Research Article

On a System of Difference Equations

Ozan Özkan and Abdullah Selçuk Kurbanli

1 Department of Mathematics, Faculty of Science, Selçuk University, 42075 Konya, Turkey
2 Mathematics Department, Ahmet Kelesoglu Education Faculty, N. Erbakan University, Meram Yeni Yol, 42090 Konya, Turkey

Correspondence should be addressed to Ozan Özkan; ooizkan@selcuk.edu.tr

Received 25 December 2012; Accepted 3 February 2013

Academic Editor: Ibrahim Yalcinkaya

Copyright © 2013 O. Özkan and A. S. Kurbanli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We have investigated the periodical solutions of the system of rational difference equations

\[
\begin{align*}
 x_{n+1} &= \frac{y_{n-2}}{1 \pm x_{n-2} y_{n-1} x_n}, \\
 y_{n+1} &= \frac{x_{n-2}}{1 \pm x_{n-2} y_{n-1} x_n}, \\
 z_{n+1} &= \frac{x_{n-2} + y_{n-2}}{1 \pm x_{n-2} y_{n-1} x_n},
\end{align*}
\]

where \(y_0, y_{-1}, y_{-2}, x_0, x_{-1}, x_{-2}, z_0, z_{-1}, z_{-2} \in \mathbb{R}\).

1. Introduction

Recently, a great interest has arisen on studying difference equation systems. One of the reasons for that is the necessity for some techniques which can be used in investigating equations which originate in mathematical models to describe real-life situations such as population biology, economics, probability theory, genetics, and psychology. There are many papers related to the difference equations system.

In [1], Kurbanli et al. studied the periodicity of solutions of the system of rational difference equations

\[
\begin{align*}
 x_{n+1} &= x_{n-1} + y_n y_{n-1}, \\
 y_{n+1} &= x_n^2 - y_n y_{n-1},
\end{align*}
\]

In [2], Cinar studied the solutions of the systems of difference equations

\[
\begin{align*}
 x_{n+1} &= \frac{1}{y_n}, \\
 y_{n+1} &= \frac{x_n}{x_{n-1} y_{n-1}}.
\end{align*}
\]

In [3, 4], Özban studied the positive solutions of the system of rational difference equations

\[
\begin{align*}
 x_n &= \frac{a}{y_{n-3}}, \\
 y_n &= \frac{b y_{n-3}}{x_{n-3} y_{n-4}}, \\
 x_{n+1} &= \frac{1}{y_{n-5}}, \\
 y_{n+1} &= \frac{x_n}{x_{n-1} y_{n-2}},
\end{align*}
\]

In [5–16], Elsayed studied a variety of systems of rational difference equations; for more, see references.

In this paper, we have investigated the periodical solutions of the system of difference equations

\[
\begin{align*}
 x_{n+1} &= \frac{y_{n-2}}{-1 \pm y_{n-2} x_{n-1} y_n}, \\
 y_{n+1} &= \frac{x_{n-2}}{-1 \pm x_{n-2} y_{n-1} x_n}, \\
 z_{n+1} &= \frac{x_{n-2} + y_{n-2}}{-1 \pm x_{n-2} y_{n-1} x_n},
\end{align*}
\]

where the initial conditions are arbitrary real numbers.

2. Main Results

Theorem 1. Let \(y_0 = a, y_{-1} = b, y_{-2} = c, x_0 = d, x_{-1} = e, x_{-2} = f, z_0 = k, z_{-1} = p, \) and \(z_{-2} = q\) be arbitrary real numbers, and let \(\{x_n, y_n, z_n\}\) be a solution of the system

\[
\begin{align*}
 x_{n+1} &= \frac{y_{n-2}}{-1 + y_{n-2} x_{n-1} y_n}, \\
 y_{n+1} &= \frac{x_{n-2}}{-1 + x_{n-2} y_{n-1} x_n}, \\
 z_{n+1} &= \frac{x_{n-2} + y_{n-2}}{-1 + x_{n-2} y_{n-1} x_n},
\end{align*}
\]

