Research Article

Arithmetic Identities Involving Genocchi and Stirling Numbers

Guodong Liu
Department of Mathematics, Huizhou University, Huizhou, Guangdong 516015, China

Correspondence should be addressed to Guodong Liu, gdliu@pub.huishou.gd.cn

Received 18 June 2009; Accepted 12 August 2009

Recommended by Leonid Berezansky

An explicit formula, the generalized Genocchi numbers, was established and some identities and congruences involving the Genocchi numbers, the Bernoulli numbers, and the Stirling numbers were obtained.

Copyright © 2009 Guodong Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The Genocchi numbers G_n and the Bernoulli numbers B_n ($n \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$) are defined by the following generating functions (see [1]):

\[
\frac{2t}{e^t + 1} = \sum_{n=0}^{\infty} G_n \frac{t^n}{n!} \quad (|t| < \pi), \quad \text{(1.1)}
\]

\[
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!} \quad (|t| < 2\pi), \quad \text{(1.2)}
\]

respectively. By (1.1) and (1.2), we have

\[
G_{2n+1} = B_{2n+1} = 0, \quad (n \in \mathbb{N}) \quad G_n = 2(1 - 2^n)B_n, \quad \text{(1.3)}
\]

with \mathbb{N} being the set of positive integers.
The Genocchi numbers G_n satisfy the recurrence relation

$$G_0 = 0, \quad G_1 = 1, \quad G_n = \frac{1}{2} \sum_{k=1}^{n-1} \binom{n}{k} G_k \quad (n \geq 2), \quad (1.4)$$

so we find $G_2 = -1, \ G_4 = 1, \ G_6 = -3, \ G_8 = 17, \ G_{10} = -155, \ G_{12} = 2073, \ G_{14} = -38227, \ldots$.

The Stirling numbers of the first kind $s(n, k)$ can be defined by means of (see [2])

$$(x)_n = x(x-1) \ldots (x-n+1) = \sum_{k=0}^{n} s(n, k) x^k, \quad (1.5)$$

or by the generating function

$$\left(\log(1 + x)\right)^k = k! \sum_{n=k}^{\infty} s(n, k) \frac{x^n}{n!}. \quad (1.6)$$

It follows from (1.5) or (1.6) that

$$s(n, k) = s(n - 1, k - 1) - (n - 1) s(n - 1, k), \quad (1.7)$$

with $s(n, 0) = 0 \ (n > 0), \ s(n, n) = 1 \ (n \geq 0), \ s(n, 1) = (-1)^{n-1} (n - 1)! \ (n > 0), \ s(n, k) = 0 \ (k > n \ or \ k < 0)$.

Stirling numbers of the second kind $S(n, k)$ can be defined by (see [2])

$$x^n = \sum_{k=0}^{n} S(n, k)(x)_k \quad (1.8)$$

or by the generating function

$$\left(e^x - 1\right)^k = k! \sum_{n=k}^{\infty} S(n, k) \frac{x^n}{n!}. \quad (1.9)$$

It follows from (1.8) or (1.9) that

$$S(n, k) = S(n - 1, k - 1) + k S(n - 1, k), \quad (1.10)$$

with $S(n, 0) = 0 \ (n > 0), \ S(n, n) = 1 \ (n \geq 0), \ S(n, 1) = 1 \ (n > 0), \ S(n, k) = 0 \ (k > n \ or \ k < 0)$.

