Research Article
Global Attractivity of a Family of Max-Type Difference Equations

Xiaofan Yang,1 Wanping Liu,1 and Jiming Liu2

1 College of Computer Science, Chongqing University, Chongqing 400044, China
2 Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong

Correspondence should be addressed to Wanping Liu, wanping.liu@yahoo.cn

Received 20 October 2010; Accepted 13 January 2011

Academic Editor: Ibrahim Yalcinkaya

Copyright © 2011 Xiaofan Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose to study a generalized family of max-type difference equations and then prove the global attractivity of a particular case of it under some parameter conditions. Through some numerical results of other cases, we finally pose a generic conjecture.

1. Introduction

The study of max-type difference equations is a hotspot in the area of discrete dynamics because such equations are often closely related to automatic control theory and competitive dynamics. For recent advances in this direction see [1–8] and the references therein.

Motivated by [9], Liu et al. [10] studied the following nonautonomous max-type difference equation:

\[y_n = \frac{p + r y_{n-s}}{q + \phi_n(y_{n-1}, \ldots, y_{n-m}) + y_{n-s}}, \quad n \in \mathbb{N}_0, \tag{1.1} \]

where \(p \geq 0, r, q > 0, s, m \in \mathbb{N}, \) and \(\phi_n : (\mathbb{R}^+)^m \rightarrow \mathbb{R}^+, \) \(n \in \mathbb{N}_0 \) are mappings satisfying the condition \(\beta \min\{x_1, \ldots, x_m\} \leq \phi_n(x_1, x_2, \ldots, x_m) \leq \beta \max\{x_1, \ldots, x_m\}, \) for some fixed \(\beta \in (0, +\infty). \) When \(p = 0, \beta \in (0, 1), \) they proved that every positive solution to (1.1) converges to zero if \(r \leq q, \) while \((r - q)/(1 + \beta) \) if \(r > q. \) If \(p > 0 \) and \(rq \geq p, \) then each positive solution to (1.1) converges to \((\sqrt{(q - r)^2 + 4p(1 + \beta) - (q - r)}/(2(1 + \beta)), \) for some \(\beta \in (0, +\infty), \) except for the case \(q < r, \beta \in (\beta_0, +\infty), \) where \(\beta_0 = 4p/(q - r)^2 + 1. \) Note that the behavior of positive solutions to (1.1) for the case \(q < r, \beta \in (\beta_0, +\infty), \) is still an unsolved open problem as was mentioned in [10].
Here, we propose to investigate the asymptotic behavior of positive solutions to the generalized family of max-type difference equations

\[
x_n = \max_{1 \leq i \leq k} \left\{ \frac{p_i + r_i x_{n-s}}{q_i + x_{n-s} + f_i(x_{n-1}, \ldots, x_{n-m})} \right\}, \quad n \in \mathbb{N}_0, \tag{1.2}
\]

where \(p_i \geq 0, r_i, q_i > 0, s, m, k \in \mathbb{N}, k \geq 2 \) and the functions \(f_i : [0, +\infty)^m \to [0, +\infty), i = 1, 2, \ldots, k \) satisfy the condition

\[
\beta \min \{ u_1, \ldots, u_m \} \leq f_i(u_1, u_2, \ldots, u_m) \leq \beta \max \{ u_1, \ldots, u_m \}, \tag{1.3}
\]

for some fixed \(\beta \in (0, 1) \).

In this paper, we mainly consider the particular case that all \(p_i \) are zero, and then obviously (1.2) reduces to the following form:

\[
x_n = x_{n-s} \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + x_{n-s} + f_i(x_{n-1}, \ldots, x_{n-m})} \right\}, \quad n \in \mathbb{N}_0. \tag{1.4}
\]

Let \(x^* \) be a nonnegative equilibrium point of (1.4), then we have

\[
x^* = x^* \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + (1 + \beta)x^*} \right\}. \tag{1.5}
\]

It follows directly from (1.5) that if \(0 < r_i \leq q_i \) for all \(i = 1, 2, \ldots, k \), then (1.4) has the unique nonnegative equilibrium \(x^* = 0 \), while if there exists at least one \(j \in \{1, 2, \ldots, k\} \) such that \(r_j > q_j \), then (1.4) has a zero equilibrium \(x^* = 0 \) and a unique positive equilibrium \(x^* = \max_{1 \leq i \leq k} \{ r_i - q_i \}/(1 + \beta) \).

