Research Article

On the Higher-Order q-Euler Numbers and Polynomials with Weight α

K.-W. Hwang, 1, 2 D. V. Dolgy, 3 T. Kim, 2 and S. H. Lee 2

1 Department of Mathematics, Dong-A University, Busan 604-714, Republic of Korea
2 Division of General Education, Kwangwoon University, Seoul 139-701, Republic of Korea
3 Hanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea

Correspondence should be addressed to T. Kim, tkkim@kw.ac.kr

Received 9 May 2011; Accepted 19 June 2011

Academic Editor: Cengiz Çinar

Copyright © 2011 K.-W. Hwang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The main purpose of this paper is to present a systemic study of some families of higher-order q-Euler numbers and polynomials with weight α. In particular, by using the fermionic p-adic q-integral on \mathbb{Z}_p, we give a new concept of q-Euler numbers and polynomials with weight α.

1. Introduction

Let p be a fixed odd prime. Throughout this paper $\mathbb{Z}_p, \mathbb{Q}_p, \mathbb{C},$ and \mathbb{C}_p, will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of algebraic closure of \mathbb{Q}_p. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = p^{-1}$ (see [1–14]). When one speaks of q-extension, q can be regarded as an indeterminate, complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_p$; it is always clear from context. If $q \in \mathbb{C}$, we assume $|q| < 1$. If $q \in \mathbb{C}_p$, then we assume $|1 - q|_p < 1$ (see [1–14]).

In this paper, we use the notation of q-number as follows:

$$[x]_q = \frac{1 - q^x}{1 - q} \quad (1.1)$$

(see [1–14]). Note that $\lim_{q \to 1} [x]_q = x$ for any x with $|x|_p \leq 1$ in the p-adic case.
Let $C(\mathbb{Z}_p)$ be the space of continuous functions on \mathbb{Z}_p. For $f \in C(\mathbb{Z}_p)$, the fermionic p-adic q-integral on \mathbb{Z}_p is defined by

$$I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) \, d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x) (-q)^x,$$

(1.2)

$$= \lim_{N \to \infty} \frac{[2]_q}{2} \sum_{x=0}^{N-1} f(x) (-q)^x$$

(see [4–7]).

From (1.2), we note that

$$qI_{-q}(f_1) + I_{-q}(f) = [2]_q f(0),$$

(1.3)

where $f_1(x) = f(x + 1)$.

It is well known that the ordinary Euler polynomials are defined by

$$\frac{2}{e^t + 1} e^{xt} = e^{E(x)t} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!},$$

(1.4)

with the usual convention of replacing $E^n(x)$ by $E_n(x)$.

In the special case, $x = 0$ and $E_n(0) = E_n$ are called the nth Euler numbers (see [1–14]).

By (1.5), we get the following recurrence relation as follows:

$$E_0 = 1, \quad (E + 1)^n + E = \begin{cases} 2, & \text{if } n = 0, \\ 0, & \text{if } n > 0. \end{cases}$$

(1.5)

Recently, (h, q)-Euler numbers are defined by

$$E^{(h)}_{0,q} = \frac{2}{1 + q^{h'}}, \quad q^h \left(qE^{(h)}_q + 1\right)^n + E^{(h)}_n = \begin{cases} 2, & \text{if } n = 0, \\ 0, & \text{if } n > 0, \end{cases}$$

(1.6)

with the usual convention about replacing $(E^{(h)}_q)^n$ by $E^{(h)}_n$ (see [1–12]).

Note that $\lim_{q \to 0} E^{(h)}_{n,q} = E_n$.

For $\alpha \in \mathbb{N}$, the weight q-Euler numbers are also defined by

$$\tilde{E}^{(\alpha)}_{0,q} = 1, \quad q^h \left(q^{\alpha} \tilde{E}^{(\alpha)}_q + 1\right)^n + \tilde{E}^{(\alpha)}_n = \begin{cases} 2, & \text{if } n = 0, \\ 0, & \text{if } n > 0, \end{cases}$$

(1.7)

with the usual convention about replacing $(\tilde{E}^{(\alpha)}_q)^n$ by $\tilde{E}^{(\alpha)}_n$ (see [4]).
The purpose of this paper is to present a systemic study of some families of higher-order q-Euler numbers and polynomials with weight α. In particular, by using the fermionic p-adic q-integral on \mathbb{Z}_p, we give a new concept of q-Euler numbers and polynomials with weight α.

