunlet graphs of length m as required.

(2) Set $m = 2t$, where t is an even integer since $m \equiv 0 \pmod{4}$.

Obtain a new graph $C_r * \overline{K}_r$ from the graph $C_r * \overline{K}_m$ as in Case 1. By Theorem 4, $C_r | C_r * \overline{K}_r$. By lifting back these t-cycles of $C_r * \overline{K}_r$ to $C_r * \overline{K}_2$, we get edge-disjoint subgraphs isomorphic to $C_r * \overline{K}_2$. Each copy of $C_r * \overline{K}_2$ decomposes into sunlet graphs of length $2t$ (by Lemma 1). Therefore, $L_m | C_r * \overline{K}_r$ as required. \(\square\)

Remark 7. In [10], it was shown that

$$L_{2r} * \overline{K}_1$$

can be decomposed into l^2 copies of L_{2r}. (7)

This, coupled with Lemma 1, gives the following.

Theorem 8 (see [10]). The graph $C_r * \overline{K}_m$ decomposes into sunlet graphs L_{2r} for any positive integer l.

Lemma 9 (see [3]). Let $n \geq 4$ be an even integer. Then, $K_n + I$ is C_r-decomposable.

Lemma 10 (see [3]). Let m and n be integers with m odd, $n \equiv 2 \pmod{4}$, $3 \leq m \leq n < 2m$, and $n^2 \equiv 0 \pmod{2m}$. Then, $K_n + I$ is C_m-decomposable.

Lemma 11 (see [3]). Let m and n be integers with m odd, $n \equiv 0 \pmod{4}$, $3 \leq m \leq n < 2m$, and $n^2 \equiv 0 \pmod{2m}$. Then, $K_n + I$ is C_m-decomposable.

We can now prove the major result.

Theorem 12. For any even integers $m \geq 2$, $n > 2$, and $q \geq 6$, the sunlet graph L_q decomposes $K_n + I * \overline{K}_m$ if and only if $n^2m^2/2 \equiv 0 \pmod{q}$.
References

Submit your manuscripts at
http://www.hindawi.com