Also, assume that \(b \neq 0, c \neq 0, f b d \neq 1, \) and \(c e a \neq 1.\) Then, all six-period solutions of (5) are as follows:

\[
\begin{align*}
 x_{6n+1} &= \frac{c}{1 - c e a}, \\
 y_{6n+1} &= \frac{f}{f b d - 1}, \\
 z_{6n+1} &= -\frac{f + c}{f b d - 1},
\end{align*}
\]
Proof. For \(n = 0, 1, 2, 3, 4, 5 \), we have

\[
\begin{align*}
x_0_{+1} &= b (fbd - 1), \quad y_0_{+2} = e (cea - 1), \\
z_0_{+2} &= (e + b) (cea + 1), \\
x_0_{+1} &= \frac{a}{1 - ceca}, \quad y_0_{+3} = \frac{d}{fbd - 1}, \\
z_0_{+3} &= -\frac{d + a}{fbd + 1}, \\
x_0_{+1} &= f, \quad y_0_{+4} = c, \\
z_0_{+4} &= \frac{c (fbd + 1) + f (cea + 1)}{fbd + 1}, \\
x_0_{+1} &= e, \quad y_0_{+5} = b, \\
z_0_{+5} &= \frac{b (fbd + 1) + e (cea + 1)}{fbd + 1}, \\
x_0_{+1} &= d, \quad y_0_{+6} = a, \\
z_0_{+6} &= \frac{a (fbd + 1) + d (cea + 1)}{fbd + 1}, \\
n \in \mathbb{N}_0.
\end{align*}
\]
\[y_6 = \frac{x_1}{-1 + x_3 y_4 x_5} = \frac{a(cea - 1)}{-1 + (a(cea - 1)) ce} = a, \]
\[z_6 = \frac{x_3 + y_3}{-1 + x_3 y_4 x_5} = \frac{(a(cea - 1)) + (d(ldb - 1))}{-1 + (a(cea - 1)) ce} = \frac{a(fbd - 1) + d(cea - 1)}{fbd - 1}. \]

(7)

For \(n = 6, 7, 8, 9, 10, 11 \), assume that
\[x_7 = \frac{y_4}{-1 + y_4 x_5 x_6} = \frac{c}{-1 + cea} = x_1, \]
\[y_7 = \frac{x_4}{-1 + x_4 y_5 x_6} = \frac{f}{-1 + fbd} = y_1, \]
\[z_7 = \frac{x_5 + y_4}{-1 + x_5 y_6 x_7} = \frac{f + c}{-1 + fbd} = z_1, \]
\[y_8 = \frac{y_5}{-1 + y_5 x_6 y_7} = \frac{b}{-1 + bd(f/(1 + fbd))} = b(fbd - 1) = x_2, \]
\[y_8 = \frac{x_5}{-1 + x_5 y_6 y_7} = \frac{e}{-1 + ea(c/-1 + cea))} = e(cea - 1) = y_2, \]
\[z_8 = \frac{x_5 + y_5}{-1 + x_5 y_6 y_7} = \frac{e + b}{-1 + ea(c/-1 + cea))} = (e + b)(cea - 1) = z_2, \]
\[x_9 = \frac{y_6}{-1 + y_6 x_7 y_8} = \frac{a}{-1 + a(c/-1 + cea)) e(cea - 1)} = \frac{a}{cea - 1} = x_3, \]
\[y_9 = \frac{x_6 + y_6}{-1 + x_6 y_7 x_8} = \frac{d}{-1 + d(f/(1 + fbd)) b(fbd - 1)} = d, \]
\[z_9 = \frac{x_6 + y_6}{-1 + x_6 y_7 x_8} = \frac{d + a}{-1 + d(f/(1 + fbd)) b(fbd - 1)} = \frac{d + a}{fbd - 1} = z_3, \]
\[x_{10} = \frac{y_7}{-1 + y_7 x_8 y_9} \]

(8)