2. Higher-Order q-Euler Numbers and Polynomials with Weight α

For $h \in \mathbb{Z}$, $\alpha, k \in \mathbb{N}$, and $n \in \mathbb{Z}_+$, let us consider the expansion of higher-order q-Euler polynomials with weight α as follows:

$$
\tilde{E}^{(a)}_{n,q}(h, k | x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} x_1 + \cdots + x_k + x \frac{n!}{q^{x_1(h-1)} \cdots x_k(h-k)} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k).
$$

From (1.2) and (2.1), we note that:

$$
\tilde{E}^{(a)}_{n,q}(h, k | x) = \frac{[2]^k_q}{(1 - q^a)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{q^{alx}}{(1 + q^{al+h}) \cdots (1 + q^{al+h-k+1})}.
$$

In the special case, $x = 0$, $\tilde{E}^{(a)}_{n,q}(h, k | 0) = \tilde{E}^{(a)}_{n,q}(h, k)$ are called the higher-order q-Euler numbers with weight α.

By (2.1), we get

$$
\tilde{E}^{(a)}_{n,q}(h, k) = (q^a - 1) \tilde{E}^{(a)}_{n+1,q}(h - \alpha, k) + \tilde{E}^{(a)}_{n,q}(h - \alpha, k).
$$

From (2.1) and (2.2), we have

$$
\tilde{E}^{(a)}_{0,q}(ma, k + 1) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} q^{\sum_{j=1}^{k+1} (ma-j) x_j} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_{k+1}) = \sum_{l=0}^{m} \binom{m}{l} (q^a - 1)^l \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} x_1 + \cdots + x_{k+1} \frac{q^{\sum_{j=1}^{k+1} j x_j} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_{k+1})} = \sum_{l=0}^{m} \binom{m}{l} (q^a - 1)^l \tilde{E}^{(a)}_{l,q}(0, k + 1) = \frac{[2]^k_{q^m}}{(1 + q^{am})(1 + q^{am-1}) \cdots (1 + q^{am-k})}.
$$
From (2.1), we can derive the following equation:

\[
\sum_{j=0}^{i} \binom{i}{j} (q^a - 1)^j \int \cdots \int [x_1 + \cdots + x_k]^{n-j} q^{(h-a-1)x_1 + \cdots + (h-a-k)x_k} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)
\]

\[
= \int \cdots \int [x_1 + \cdots + x_k]^{n-j} q^{(h-1)x_1 + \cdots + (h-k)x_k} q^{(a_1 + \cdots + x_k) (i-1)} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)
\]

(2.5)

\[
= \sum_{j=0}^{i-1} (q^a - 1)^j \binom{i-1}{j} \tilde{E}_{n-i+j,q}^{(a)}(h,k).
\]

By (2.1), (2.2), (2.3), and (2.4), we see that

\[
\sum_{j=0}^{i} (q^a - 1)^j \binom{i}{j} \tilde{E}_{n-i+j,q}^{(a)}(h-\alpha,k) = \sum_{j=0}^{i-1} (q^a - 1)^j \binom{i-1}{j} \tilde{E}_{n-i+j,q}^{(a)}(h,k).
\]

(2.6)

Therefore, we obtain the following theorem.