The study of Genocchi numbers and polynomials has received much attention; numerous interesting (and useful) properties for Genocchi numbers can be found in many books (see [1, 3–16]). The main purpose of this paper is to prove an explicit formula for the generalized Genocchi numbers (cf. Section 2). We also obtain some identities congruences involving the Genocchi numbers, the Bernoulli numbers, and the Stirling numbers. That is, we will prove the following main conclusion.
Theorem 1.1. Let \(n \geq k \) \((n, k \in \mathbb{N})\), then
\[
\sum_{\nu_1, \ldots, \nu_k \in \mathbb{N}} \frac{G_{\nu_1} \cdots G_{\nu_k}}{(\nu_1 \cdots \nu_k)\nu_1! \cdots \nu_k!} = (-1)^{n-k} 2^k k! \sum_{j=0}^{n} \frac{1}{2^j} S(n, j) s(j, k). \tag{1.11}
\]

Remark 1.2. Setting \(k = 1 \) in (1.11), and noting that \(s(j, 1) = (-1)^{j-1}(j - 1)! \), we obtain
\[
G_n = 2n \sum_{j=1}^{n} (-1)^{n-j} \frac{(j - 1)!}{2^j} S(n, j) \quad (n \in \mathbb{N}). \tag{1.12}
\]

Remark 1.3. By (1.11) and (1.3), we have
\[
\sum_{\nu_1, \ldots, \nu_k \in \mathbb{N}} \frac{(2^{\nu_1} - 1)B_{\nu_1} \cdots (2^{\nu_k} - 1)B_{\nu_k}}{(\nu_1 \cdots \nu_k)\nu_1! \cdots \nu_k!} = (-1)^n 2^k k! \sum_{j=0}^{n} \frac{1}{2^j} S(n, j) s(j, k). \tag{1.13}
\]

Theorem 1.4. Let \(n, k \in \mathbb{N} \), then
\[
\sum_{j=0}^{n} \frac{(-1)^j (k + j - 1)!}{2^j} S(n, j) = 2^{k-1} \sum_{j=0}^{k-1} (-1)^j s(k, k - j) \frac{G_{n+k-j}}{n+k-j}. \tag{1.14}
\]

Remark 1.5. Setting \(k = 1, 2, 3, 4 \) in (1.14), we get
\[
\sum_{j=0}^{n} \frac{(-1)^j j!}{2^j} S(n, j) = \frac{1}{n+1} G_{n+1},
\]
\[
\sum_{j=0}^{n} \frac{(-1)^j (j+1)!}{2^j} S(n, j) = \frac{2}{n+1} G_{n+1} + \frac{2}{n+2} G_{n+2},
\]
\[
\sum_{j=0}^{n} \frac{(-1)^j (j+2)!}{2^j} S(n, j) = \frac{8}{n+1} G_{n+1} + \frac{12}{n+2} G_{n+2} + \frac{4}{n+3} G_{n+3},
\]
\[
\sum_{j=0}^{n} \frac{(-1)^j (j+3)!}{2^j} S(n, j) = \frac{48}{n+1} G_{n+1} + \frac{88}{n+2} G_{n+2} + \frac{48}{n+3} G_{n+3} + \frac{8}{n+4} G_{n+4}. \tag{1.15}
\]

Theorem 1.6. Let \(n \in \mathbb{N}, m \in \mathbb{N}_0 \), then
\[
\frac{2^n}{n+1} G_{n+1} \equiv 2^{n-m} \sum_{j=0}^{m} \binom{m}{j} j^n \pmod{m+1}. \tag{1.16}
\]
Remark 1.7. Setting $m = p - 1$ in (1.16), we have

$$\frac{1}{n+1} G_{n+1} \equiv \sum_{j=0}^{p-1} (-1)^j j^n \pmod{p}, \quad (1.17)$$

where p is any odd prime.

2. Definition and Lemma

Definition 2.1. For a real or complex parameter x, we have the generalized Genocchi numbers $G_n^{(x)}$, which are defined by

$$\left(\frac{2}{e^{2t} + 1}\right)^x = \sum_{n=0}^{\infty} G_n^{(x)} \frac{t^n}{n!} \quad (|t| < \frac{\pi}{2}, \quad 1^x := 1). \quad (2.1)$$

By (1.1) and (2.1), we have

$$nG_n^{(1)} = 2^{n-1} G_n. \quad (2.2)$$

Remark 2.2. For an integer x, the higher-order Euler numbers $E_n^{(x)}$ are defined by the following generating functions (see [17]):

$$\left(\frac{2}{e^t + e^{-t}}\right)^x = \sum_{n=0}^{\infty} E_n^{(x)} \frac{t^{2n}}{(2n)!} \quad (|t| < \frac{\pi}{2}). \quad (2.3)$$

Then we have

$$G_n^{(x)} = (-1)^{n} \sum_{k=0}^{[n/2]} \binom{n}{2k} E^{(x)}_{2k} x^{n-2k}, \quad (2.4)$$

where $[n/2]$ denotes the greatest integer not exceeding $n/2$.