Finally, the following two beautiful theorems are derived.

Theorem 1.1. Consider (1.4) with condition (1.3). If \(0 < r_i \leq q_i \) for all \(i = 1, 2, \ldots, k \), then every positive solution to (1.4) converges to the unique nonnegative equilibrium zero.

Theorem 1.2. Consider (1.4) with positive initial values and positive \(r_i \) and \(q_i \). Let \(f_i : [0, +\infty)^m \to [0, +\infty) \) be functions such that for some fixed \(\beta \in (0, 1) \), there hold

\[
\beta \min \{ u_1, \ldots, u_m \} \leq f_i(u_1, \ldots, u_m) \leq \beta \max \{ u_1, \ldots, u_m \}, \quad i = 1, 2, \ldots, k. \tag{1.6}
\]

If there exists at least one \(j \in \{1, 2, \ldots, k\} \) such that \(r_j > q_j \), then the unique positive equilibrium of (1.4) is a global attractor.

2. Preliminary Lemmas

For the purpose of establishing the main results, some auxiliary lemmas are essential.
Lemma 2.1. Consider the first-order difference equation

\[x_n = x_{n-1} \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + x_{n-1}} \right\}, \quad n \in \mathbb{N}_0, \tag{2.1} \]

with positive initial value \(x_{-1} \) and positive \(r_i \) and \(q_i \). If there exists at least one \(j \in \{1, 2, \ldots, k\} \) such that \(r_j > q_j \), then

\[\lim_{n \to \infty} x_n = \max \{ r_i - q_i : i = 1, 2, \ldots, k \}. \tag{2.2} \]

Proof. Suppose that \(\max \{ r_i - q_i : i = 1, 2, \ldots, k \} = r_\tau - q_\tau \), which is positive, for some \(\tau \in \{1, 2, \ldots, k\} \). By making the variable change \(x_n = (r_\tau - q_\tau)y_n \) into (2.1) and then canceling the positive term \(r_\tau - q_\tau \) from the resulting equation, we can derive

\[y_n = y_{n-1} \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + (r_\tau - q_\tau)y_{n-1}} \right\}, \quad n \in \mathbb{N}_0. \tag{2.3} \]

Note that \(\min\{a_i/b_1, a_2/b_2\} \leq (a_1 + a_2)/(b_1 + b_2) \leq \max\{a_i/b_1, a_2/b_2\} \) for \(a_i, b_i > 0, i = 1, 2 \). Then it follows from (2.3) that

\[y_{n+1} = \max_{1 \leq i \leq k} \left\{ \frac{q_i y_n + (r_i - q_i)y_n}{q_i + (r_\tau - q_\tau)y_n} \right\} \leq \max_{1 \leq i \leq k} \left\{ \frac{q_i y_n + (r_\tau - q_\tau)y_n}{q_i + (r_\tau - q_\tau)y_n} \right\} \leq \max\{y_n, 1\}. \tag{2.4} \]

In addition, the following two inequalities hold:

\[y_{n+1} - 1 = \max_{1 \leq i \leq k} \left\{ \frac{r_i y_n}{q_i + (r_\tau - q_\tau)y_n} - 1 \right\} \geq \frac{r_\tau y_n}{q_\tau + (r_\tau - q_\tau)y_n} - 1 = \frac{q_\tau (y_n - 1)}{q_\tau + (r_\tau - q_\tau)y_n}, \tag{2.5} \]

\[y_{n+1} - y_n = \max_{1 \leq i \leq k} \left\{ \frac{r_i y_n}{q_i + (r_\tau - q_\tau)y_n} - y_n \right\} \geq \frac{r_\tau y_n}{q_\tau + (r_\tau - q_\tau)y_n} - y_n = \frac{(r_\tau - q_\tau)y_n(1 - y_n)}{q_\tau + (r_\tau - q_\tau)y_n}. \tag{2.6} \]

In the following, we are confronted with three possibilities.