Theorem 2.1. For \(a, k \in \mathbb{N}\) and \(n, i \in \mathbb{Z}_+\), one has

\[
\sum_{j=0}^{i} \binom{i}{j} (q^a - 1)^j \tilde{E}_{n-i+j,q}^{(a)}(h-\alpha,k) = \sum_{j=0}^{i-1} (q^a - 1)^j \binom{i-1}{j} \tilde{E}_{n-i+j,q}^{(a)}(h,k).
\]

(2.7)

By simple calculation, we easily see that

\[
\sum_{j=0}^{m} \binom{m}{j} (q^a - 1)^j \tilde{E}_{j,q}^{(a)}(0,k) = \frac{[2]_q^k}{(1 + q^{am}) (1 + q^{am-1}) \cdots (1 + q^{am-k+1})}.
\]

(2.8)

3. Polynomials \(\tilde{E}_{n,q}^{(a)}(0, k \mid x)\)

We now consider the polynomials \(\tilde{E}_{n,q}^{(a)}(0, k \mid x)\) (in \(q^a\)) by

\[
\tilde{E}_{n,q}^{(a)}(0, k \mid x) = \int \cdots \int [x + x_1 + \cdots + x_k]^{n-j} q^{\sum_{j=1}^{k} j x_j} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k).
\]

(3.1)

By (3.1), we get

\[
(q^a - 1)^n \tilde{E}_{n,q}^{(a)}(0, k \mid x) = [2]_q^k \sum_{l=0}^{n} \binom{n}{l} q^{alx} (-1)^{n-l} \frac{1}{(1 + q^{al}) \cdots (1 + q^{al-k+1})}.
\]

(3.2)
From (3.1) and (3.2), we can derive the following equation:

\[
\int_{\mathbb{Z}_q} \cdots \int_{\mathbb{Z}_q} q^{\sum_{j=1}^{k} (an-j) x_j} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k) = \sum_{j=0}^{n} \binom{n}{j} \alpha_j^1 \frac{1}{q-1} \tilde{E}_{j,q}^{(a)}(0,k | x),
\]

\[
\int_{\mathbb{Z}_q} \cdots \int_{\mathbb{Z}_q} q^{\sum_{j=1}^{k} (an-j) x_j} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k) = \frac{[2]^k q^{an}}{(1 + q^an) \cdots (1 + q^an-k+1)}.
\]

(3.3)

Therefore, by (3.2) and (3.3), we obtain the following theorem.

Theorem 3.1. For \(\alpha \in \mathbb{N} \) and \(n, k \in \mathbb{Z}_q \), one has

\[
\tilde{E}_{n,q}^{(a)}(0,k | x) = \frac{[2]^k q^{an}}{[\alpha]^n_q (1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{alx} \frac{1}{(-q^{an-k+1} : q)_k},
\]

(4.3)

\[
\sum_{l=0}^{n} \binom{n}{l} [\alpha]^l_q (q-1)^l \tilde{E}_{l,q}^{(a)}(0,k | x) = \frac{q^{an} [2]^k q^{nk}}{(-q^{an-k+1} : q)_k},
\]

where \((a : q)_0 = 1 \) and \((a : q)_k = (1-a)(1-aq) \cdots (1-aq^{k-1}) \).

Let \(d \in \mathbb{N} \) with \(d \equiv 1 \mod(2) \). Then we have

\[
\int_{\mathbb{Z}_q} \cdots \int_{\mathbb{Z}_q} \left[x + \sum_{j=1}^{k} x_j \right] q^d \sum_{j=1}^{k} \alpha_j \frac{1}{q^{d \sum_{j=1}^{k} \alpha_j}}
\]

\[
= \frac{[d]^n_q}{[d]^k_{-q}} \sum_{a_1, \ldots, a_k=0}^{d-1} q^{-\sum_{i=1}^{k} (1-a_i) (-1)^{\sum_{j=1}^{k} a_j}}
\]

\[
\times \int_{\mathbb{Z}_q} \cdots \int_{\mathbb{Z}_q} \left[x + \sum_{j=1}^{k} \frac{a_j}{d} + \sum_{j=1}^{k} x_j \right] \frac{1}{q^{d \sum_{j=1}^{k} \alpha_j}}
\]

\[
= \frac{[d]^n_q}{[d]^k_{-q}} \sum_{a_1, \ldots, a_k=0}^{d-1} q^{-\sum_{i=1}^{k} (1-a_i) (-1)^{\sum_{j=1}^{k} a_j}} \tilde{E}_{n,q}^{(a)}(0,k | x).
\]

Thus, by (3.5), we obtain the following theorem.