are true. Also, we have
\[x_1 = \frac{c}{cea - 1} = x_7 = x_{13} = \cdots = x_{6r + 1}, \quad n \in \mathbb{N}_0, \]
\[x_2 = b(fbd - 1) = x_8 = x_{14} = \cdots = x_{6r + 2}, \quad n \in \mathbb{N}_0, \]
\[x_3 = \frac{a}{ce_1 - 1}, \]
\[x_4 = f = x_{10} = x_{16} = \cdots = x_{6r+4}, \quad n \in \mathbb{N}_0, \]
\[x_5 = e = x_{11} = x_{17} = \cdots = x_{6r+5}, \quad n \in \mathbb{N}_0, \]
\[x_6 = d = x_{12} = x_{18} = \cdots = x_{6r+6}, \quad n \in \mathbb{N}_0, \]
\[y_1 = \frac{f}{fbd - 1} = y_7 = y_{13} = \cdots = y_{6n+1}, \quad n \in \mathbb{N}_0, \]
\[y_2 = e(cea - 1) = y_8 = y_{14} = \cdots = y_{6n+2}, \quad n \in \mathbb{N}_0, \]
\[y_3 = \frac{d}{fbd - 1} = y_9 = y_{15} = \cdots = y_{6n+3}, \quad n \in \mathbb{N}_0, \]
\[y_4 = c = y_{10} = y_{16} = \cdots = y_{6n+4}, \quad n \in \mathbb{N}_0, \]
\[y_5 = b = y_{11} = y_{17} = \cdots = y_{6r+5}, \quad n \in \mathbb{N}_0, \]
\[y_6 = a = y_{12} = y_{18} = \cdots = y_{6r+6}, \quad n \in \mathbb{N}_0, \]
\[z_1 = \frac{f + c}{fbd - 1} = z_7 = z_{13} = \cdots = z_{6n+1}, \quad n \in \mathbb{N}_0, \]
\[z_2 = (e + b)(cea - 1) = z_8 = z_{14} = \cdots = z_{6n+2}, \quad n \in \mathbb{N}_0, \]
\[z_3 = \frac{d + a}{fbd - 1} = z_9 = z_{15} = \cdots = z_{6n+3}, \quad n \in \mathbb{N}_0, \]
\[z_4 = c\frac{fbd - 1}{fbd - 1} + f(cea - 1) = z_{10}, \]
\[z_5 = \frac{b(fbd - 1) + e(cea - 1)}{fbd - 1} = z_{11}, \]
\[z_6 = \frac{a(fbd - 1) + d(cea - 1)}{fbd - 1} = z_{12}, \]
\[z_7 = z_{18} = \cdots = z_{6n+6}, \quad n \in \mathbb{N}_0. \]

(9)

Theorem 2. Let \(y_0 = a, y_{-1} = b, y_{-2} = c, x_0 = d, x_{-1} = e, x_{-2} = f, z_0 = k, z_{-1} = p, \) and \(z_{-2} = q \) be arbitrary real numbers, and let \(\{x_n, y_n, z_n\} \) be a solution of the system.

\[
x_{n+1} = \frac{y_{n-2}}{-1 - y_{n-2}x_{n-1}y_n}, \quad y_{n+1} = \frac{x_{n-2}}{-1 - x_{n-2}y_{n-1}x_n}, \quad z_{n+1} = \frac{x_{n-2} + y_{n-2}}{-1 - x_{n-2}y_{n-1}x_n}, \quad n \in \mathbb{N}_0.
\]

(10)

Also, assume that \(b \neq 0, e \neq 0, fbd \neq -1, \) and \(cca \neq -1. \) Then, all six-period solutions of (10) are as follows:

\[
x_{6n+1} = -b(fbd + 1), \quad y_{6n+1} = -\frac{a}{1 + cca}, \quad z_{6n+2} = -e(cea + 1),
\]

\[
x_{6n+1} = -\frac{a}{1 + cca}, \quad y_{6n+3} = -\frac{d}{fbd + 1}, \quad z_{6n+3} = -d(fbd + 1) + a.
\]

(11)

Proof. For \(n = 0, 1, 2, 3, 4, 5, \) we have

\[
x_1 = \frac{y_2}{1 - y_2x_1y_0} = \frac{c}{-1 - cca} = -\frac{c}{1 + cca},
\]

\[
y_1 = \frac{x_2}{1 - x_2y_1x_0} = \frac{f}{-1 - fbd} = -\frac{f}{1 + fbd},
\]

\[
z_1 = \frac{x_2 + y_2}{1 - x_2y_1x_0} = \frac{f + c}{-1 - fbd} = -\frac{f + c}{1 + fbd}.
\]

\[
x_2 = \frac{y_1}{1 - y_1x_0y_1} = \frac{b}{-1 - b(1 + fbd)} = -b(1 + fbd),
\]

\[
y_2 = \frac{x_1}{1 - x_1y_1x_0} = \frac{e}{1 - e(1 + cca)} = -e(1 + cca),
\]

\[
z_2 = \frac{x_1 + y_1}{1 - x_1y_1x_0} = \frac{e + b}{1 - e(1 + cca)} = -(e + b)(1 + cca),
\]