Case 1. If there exists \(n_0 \geq -1 \) such that \(y_{n_0} = 1 \), then it follows from (2.4) and (2.5) that \(y_n = 1 \) holds for all \(n \geq n_0 \).

Case 2. If there exists \(n_0 \geq -1 \) such that \(y_{n_0} > 1 \), then it follows from (2.5) and (2.6) that

\[y_{n_0} \geq y_{n_0+1} \geq y_{n_0+2} \geq \cdots > 1. \tag{2.7} \]
Thus there is a finite limit \(\gamma = \lim_{n \to \infty} y_n \geq 1 \). By taking the limits on both sides of (2.3) and canceling the positive factor \(\gamma \) from the resulting equation, we obtain

\[
1 = \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + (r_{\tau} - q_{\tau}) \gamma} \right\},
\]

which implies \(\gamma = 1 \). Because if \(\gamma > 1 \), then

\[
1 = \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + (r_{\tau} - q_{\tau}) \gamma} \right\} < \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + (r_{\tau} - q_{\tau})} \right\} = 1,
\]

leading to a contradiction.

Case 3. If \(y_n < 1 \) for all \(n \geq -1 \), then it follows from (2.5) and (2.6) that

\[
y_{-1} < y_0 < y_1 < \ldots < y_n < \ldots < 1.
\]

Therefore, the limit of \(y_n \) exists, denoted by \(0 < \gamma = \lim_{n \to \infty} y_n \leq 1 \). By taking the limits on both sides of (2.3) and canceling the nonzero factor \(\gamma \) from the resulting equation, there hold

\[
1 = \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + (r_{\tau} - q_{\tau})} \right\},
\]

which implies \(\gamma = 1 \). Because if \(0 < \gamma < 1 \), then

\[
1 = \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + (r_{\tau} - q_{\tau})} \right\} > \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + (r_{\tau} - q_{\tau})} \right\} = 1,
\]

which is a contradiction.

In either of the above three cases, we get \(\lim_{n \to \infty} y_n = 1 \), implying \(\lim_{n \to \infty} x_n = r_{\tau} - q_{\tau} \).

From Lemma 2.1, we have the following result.

Lemma 2.2. Consider the \(s \)-order difference equation

\[
x_n = x_{n-s} \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + x_{n-s}} \right\}, \quad n \in \mathbb{N}_0,
\]

with positive initial values and \(r_i, q_i > 0 \). If there exists at least one \(j \in \{1, 2, \ldots, k\} \) such that \(r_j > q_j \), then

\[
\lim_{n \to \infty} x_n = \max\{r_i - q_i : i = 1, 2, \ldots, k\}.
\]
3. Proofs of Main Theorems

In this section, we are in a position to prove the main theorems presented in Section 1.

Proof of Theorem 1.1. Note that for the case \(r_i < q_i, \ i = 1, 2, \ldots, k \), the behavior of positive solutions to (1.4) is quite simple. In this case, we have that

\[
x_n \leq x_{n-s} \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i} \right\} = \mu x_{n-s},
\]

(3.1)
where \(\mu = \max_{1 \leq i \leq k} \{ r_i/q_i \} < 1 \). Easily the subsequences \(\{ x_{l+s+j} \}_{l \in \mathbb{N}_0}, \; j \in \{0,1,\ldots,s-1\} \) converge to zero, hence the sequence \(\{ x_n \} \) also converges to zero.

For the case \(r_i \leq q_i, \; i = 1,2,\ldots,k \) with at least one \(j \in \{1,2,\ldots,k\} \) such that \(r_j = q_j \), we can obtain that

\[
 x_n \leq x_{n-s} \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i} \right\} = x_{n-s}.
\]

(3.2)

In this case, the subsequences \(\{ x_{l+s+j} \}_{l \in \mathbb{N}_0}, \; j = 0,1,\ldots,s-1 \) are all positive and nonincreasing, thus they converge, respectively, to some nonnegative limits \(q_j := \lim_{l \to \infty} x_{l+s+j}, \; j = 0,1,\ldots,s-1 \).