Theorem 3.2. For \(d \in \mathbb{N} \) with \(d \equiv 1 \mod(2) \), one has

\[
\tilde{E}_{n,q}^{(a)}(0,k | x) = \frac{[d]^n_q}{[d]^k_{-q}} \sum_{a_1, \ldots, a_k=0}^{d-1} q^{-\sum_{i=1}^{k} (1-a_i) (-1)^{\sum_{j=1}^{k} a_j}} \tilde{E}_{n,q}^{(a)}(0,k | \frac{x + a_1 + \cdots + a_k}{d}).
\]

(3.6)
Moreover,

$$\tilde{E}^{(a)}_{n,q}(0, k \mid dx) = \frac{[d]_q^n}{[d]_{-q}^k} \sum_{a_1, \ldots, a_k=0}^{d-1} q^{-\sum_{j=1}^{k} (j-1)a_j} (-1)^{\sum_{j=1}^{k} a_j} \tilde{E}^{(a)}_{n,q}(0, k \mid x + \frac{a_1 + \cdots + a_k}{d}) .$$

(3.7)

By (3.1), we get

$$\tilde{E}^{(a)}_{n,q}(0, k \mid x) = \sum_{l=0}^{n} \binom{n}{l} [x]_{q^l}^{n-l} q^{alx} \tilde{E}^{(a)}_{l,q}(0, k) ,$$

(3.8)

where \(\tilde{E}^{(a)}_{n,q}(0, k \mid 0) = \tilde{E}^{(a)}_{n,q}(0, k) .

Thus, we note that

$$\tilde{E}^{(a)}_{n,q}(0, k \mid x + y) = \sum_{l=0}^{n} \binom{n}{l} [y]_{q^l}^{n-l} q^{aly} \tilde{E}^{(a)}_{l,q}(0, k \mid x) .$$

(3.9)

4. Polynomials \(\tilde{E}^{(a)}_{n,q}(h, 1 \mid x) \)

Let us define polynomials \(\tilde{E}^{(a)}_{n,q}(h, 1 \mid x) \) as follows:

$$\tilde{E}^{(a)}_{n,q}(h, 1 \mid x) = \int_{\mathbb{Z}_p} [x + x_1]_{q^h}^{n} q^{x_1(h-1)} d\mu_{-q}(x_1) .$$

(4.1)

From (4.1), we have

$$\tilde{E}^{(a)}_{n,q}(h, 1 \mid x) = \frac{[2]_q}{(1 - q^h)} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{alx} \frac{1}{1 + q^{alx+h}} .$$

(4.2)

By the calculation of the fermionic p-adic q-integral on \(\mathbb{Z}_p \), we see that

$$q^{ax} \int_{\mathbb{Z}_p} [x + x_1]_{q^h}^{n} q^{x_1(h-1)} d\mu_{-q}(x_1)$$

$$= (q^a - 1) \int_{\mathbb{Z}_p} [x + x_1]_{q^h}^{n+1} q^{x_1(h-a-1)} d\mu_{-q}(x_1) + \int_{\mathbb{Z}_p} [x + x_1]_{q^h}^{n} q^{x_1(h-a-1)} d\mu_{-q}(x_1) .$$

(4.3)

Thus, by (4.3), we obtain the following theorem.