\[
x_3 = \frac{y_0}{1 - y_0x_1y_2} = \frac{a}{-1 - a(-c(1 + cca))(-e(1 + cca))} = \frac{a}{1 + cca}.
\]
\[
\begin{align*}
y_3 &= \frac{x_0}{-1 - x_0 y_1 x_2} \\
&= \frac{d}{-1 - d \left(-\frac{f}{(1 + fbd)} \right) (-b(1 + fbd))} \\
&= \frac{d}{1 + fbd}, \\
z_3 &= \frac{x_0 + y_0}{-1 - x_0 y_1 x_2} \\
&= \frac{d + a}{-1 - d \left(-\frac{f}{(1 + fbd)} \right) (-b(1 + fbd))} \\
&= \frac{d + a}{1 + fbd}, \\
x_4 &= \frac{y_1}{-1 - y_1 x_2 y_3} \\
&= \frac{-\left(\frac{f}{(1 + fbd)} \right)}{-1 + \left(\frac{f}{(1 + fbd)} \right) b(1 + fbd) \left(d/(1 + fbd) \right)} \\
&= \frac{-\left(\frac{f}{(1 + fbd)} \right)}{-1 + \left(\frac{f}{(1 + fbd)} \right) b(1 + fbd) \left(d/(1 + fbd) \right)} = f, \\
y_4 &= \frac{x_1}{-1 - x_1 y_2 x_3} \\
&= \frac{-c/(1 + c/ea)}{-1 + c/(1 + c/ea) + e(1 + c/ea) \left(a/(1 + c/ea) \right)} \\
&= \frac{-c/(1 + c/ea)}{-1 + c/(1 + c/ea) + e(1 + c/ea) \left(a/(1 + c/ea) \right)} = c, \\
z_4 &= \frac{x_1 + y_1}{-1 - x_1 y_2 x_3} \\
&= \frac{-c/(1 + c/ea) - \left(\frac{f}{(1 + fbd)} \right)}{-1 + c/(1 + c/ea) + e(1 + c/ea) \left(a/(1 + c/ea) \right)} \\
&= \frac{c(1 + fbd) + f(1 + c/ea)}{1 + fbd}, \\
x_5 &= \frac{y_2}{-1 - y_2 x_3 y_4} \\
&= \frac{-e(1 + c/ea)}{-1 - e(1 + c/ea) \left(a/(1 + c/ea) \right) c} = e, \\
y_5 &= \frac{x_2}{-1 - x_2 y_3 x_4} \\
&= \frac{-b(1 + fbd)}{-1 - b(1 + fbd) \left(d/(1 + fbd) \right) f} = b, \\
z_5 &= \frac{x_2 + y_2}{-1 - x_2 y_3 x_4} \\
&= \frac{-b(1 + fbd) - e(1 + c/ea)}{-1 - b(1 + fbd) \left(d/(1 + fbd) \right) f} \\
&= \frac{b(1 + fbd) + e(1 + c/ea)}{1 + fbd}, \\
x_6 &= \frac{y_3}{-1 - y_3 x_4 y_5} \\
&= \frac{-\left(\frac{d}{(1 + fbd)} \right)}{-1 + \left(\frac{d}{(1 + fbd)} \right) b} = d, \\
y_6 &= \frac{x_3}{-1 - x_3 y_4 x_5} \\
&= \frac{-a/(1 + c/ea)}{-1 + a/(1 + c/ea) c e} = a, \\
z_6 &= \frac{x_3 + y_3}{-1 - x_3 y_4 x_5} \\
&= \frac{-a/(1 + c/ea) - \left(\frac{d}{(1 + fbd)} \right)}{-1 + a/(1 + c/ea) c e} \\
&= \frac{a(1 + fbd) + d(1 + c/ea)}{1 + fbd}. \\
\end{align*}
\]
\[
\begin{align*}
 z_9 &= \frac{x_8 + y_8}{-1 - x_8 y_8 x_8} = \frac{d + a}{-1 - d (f / (1 + fbd)) b (1 + fbd)} = z_3, \\
 x_{10} &= \frac{y_9}{-1 - y_7 x_8 y_9} = \frac{- (f / (1 + fbd))}{-1 + (f / (1 + fbd)) b (1 + fbd) (d / (1 + fbd))} = y
\end{align*}
\]

\[
\begin{align*}
 y_9 &= \frac{y_8}{-1 - y_7 x_8 y_9} = \frac{- (f / (1 + fbd))}{-1 + (f / (1 + fbd)) b (1 + fbd) (d / (1 + fbd))} = z_5
\end{align*}
\]

\[
\begin{align*}
 x_{11} &= \frac{x_9 + y_9}{-1 - x_9 y_{10} y_{11}} = \frac{d + a}{-1 - d (f / (1 + fbd)) b (1 + fbd) c} = x_{13} = \cdots = x_{6n+1}, \\
 y_{11} &= \frac{x_9 + y_9}{-1 - x_9 y_{10} y_{11}} = \frac{d + a}{-1 - d (f / (1 + fbd)) b (1 + fbd) c} = y_{13} = \cdots = y_{6n+3}, \\
 z_{11} &= \frac{x_9 + y_9}{-1 - x_9 y_{10} y_{11}} = \frac{d + a}{-1 - d (f / (1 + fbd)) b (1 + fbd) c} = z_{13} = \cdots = z_{6n+1}, \\
 x_{12} &= \frac{x_9}{-1 - x_9 y_{10} x_{11}} = \frac{d + a}{-1 - d (f / (1 + fbd)) b (1 + fbd) c} = a = y_6, \\
 y_{12} &= \frac{x_9}{-1 - x_9 y_{10} x_{11}} = \frac{d + a}{-1 - d (f / (1 + fbd)) b (1 + fbd) c} = a = y_6, \\
 z_{12} &= \frac{x_9 + y_9}{-1 - x_9 y_{10} x_{11}} = \frac{d + a}{-1 - d (f / (1 + fbd)) b (1 + fbd) c} = z_{10},
\end{align*}
\]