If we replace \(n \) in (1.4) by \(sl+j, \; l \in \mathbb{N}_0 \) for an arbitrary fixed \(j \in \{0,1,\ldots,s-1\} \) and let \(l \to \infty \), we can get

\[
 q_j = q_j \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + q_j + f_i(q_{v_1},\ldots,q_{v_m})} \right\},
\]

(3.3)

where \(r_i \in \{0,1,\ldots,s-1\}, \; i = 1,\ldots,m \). Without loss of generality, assume that \(q_j \neq 0 \), then we obtain that

\[
 1 = \frac{r_\tau}{q_\tau + q_j + f_\tau(q_{v_1},\ldots,q_{v_m})},
\]

(3.4)

with some fixed number \(\tau \in \{1,2,\ldots,k\} \). Because \(r_\tau \leq q_\tau \), then it follows from (3.4) that

\[
 q_\tau + q_j + f_\tau(q_{v_1},\ldots,q_{v_m}) = r_\tau \leq q_\tau.
\]

(3.5)

Therefore we have

\[
 q_j + f_\tau(q_{v_1},\ldots,q_{v_m}) = 0,
\]

(3.6)

leading to \(q_j = 0 \), which is a contradiction. Hence we have that \(q_j = 0, \; j = 0,1,\ldots,s-1 \), and every positive solution to (1.4) converges to zero, if \(r_i \leq q_i \) for all \(i = 1,2,\ldots,k \). \(\Box \)

Proof of Theorem 1.2. Suppose that \(\max \{ r_i - q_i : i = 1,2,\ldots,k \} = r_\tau - q_\tau > 0 \) for some \(\tau \in \{1,2,\ldots,k\} \). Let \(\epsilon \) be an arbitrary fixed real number with \(0 < \epsilon < (1-\beta)/(1+\beta)(r_\tau - q_\tau) \). Define two sequences \(\{ M_k \} \) and \(\{ m_k \} \) in the way shown in (2.15) with \(a = r_\tau, b = q_\tau \). \(\Box \)

Let \(\{ x_n \} \) be an arbitrary positive solution to (1.4). Next, we proceed by proving two claims.

Claim 1. There exists \(N_1 \in \mathbb{N} \) such that \(m_1 - \epsilon \leq x_n \leq M_1 + \epsilon \) for all \(n \geq N_1 \).

Proof of Claim 1. Note that

\[
 x_n \leq x_{n-s} \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + x_{n-s}} \right\}, \quad n = 0,1,2,\ldots.
\]

(3.7)
Consider the following difference equation:

$$z^{(1)}_n = z^{(1)}_{n-s} \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + z^{(1)}_{n-s}} \right\}, \quad n = 0, 1, 2, \ldots \tag{3.8}$$

Let \(\{z^{(1)}_n\}\) be a positive solution to (3.7) with the initial values \(z^{(1)}_{-1} = x_{-1}, z^{(1)}_{-2} = x_{-2}, \ldots, z^{(1)}_{-s} = x_{-s}\).

Note that the mapping \(h(x) = \frac{rx}{(q + x)}\) is strictly increasing on the interval \((0, +\infty)\).

It follows by induction that \(x_n \leq z^{(1)}_n\) for all \(n \geq -s\). By Lemma 2.2, we have \(\lim_{n \to \infty} z^{(1)}_n = r_r - q_r = M_1\). Hence there is an integer \(N_1' \in \mathbb{N}\) such that \(x_n \leq M_1 + \epsilon\) for \(n \geq N_1'\).