Theorem 4.1. For \(\alpha \in \mathbb{N} \) and \(h \in \mathbb{Z} \), one has

$$q^{ax} \tilde{E}^{(a)}_{n,q}(h, 1 \mid x) = (q^a - 1) \tilde{E}^{(a)}_{n+1,q}(h - \alpha - 1, 1 \mid x) + \tilde{E}^{(a)}_{n,q}(h - \alpha - 1, 1 \mid x) .$$

(4.4)
It is easy to show that

\[
\tilde{E}_{n,q}^{(a)}(h, 1 | x) = \int_{\mathbb{Z}_q} [x + x_1]_q^n q^{x_1(h-1)} d\mu_{-q}(x_1)
\]

\[
= \sum_{l=0}^{n} \binom{n}{l} [x]_q^{n-l} q^{lx} \int_{\mathbb{Z}_q} [x_1]_q^n q^{x_1(h-1)} d\mu_{-q}(x_1)
\]

\[
= \sum_{l=0}^{n} \binom{n}{l} [x]_q^{n-l} q^{lx} \tilde{E}_{n,q}^{(a)}(h, 1)
\]

\[
= \left(q^{ax} \tilde{E}_{\bar{q}}^{(a)}(h, 1) + [x]_q^n \right), \text{ for } n \geq 1,
\]

with the usual convention about replacing \((\tilde{E}_{\bar{q}}^{(a)}(h, 1))^n \) by \(\tilde{E}_{n,q}^{(a)}(h, 1)\).

From \(qI_q(f_1) + I_{-q}(f) = [2]_{q^f}(0)\), we have

\[
q^h \int_{\mathbb{Z}_p} [x + x_1 + 1]_q^n q^{x_1(h-1)} d\mu_{-q}(x_1) + \int_{\mathbb{Z}_q} [x + x_1]_q^n q^{x_1(h-1)} d\mu_{-q}(x_1) = [2]_q[x]_q^n.
\]

(4.6)

By (4.3) and (4.6), we get

\[
q^h \tilde{E}_{n,q}^{(a)}(h, 1 | x + 1) + \tilde{E}_{n,q}^{(a)}(h, 1 | x) = [2]_q[x]_q^n.
\]

(4.7)

For \(x = 0\) in (4.7), we have

\[
q^h \tilde{E}_{n,q}^{(a)}(h, 1 | 1) + \tilde{E}_{n,q}^{(a)}(h, 1) = \begin{cases} [2]_q^n, & \text{if } n = 0, \\ 0, & \text{if } n > 0. \end{cases}
\]

(4.8)

Therefore, by (4.8), we obtain the following theorem.

Theorem 4.2. For \(h \in \mathbb{Z}\) and \(n \in \mathbb{Z}_+\), one has

\[
q^h \left(q^{a} \tilde{E}_{\bar{q}}^{(a)}(h, 1) + 1 \right)^n + \tilde{E}_{n,q}^{(a)}(h, 1) = \begin{cases} [2]_q^n, & \text{if } n = 0, \\ 0, & \text{if } n > 0, \end{cases}
\]

(4.9)

with the usual convention about replacing \((\tilde{E}_{\bar{q}}^{(a)}(h, 1))^n \) by \(\tilde{E}_{n,q}^{(a)}(h, 1)\).

From the fermionic \(p\)-adic \(q\)-integral on \(\mathbb{Z}_p\), we easily get

\[
\tilde{E}_{0,q}^{(a)}(h, 1) = \int_{\mathbb{Z}_p} q^{x_1(h-1)} d\mu_{-q}(x_1) = [2]_q [2]_{q^f}.
\]

(4.10)
By (4.1), we see that

\[
\tilde{E}_{n,q}^{(a)}(h, 1 | 1 - x) = \int_{\mathbb{Z}_p} [1 - x + x_1]^n q^{-x_1(h-1)} d\mu_{-q^{-1}}(x_1)
\]

\[
= (-1)^n q^{an+1-h} \frac{[2]_q}{(1 - q^n)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{sl} \frac{1}{1 + q^{al+h}}
\]

\[
= (-1)^n q^{an+1-h} \tilde{E}_{n,q}^{(a)}(h, 1 | x).
\] (4.11)

Therefore, by (4.11), we obtain the following theorem.