Lemma 2.3. Let $n \geq k$ $(n, k \in \mathbb{N})$, then

$$G_n^{(x)} = \sum_{k=1}^{n} \omega(n, k) x^k, \quad (2.5)$$

where

$$\omega(n, k) = (-1)^k \sum_{j=k}^{n} 2^{n-j} S(n, j) s(j, k). \quad (2.6)$$
Proof. By (2.1), (1.5), and (1.9) we have

\[\sum_{n=0}^{\infty} \frac{n^x}{n!} t^n = \left(\frac{2}{e^u + 1}\right)^x = \left(\frac{1}{1 + (1/2)(e^u - 1)}\right)^x\]

\[= \sum_{j=0}^{\infty} \frac{(-1)^j}{2^j} \binom{x + j - 1}{j} (e^u - 1)^j\]

\[= \sum_{j=0}^{\infty} \frac{(-1)^j}{2^j} \binom{x + j - 1}{j} j! \sum_{n=j}^{\infty} S(n, j) \frac{t^n}{n!}\]

\[= \sum_{n=0}^{\infty} \sum_{j=0}^{n} (-1)^j j! 2^{n-j} \binom{x + j - 1}{j} S(n, j) \frac{t^n}{n!},\]

which readily yields

\[G_n^{(x)} = \sum_{j=0}^{n} (-1)^j j! 2^{n-j} \binom{x + j - 1}{j} S(n, j)\]

\[= \sum_{j=0}^{n} (-1)^j 2^{n-j} S(n, j) (x + j - 1) (x + j - 2) \cdots (x + 1) x\]

\[= \sum_{j=0}^{n} (-1)^j 2^{n-j} S(n, j) \sum_{k=1}^{j} (-1)^{j-k} s(j, k) x^k\]

\[= \sum_{k=1}^{n} (-1)^k \sum_{j=k}^{n} 2^{n-j} S(n, j) s(j, k) x^k = \sum_{k=1}^{n} \omega(n, k) x^k.\]

This completes the proof of Lemma 2.3.

Remark 2.4. From (1.7), (1.10), and Lemma 2.3 we know that $G_n^{(x)}$ is a polynomial of x with integral coefficients. For example, setting $n = 1, 2, 3, 4$ in Lemma 2.3, we get

\[G_1^{(x)} = -x, \quad G_2^{(x)} = -x + x^2, \quad G_3^{(x)} = 3x^2 - x^3, \quad G_4^{(x)} = 2x + 3x^2 - 6x^3 + x^4.\]

Remark 2.5. Let $n, m \in \mathbb{N}$, then by (2.5), we have

\[\sum_{k=1}^{n} \omega(n, k) = \frac{2^n}{n+1} G_{n+1}.\]
Therefore, if $q \in \mathbb{N}$ is odd, then by (2.10) we get

$$G_{2^k q} \equiv 0 \pmod{q},$$ \hspace{1cm} (2.11)

where $k \in \mathbb{N}$.

3. Proof of the Theorems

Proof of Theorem 1.1. By applying Lemma 2.3, we have

$$k! \omega(n, k) = \frac{d^k}{dx^k} G_n^{(x)} \big|_{x=0}. \hspace{1cm} (3.1)$$

On the other hand, it follows from (2.1) that

$$\sum_{n=k}^{\infty} \frac{d^k}{dx^k} G_n^{(x)} \big|_{x=0} \frac{t^n}{n!} = \left(\log \frac{2}{e^{2t} + 1} \right)^k, \hspace{1cm} (3.2)$$

where $\log(2/(e^{2t} + 1))$ is the principal branch of logarithm of $2/(e^{2t} + 1)$.