Let \(t = \max\{s, m\}\). Note that

$$x_n \geq x_{n-s} \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + x_{n-s} + \beta(M_1 + \epsilon)} \right\}, \quad n \geq N_1' + t. \tag{3.9}$$

Consider the difference equation

$$y^{(1)}_n = y^{(1)}_{n-s} \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + y^{(1)}_{n-s} + \beta(M_1 + \epsilon)} \right\}, \quad n \geq N_1' + t, \tag{3.10}$$

with \(y^{(1)}_{N_1'+t-1} = x_{N_1'+t-1}, y^{(1)}_{N_1'+t-2} = x_{N_1'+t-2}, \ldots, y^{(1)}_{N_1'} = x_{N_1'}\). Note the monotonicity of \(h(x)\), it follows by induction that \(x_n \geq y^{(1)}_n\) for all \(n \geq N_1'\). By Lemma 2.2, we get that \(\lim_{n \to \infty} y^{(1)}_n = m_1\). Thus there exists an integer \(N_1 \geq N_1'\) such that \(x_n \geq m_1 - \epsilon\) for all \(n \geq N_1\).

Working inductively, we will reach the following claim.

Claim 2. For every \(k \in \mathbb{N}\), there exists \(N_k \in \mathbb{N}\) such that

$$m_k - \frac{\epsilon}{K} \leq x_n \leq M_k + \frac{\epsilon}{K}, \tag{3.11}$$

for all \(n \geq N_k\).

Proof of Claim 2. Obviously, the case \(k = 1\) follows directly from Claim 1. In the following, we proceed by induction. Assume that the assertion is true for \(k = \omega(\omega \geq 1)\). Then it suffices to prove the assertion is also true for \(k = \omega + 1\).

Note that

$$x_n \leq x_{n-s} \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + x_{n-s} + \beta(m_\omega - \epsilon/\omega)} \right\}, \quad n \geq N_\omega + t. \tag{3.12}$$

Consider the difference equation

$$z^{(\omega+1)}_n = z^{(\omega+1)}_{n-s} \times \max_{1 \leq i \leq k} \left\{ \frac{r_i}{q_i + z^{(\omega+1)}_{n-s} + \beta(m_\omega - \epsilon/\omega)} \right\}, \quad n \geq N_\omega + t, \tag{3.13}$$
with $z^{(ω+1)}_{Nω+1} = x_{Nω+1−1}$, $z^{(ω+1)}_{Nω+1+1} = x_{Nω+1−2}$, ..., $z^{(ω+1)}_{Nω} = x_{Nω}$. Note the monotonicity of $h(x)$, it follows by induction that $x_n \leq z^{(ω+1)}_n$ for all $n \geq Nω$. By Lemma 2.2, we have that $\lim_{n \to \infty} z^{(ω+1)}_n = M_{ω+1}$. So there is an integer $N'_{ω+1} ∈ \mathbb{N}$ such that $x_n \leq M_{ω+1} + \epsilon/(ω + 1)$ for all $n \geq N'_{ω+1}$. Then note that

$$x_n \geq x_{n-s} \times \max_{1 \leq i \leq k}\frac{r_i}{q_i + x_{n-s} + \beta(M_{ω+1} + \epsilon/(ω + 1))}, \quad n \geq N'_{ω+1} + t. \quad (3.14)$$

Consider the following difference equation

$$y_n^{(ω+1)} = y_{n-s}^{(ω+1)} \times \max_{1 \leq i \leq k}\frac{r_i}{q_i + y_{n-s}^{(ω+1)} + \beta(M_{ω+1} + \epsilon/(ω + 1))}, \quad n \geq N'_{ω+1} + t, \quad (3.15)$$

with $y_{N'_{ω+1}+1}^{(ω+1)} = x_{N'_{ω+1}+1}$, $y_{N'_{ω+1}+2}^{(ω+1)} = x_{N'_{ω+1}+2}$, ..., $z^{(ω+1)}_{Nω} = x_{Nω}$. By the monotonicity of $h(x)$, it follows by induction that $x_n \geq y_n^{(ω+1)}$ for all $n \geq N'_{ω+1}$. By Lemma 2.2, we have that $\lim_{n \to \infty} y_n^{(ω+1)} = m_{ω+1}$. So there is an integer $N'_{ω+1} \geq N_{ω+1}$ such that $x_n \geq m_{ω+1} - \epsilon/(ω + 1)$ for all $n \geq N_{ω+1}$.