Theorem 4.3. For \(\alpha \in \mathbb{N}, h \in \mathbb{Z}, \) and \(n \in \mathbb{Z}_+, \) one has

\[
\tilde{E}_{n,q}^{(a)}(h, 1 | 1 - x) = (-1)^n q^{an+1-h} \tilde{E}_{n,q}^{(a)}(h, 1 | x).
\] (4.12)

In particular, for \(x = 1, \) one gets

\[
\tilde{E}_{n,q}^{(a)}(h, 1) = (-1)^n q^{an+1-h} \tilde{E}_{n,q}^{(a)}(h, 1 | 1)
\]

\[
= (-1)^n q^{an+1-h} \tilde{E}_{n,q}^{(a)}(h, 1) \quad \text{if} \quad n \geq 1.
\] (4.13)

Let \(d \in \mathbb{N} \) with \(d \equiv 1 \pmod{2}. \) Then one has

\[
\int_{\mathbb{Z}_p} q^{x_1(h-1)} [x + x_1]^n d\mu_{-q}(x_1)
\]

\[
= \frac{[d]_q^n}{[d]_{-q}} \sum_{a=0}^{d-1} q^{ha} (-1)^a \int_{\mathbb{Z}_p} \frac{x + a}{d} d\mu_{-q^a}(x).
\] (4.14)

Therefore, by (4.14), we obtain the following theorem.

Theorem 4.4 (Multiplication formula). For \(d \in \mathbb{N} \) with \(d \equiv 1 \pmod{2}, \) we have

\[
\tilde{E}_{n,q}^{(a)}(h, 1 | x) = \frac{[d]_q^n}{[d]_{-q}} \sum_{a=0}^{d-1} q^{ha} (-1)^a \tilde{E}_{n,q}^{(a)} \left(h, 1 | \frac{x + a}{d} \right).
\] (4.15)
5. Polynomials \(\overline{E}_{n,q}^{(a)}(h, k \mid x) \) and \(k = h \)

In (2.1), we know that

\[
\overline{E}_{n,q}^{(a)}(h, k \mid x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x + x_1 + \cdots + x_k]_q^n q^{(h-1)x_1 + \cdots + (h-k)x_k} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k).
\] (5.1)

Thus, we get

\[
(q^a - 1)^n \overline{E}_{n,q}^{(a)}(h, k \mid x) = [2]^q \sum_{l=0}^{n} \binom{n}{l} (-1)^{n-l} \frac{q^{al}x}{(1 + q^{al+h}) \cdots (1 + q^{al+h-k+1})}.
\]

\[

q^h \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x + x_1 + \cdots + x_k]_q^n q^{(h-1)x_1 + \cdots + (h-k)x_k} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)

= - \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x + x_1 + \cdots + x_k]_q^n q^{(h-1)x_1 + \cdots + (h-k)x_k} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)

+ [2]^q \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x + x_2 + \cdots + x_k]_q^n q^{(h-2)x_2 + \cdots + (h-k)x_k} d\mu_{-q}(x_2) \cdots d\mu_{-q}(x_k).
\] (5.2)

Therefore, by (2.1) and (5.2), we obtain the following theorem.

Theorem 5.1. For \(h \in \mathbb{Z}, \ \alpha \in \mathbb{N}, \) and \(n \in \mathbb{Z}_+, \) one has

\[
q^h \overline{E}_{n,q}^{(a)}(h, k \mid x + 1) + \overline{E}_{n,q}^{(a)}(h, k \mid x) = [2]^q \overline{E}_{n,q}^{(a)}(h - 1, k - 1 \mid x).
\] (5.3)

Note that

\[
q^{ax} \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x + x_1 + \cdots + x_k]_q^n q^{hx_1 + \cdots + (h+1-k)x_k} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)

= (q^a - 1) \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x + x_1 + \cdots + x_k]_q^n q^{(h-a)x_1 + \cdots + (h+1-a-k)x_k} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)

+ \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x + x_1 + \cdots + x_k]_q^n q^{(h-a)x_1 + \cdots + (h+1-a-k)x_k} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)

= (q^a - 1) \overline{E}_{n+1,q}^{(a)}(h + 1 - \alpha, k \mid x) + \overline{E}_{n,q}^{(a)}(h + 1 - \alpha, k \mid x).
\] (5.4)