Thus, by (3.1) and (3.2), we have

$$k! \sum_{n=k}^{\infty} \omega(n, k) \frac{t^n}{n!} = \left(\log \frac{2}{e^{2t} + 1} \right)^k. \hspace{1cm} (3.3)$$

Now note that

$$\frac{d}{dt} \log \frac{2}{e^{2t} + 1} = \frac{2}{e^{2t} + 1} - 2 = \sum_{n=0}^{\infty} G_n^{(1)} \frac{t^n}{n!} - 2 = \sum_{n=0}^{\infty} 2^n G_{n+1} \frac{t^n}{n!} - 2, \hspace{1cm} (3.4)$$

whence by integrating from 0 to t, we deduce that

$$\log \frac{2}{e^{2t} + 1} = \sum_{n=1}^{\infty} \frac{2^{n-1} G_n}{n} \frac{t^n}{n!} - 2t = \sum_{n=1}^{\infty} (-1)^n \frac{2^{n-1} G_n}{n} \frac{t^n}{n!}. \hspace{1cm} (3.5)$$

Since $G_{2n+1} = 0 \ (n \in \mathbb{N})$. Substituting (3.5) in (3.3) we get

$$\omega(n, k) = (-1)^n n! 2^{n-k} \sum_{\nu_1, \ldots, \nu_k \in \mathbb{N}} G_{\nu_1} \cdots G_{\nu_k} \frac{1}{(\nu_1 \cdots \nu_k) \nu_1! \cdots \nu_k!}. \hspace{1cm} (3.6)$$

By (3.6) and (2.6), we may immediately obtain Theorem 1.1. This completes the proof of Theorem 1.1. \qed
Proof of Theorem 1.4. By (2.1) and note the identity
\[
2 \left(\frac{2}{e^{2t} + 1} \right)^x + \frac{1}{x} \frac{d}{dt} \left(\frac{2}{e^{2t} + 1} \right)^x = \left(\frac{2}{e^{2t} + 1} \right)^{x+1},
\]
we have
\[
G_n^{(x+1)} = 2G_n^{(x)} + \frac{1}{x} G_n^{(x+1)}.
\]
(3.8)

By (3.8), (1.7), and note that \(G_n^{(1)} = 2^n / (n+1)G_{n+1}\), we obtain
\[
G_n^{(k)} = \frac{1}{(k-1)!} \sum_{j=0}^{k-1} (-1)^j 2^j s(k, k-j) G_n^{(k-1-j)}
\]
\[
= \frac{2^n - 1}{(k-1)!} \sum_{j=0}^{k-1} (-1)^j s(k, k-j) G_n^{(k-j)} / n + k - j.
\]
(3.9)

Comparing (3.9) and (2.8), we immediately obtain Theorem 1.4. This completes the proof of Theorem 1.4. □

Proof of Theorem 1.6. By Lemma 2.3, we have
\[
G_n^{(m+x)} = \sum_{j=1}^{n} \omega(n, j) \omega(m+x)^j \equiv \sum_{j=1}^{n} \omega(n, j) x^j = G_n^{(x)} \text{ (mod } m). \tag{3.10}
\]

Therefore
\[
G_n^{(k)} = G_n^{(m+k-m)} = G_n^{(-m)} = 2^{n-m} \sum_{j=0}^{m} \binom{m}{j} j^n \text{ (mod } m+k). \tag{3.11}
\]

Taking \(k = 1\) in (3.11) and note that \(G_n^{(1)} = 2^n / (n+1)G_{n+1}\), we immediately obtain Theorem 1.6. This completes the proof of Theorem 1.6. □

Acknowledgments

The author would like to thank the anonymous referee for valuable suggestions. This work was supported by the Guangdong Provincial Natural Science Foundation (no. 8151601501000002).
References