From Claim 2, we derive

$$\lim_{k \to \infty} m_k = \lim_{k \to \infty} \left(m_k - \frac{\epsilon}{k} \right) \leq \lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n \leq \lim_{k \to \infty} \left(M_k + \frac{\epsilon}{k} \right) = \lim_{k \to \infty} M_k. \quad (3.16)$$

This plus Lemma 2.3 leads to that

$$\lim_{n \to \infty} x_n = \lim_{k \to \infty} m_k = \lim_{k \to \infty} M_k = \frac{r_T - q_T}{1 + \beta}. \quad (3.17)$$

4. Simulations and Future Work

In the previous section, we proved the global attractivity of (1.2) when all p_i are zero. In this section, we investigate the dynamic behavior of (1.2) provided that all p_i are not zero. First, it is trivial to confirm that when all p_i are not zero, (1.2) has the following unique positive equilibrium point $x^* = \max_{1 \leq i \leq k} \{ \sqrt{(q_i - r_i)^2 + 4p_i(1 + \beta) + r_i - q_i} / (2(1 + \beta)) \}$. In the following, some numerical results are presented.

Experiment 1. Consider the first-order difference equation

$$x_n = \max \left\{ \frac{0.2 + 0.6x_{n-1}}{0.6 + x_{n-1} + 0.3x_{n-1}}, \frac{rx_{n-1}}{q + x_{n-1} + 0.3x_{n-1}} \right\}, \quad n \in \mathbb{N}, \quad (4.1)$$

where $r, q > 0$ and the initial value $x_0 > 0$. (See Figures 1 and 2).
Experiment 2. Consider the second-order difference equation

\[x_n = \max \left\{ \frac{0.5 + x_{n-2}}{1 + x_{n-2} + 0.5x_{n-1}} \cdot \frac{0.8 + rx_{n-2}}{q + x_{n-2} + 0.5x_{n-1}} \right\}, \quad n \geq 2, \tag{4.2} \]

where \(r, q > 0 \) and the initial values \(x_0, x_1 > 0 \). (See Figures 3 and 4).

Experiment 3. Consider the third-order difference equation

\[x_n = \max \left\{ \frac{0.5 + x_{n-3}}{1 + x_{n-3} + 0.9\sqrt{(x_{n-1}^2 + x_{n-2}^2)/2}} \cdot \frac{3x_{n-3}}{2 + x_{n-3} + 0.9\sqrt{(x_{n-1}^2 + x_{n-2}^2)/2}} \right\}, \quad n \geq 3, \tag{4.3} \]

where the initial values \(x_0, x_1, x_2 > 0 \). (See Figure 5).
Conjecture 4.1. Consider (1.2) with nonnegative p_i and positive r_i and q_i. Let $f_i : [0, +\infty)^m \to [0, +\infty)$, $i = 1, 2, \ldots, k$ be k functions such that for some fixed $\beta \in (0, 1)$, there hold

$$\beta \min \{u_1, \ldots, u_k\} \leq f_i(u_1, \ldots, u_k) \leq \beta \max \{u_1, \ldots, u_k\}. \quad (4.4)$$

If $r_i q_i \geq p_i$ for all $i = 1, 2, \ldots, k$, then every positive solution to (1.2) converges to the equilibrium point

$$x^* = \frac{1}{2(1 + \beta)} \max_{1 \leq i \leq k} \left\{ \sqrt{(q_i - r_i)^2 + 4p_i(1 + \beta) + r_i - q_i} \right\}. \quad (4.5)$$
Figure 5: $x^* = 10/19 \approx 0.5263$.

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (no. CDJXS10181130), the National Natural Science Foundation of China (no. 10771227), and the New Century Excellent Talent Project of China (no. NCET-05-0759).

References

Submit your manuscripts at http://www.hindawi.com