Therefore, by (5.4), we obtain the following theorem.
Theorem 5.2. For \(n \in \mathbb{Z}_+ \), one has

\[
q^{ax} \widetilde{E}^{(a)}_{n,q}(h + 1, k \mid x) = (q^a - 1) \widetilde{E}^{(a)}_{n+1,q}(h + 1 - a, k \mid x) + \widetilde{E}^{(a)}_{n,q}(h + 1 - a, k \mid x). \tag{5.5}
\]

Let \(d \in \mathbb{N} \) with \(d \equiv 1 \pmod{2} \). Then we get

\[
\sum_{\mathbb{Z}_p} \cdots \sum_{\mathbb{Z}_p} \left[x + \sum_{j=1}^{k} x_j \right]^n q^{\sum_{i=1}^{k} (h-j)x_i} d\mu_{-q^a}(x_1) \cdots d\mu_{-q^a}(x_k)
\]

\[
= \frac{[d]_{q^a}^n}{[d]_{-q}^k} \sum_{d_1, \ldots, d_k=0}^{d-1} q^{h \sum_{i=1}^{k} a_j - \sum_{j=2}^{k} (j-1)a_j - \sum_{j=1}^{k} a_j} (-1)^{\sum_{j=1}^{k} a_j} \sum_{\mathbb{Z}_p} \cdots \sum_{\mathbb{Z}_p} \left[x + \sum_{j=1}^{k} x_j \right]^n q^{d \sum_{i=1}^{k} (h-j)x_i} d\mu_{-q^a}(x_1) \cdots d\mu_{-q^a}(x_k). \tag{5.6}
\]

Therefore, by (5.6), we obtain the following theorem.

Theorem 5.3. For \(d \in \mathbb{N} \) with \(d \equiv 1 \pmod{2} \), one has

\[
\widetilde{E}^{(a)}_{n,q}(h, k \mid dx) = \frac{[d]_{q^a}^n}{[d]_{-q}^k} \sum_{d_1, \ldots, d_k=0}^{d-1} q^{h \sum_{i=1}^{k} a_j - \sum_{j=2}^{k} (j-1)a_j - \sum_{j=1}^{k} a_j} \sum_{\mathbb{Z}_p} \cdots \sum_{\mathbb{Z}_p} \left[x + \sum_{j=1}^{k} x_j \right]^n q^{d \sum_{i=1}^{k} (h-j)x_i} d\mu_{-q^a}(h, k \mid x + \frac{a_1 + \cdots + a_k}{d}). \tag{5.7}
\]

Let \(\widetilde{E}^{(a)}_{n,q}(k, k \mid x) = \widetilde{E}^{(a)}_{n,q}(k \mid x) \). Then we get

\[
(q^a - 1)^n \widetilde{E}^{(a)}_{n,q}(k \mid x),
\]

\[
= \sum_{l=0}^{n} \binom{n}{l} (-1)^{n-l} q^{al \cdot dx} \frac{[2]_{q^a}^k}{(1 + q^{al+k}) \cdots (1 + q^{al+1})}
\]

\[
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left[k - x + x_1 + \cdots + x_k \right]^n q^{-(k-1)x_1 - \cdots - (k-k)x_k} d\mu_{-q^a}(x_1) \cdots d\mu_{-q^a}(x_k)
\]

\[
= q^{a\left(\frac{k+1}{2}\right)-k} \frac{[2]_{q^a}^k}{(1 - q^{-a})^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} q^{al \cdot dx} \frac{1}{(1 + q^{al+1}) \cdots (1 + q^{al+k})}
\]

\[
= (-1)^{n} q^{na} q^{\left(\frac{k+1}{2}\right)-k} \frac{[2]_{q^a}^k}{(1 - q^{-a})^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} q^{al \cdot dx} \frac{1}{(1 + q^{al+1}) \cdots (1 + q^{al+k})}
\]

\[
= (-1)^{n} q^{a\left(n+\left(\frac{k+1}{2}\right)\right)-k} \widetilde{E}^{(a)}_{n,q}(k \mid x).
\]
Therefore, by (5.8), we obtain the following theorem.