are true. Also, we have

\[
\begin{align*}
 x_1 &= - \frac{c}{1 + cca} = x_7 = x_{13} = \cdots = x_{6n+1}, \\
 x_2 &= -b (1 + fbd) = x_8 = x_{14} = \cdots = x_{6n+2}, \\
 x_3 &= -a (1 + fbd) = x_9 = x_{15} = \cdots = x_{6n+3}, \\
 x_4 &= f = x_{10} = x_{16} = \cdots = x_{6m+4}, \\
 x_5 &= e = x_{11} = x_{17} = \cdots = x_{6n+5}, \\
 x_6 &= d = x_{12} = x_{18} = \cdots = x_{6n+6}, \\
 y_1 &= - \frac{f}{1 + fbd} = y_7 = y_{13} = \cdots = y_{6n+1}, \ n \in \mathbb{N}, \\
 y_2 &= -e (1 + cca) = y_8 = y_{14} = \cdots = y_{6n+2}, \ n \in \mathbb{N}, \\
 y_3 &= -\frac{d}{1 + fbd} = y_9 = y_{15} = \cdots = y_{6n+3}, \ n \in \mathbb{N}, \\
 y_4 &= f = y_{10} = y_{16} = \cdots = y_{6m+4}, \ n \in \mathbb{N}, \\
 y_5 &= e = y_{11} = y_{17} = \cdots = y_{6n+5}, \ n \in \mathbb{N}, \\
 y_6 &= d = y_{12} = y_{18} = \cdots = y_{6n+6}, \ n \in \mathbb{N}, \\
 z_1 &= - \frac{f + c}{1 + fbd} = z_7 = z_{13} = \cdots = z_{6n+1}, \ n \in \mathbb{N}, \\
 z_2 &= - \frac{d + a}{1 + fbd} = z_9 = z_{15} = \cdots = z_{6n+3}, \ n \in \mathbb{N}, \\
 z_3 &= - \frac{c (1 + fbd) + e (1 + cca)}{1 + fbd} = z_{10}, \\
 z_4 &= \frac{c (1 + fbd) + f (1 + cca)}{1 + fbd} = z_{20}, \\
 z_5 &= \frac{b (1 + fbd) + e (1 + cca)}{1 + fbd} = z_{11}, \\
 z_6 &= \frac{a (1 + fbd) + d (1 + cca)}{1 + fbd} = z_{12},
\end{align*}
\]
The following corollary follows from Theorem 1.

Corollary 3. The following conclusions are valid for $n \in \mathbb{N}$:

(i) $x_{6n+2}y_{6n+3} = x_{6n+6}y_{6n+5}$,

(ii) $x_{6n+1}y_{6n+2} = x_{6n+5}y_{6n+6}$,

(iii) $x_{6n+1}y_{6n+6} = x_{6n+3}y_{6n+4}$,

(iv) $x_{6n+4}y_{6n+3} = x_{6n+6}y_{6n+1}$.

The following corollary follows from Theorem 2.

Corollary 4. The following conclusions are valid for $n \in \mathbb{N}$:

(i) $x_{6n+1}y_{6n+6} = x_{6n+3}y_{6n+4}$,

(ii) $x_{6n+6}y_{6n+1} = x_{6n+4}y_{6n+3}$,

(iii) $x_{6n+3}y_{6n+2} = x_{6n+5}y_{6n+6}$,

(iv) $x_{6n+1}y_{6n+2} = x_{6n+5}y_{6n+4}$.

References

[1] A. S. Kurbanli, C. Çinar, and D. Şimşek, “On the periodicity of solutions of the system of rational difference equations $x_{n+1} = x_{n-1} + y_{n-1} + 1$, $y_{n+1} = x_{n-1}/y_{n-1}$,” *Applied Mathematics*, vol. 2, no. 4, pp. 410–413, 2011.

Submit your manuscripts at
http://www.hindawi.com