Theorem 5.4. For \(n \in \mathbb{Z}_+ \), one has

\[
\tilde{E}_{n,q}^{(a)}(k \mid k - x) = (-1)^n q^{a(n + \binom{n+1}{2}) - k} \tilde{E}_{n,q}^{(a)}(k \mid x).
\] (5.9)

Let \(x = k \) in Theorem 5.4. Then we see that

\[
\tilde{E}_{n,q}^{(a)}(k \mid 0) = (-1)^n q^{a\binom{n+1}{2} - k} \tilde{E}_{n,q}^{(a)}(k \mid k).
\] (5.10)

From (4.6) and Theorem 5.1, we note that

\[
q^k \tilde{E}_{n,q}^{(a)}(k \mid x + 1) + \tilde{E}_{n,q}^{(a)}(k \mid x) = [2]_q \tilde{E}_{n,q}^{(a)}(k - 1 \mid x).
\] (5.11)

It is easy to show that

\[
(q^a - 1)^n \tilde{E}_{n,q}^{(a)}(k \mid 0) = \sum_{l=0}^{n} \binom{n}{l} (-1)^{l+n} \frac{[2]_q^k}{(1 + q^{a+l}) \cdots (1 + q^{a+l+k})}.
\] (5.12)

By simple calculation, we get

\[
\sum_{l=0}^{n} \binom{n}{l} (q^a - 1)^l \int_{\mathbb{Z}_q} \cdots \int_{\mathbb{Z}_q} [x_1 + \cdots + x_k]^l q^{\sum_{i=1}^l (k - l) x_i} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_k)
\]

\[
= [2]_q^k
\]

\[
(1 + q^{a+n+k}) (1 + q^{a+n+k-1}) \cdots (1 + q^{a+n+1}).
\] (5.13)

From (5.13), we note that

\[
\sum_{l=0}^{n} \binom{n}{l} (q^a - 1)^l \tilde{E}_{l,q}^{(a)}(k \mid 0) = \frac{[2]_q^k}{(1 + q^{a+n+k}) (1 + q^{a+n+k-1}) \cdots (1 + q^{a+n+1})},
\]

\[
\tilde{E}_{n,q}^{(a)}(k \mid x) = \int_{\mathbb{Z}_q} \cdots \int_{\mathbb{Z}_q} [x + x_1 + \cdots + x_k]^n q^{\sum_{i=1}^n (k - l) x_i - \sum_{i=1}^n (k - l) x_i} d\mu_{-q}(x_1)
\]

\[
\cdots d\mu_{-q}(x_k)
\]

\[
= \sum_{l=0}^{n} \binom{n}{l} q^{a l} \tilde{E}_{l,q}^{(a)}(k \mid 0) [x]^{n-l}
\]

\[
= \left(q^{a} \tilde{E}_{q}^{(a)}(k \mid 0) + [x]_q^n \right) \quad \text{for} \ n \in \mathbb{Z}_+,
\]

with the usual convention about replacing \((\tilde{E}_{q}^{(a)}(k \mid 0))^{n}\) by \(\tilde{E}_{n,q}^{(a)}(k \mid 0)\).
Put $x = 0$ in (5.11); we get
\[
q^k \tilde{E}_{n,q}^{(a)} (k \mid 1) + \tilde{E}_{n,q}^{(a)} (k \mid 0) = [2]_q \tilde{E}_{n,q}^{(a)} (k - 1 \mid 0).
\]
(5.15)

Thus, we have
\[
q^k \left(q^n \tilde{E}_{q}^{(a)} (k \mid 0) + 1 \right)^n + \tilde{E}_{n,q}^{(a)} (k \mid 0) = [2]_q \tilde{E}_{n,q}^{(a)} (k - 1 \mid 0),
\]
with the usual convention about replacing $(\tilde{E}_{q}^{(a)} (k \mid 0))^n$ by $\tilde{E}_{n,q}^{(a)} (k \mid 0)$.

Acknowledgment

This work was supported by the Dong-A University research fund.

References

