Fixed Points of Log-Linear Discrete Dynamics

KEN SAWADA a and YOSHIO TOGAWA b

a Department of Mathematics, Faculty of Commerce, Waseda University, Tokyo, Japan; b Department of Information Sciences, Faculty of Science and Technology, Science University of Tokyo, Japan

(Received 6 December 1996)

In this paper we study the fixed points of the Log-linear discrete dynamics. We show that almost all Log-linear dynamics have at most two fixed points which is a generalization of Sonis’s result.

Keywords: Log-linear discrete dynamics, Fixed points

1 INTRODUCTION

The log-linear discrete dynamics

\[f_i(x_1, \ldots, x_n) = \frac{c_i x_1^{a_{i1}} \cdots x_n^{a_{in}}}{\sum_{j=1}^{n} c_j x_1^{a_{j1}} \cdots x_n^{a_{jn}}}, \quad i = 1, \ldots, n, \]

have been studied originally as a socio-spatial dynamic model by Dendrinos and Sonis [1]. Many interesting phenomena, for example strange attractors, pitch folk like bifurcations and invariant circles [1–5] have been found to be contained in them.

The log-linear dynamics maps depict a family of dynamics defined systematically by matrix \(A = (a_{ij}) \) and vector \(\vec{c} = (c_1, \ldots, c_n)^T \); like other such families of dynamics (for instance the Lotka–Volterra dynamics) they are a definitive object of mathematical studies. Therefore a thorough analysis of the log-linear dynamics is necessary because of the importance not only from an applicational view point but also from a pure mathematical view point.

In this paper we investigate the fixed points of the dynamics as our first step of a more extended mathematical study of the log-linear discrete dynamics. We define a real valued function on \(R \), which plays a key role in counting the number of the fixed points found in the map, and we prove that almost all dynamics have at most two fixed points. This result is a generalization of Sonis’s result [4].

2 DEFINITIONS AND NOTATIONS

We begin with some notations and definitions.

For an \(n \)-dimensional vector \(\vec{x} = (x_1, \ldots, x_n)^T \), let \((\vec{x})_i \) be the \(i \)-th component of \(\vec{x} \), i.e., \((\vec{x})_i = x_i \).
Let
\[E = \text{diag}(1, \ldots, 1), \]
the \(n \) dimensional unit matrix,
\[\vec{u} = (1, \ldots, 1)^T \in \mathbb{R}^n, \]
\[R^{n+} = \{ \vec{x} \in \mathbb{R}^n \mid x_i > 0 \text{ for } i = 1, \ldots, n \}, \]
\[\Delta^{n-1} = \{ \vec{x} \in \mathbb{R}^n \mid \vec{x} \cdot \vec{u} = 1, x_i > 0 \]
for \(i = 1, \ldots, n \).

For an \(n \times n \) matrix \(A = (a_{ij}) \), \(\vec{a}_i \) denotes the \(i \)th column vector of \(A \), i.e.,
\[\vec{a}_i = (a_{i1}, \ldots, a_{in})^T, \quad A = (\vec{a}_1, \ldots, \vec{a}_n). \]

Given an \(n \times n \) matrix \(A = (a_{ij}) \) and \(n \) positive real numbers \(c_1, \ldots, c_n \), we define a vector \(\vec{\gamma} \) and functions \(g_i, \vec{g}, f_i \) and \(\vec{f} \) defined on \(R^{n+} \) as follows:
\[\vec{\gamma} = (\log c_1, \ldots, \log c_n)^T, \]
\[g_i(\vec{x}) = c_i x_1^{a_{i1}} \cdots x_n^{a_{in}}, \quad i = 1, \ldots, n, \]
\[\vec{g}(\vec{x}) = (g_1(\vec{x}), \ldots, g_n(\vec{x}))^T, \]
\[g(\vec{x}) = \vec{g} \cdot \vec{u} = \sum_{i=1}^n g_i(\vec{x}), \]
\[f_i(\vec{x}) = \frac{g_i(\vec{x})}{g(\vec{x})}, \]
\[\vec{f}(\vec{x}) = (f_1(\vec{x}), \ldots, f_n(\vec{x}))^T. \]

Since \(\vec{f}(\vec{x}) \cdot \vec{u} = 1 \), the map \(\vec{f} \) gives dynamics on the \((n-1)\)-simplex \(\Delta^{n-1} \).

We call this dynamics the log-linear discrete dynamics.

For a vector \(\vec{d} = (d_1, \ldots, d_n) \in \mathbb{R}^n \), let
\[A[\vec{d}] = (\vec{a}_1 + d_1 \vec{u}, \ldots, \vec{a}_n + d_n \vec{u}). \]

If we modify a matrix \(A \) to a matrix \(A[\vec{d}] \), then the function \(g_i(\vec{x}) \) becomes
\[c_i x_1^{a_{i1}+d_i} \cdots x_n^{a_{in}+d_n} = g_i(\vec{x}) x_1^{d_i} \cdots x_n^{d_n} \]
and the function \(g(\vec{x}) \) becomes
\[g(\vec{x}) x_1^{d_1} \cdots x_n^{d_n}. \]

This implies that the dynamics \(\vec{f} \) do not change under the modification \(A \) to \(A[\vec{d}] \).

Therefore as the canonical form of a matrix \(A \), we can consider, for example \([1]\),
\[\begin{bmatrix} 0, \ldots, 0 \\ * \mid * \end{bmatrix}, \]
\[\begin{bmatrix} * \mid * \end{bmatrix}. \]

However we will not restrict a matrix \(A \) in the canonical form, to keep a free hand for perturbations in the set of \(n \times n \) matrices \(M(n) \).

Let \(V = \{ A \in M(n) \mid \det(A-E) = 0 \} \) and \(\tilde{M}(n) = M(n) - V = \{ A \in M(n) \mid \det(A-E) \neq 0 \} \). Then since \(\det(A-E) \) is a polynomial function of \(a_{ij} \)’s, \(V \) is a \((n^2-1)\)-dimensional surface in \(n^2 \)-dimensional space \(M(n) \). Hence \(V \) is a thin set in \(M(n) \) and almost all matrices belong to \(\tilde{M}(n) \). Moreover even if \(A \) is in \(V \), one can modify \(A \) to \(A[\vec{d}] \) in \(\tilde{M}(n) \) except for the few and rare cases discussed later.

Suppose that \(A \in \tilde{M}(n) \). We define functions of a positive variable \(t \) as follows:
\[\varphi_i(t) = \frac{t^{(B \vec{a})_i}}{e^{(B \vec{\gamma})}}, \quad i = 1, \ldots, n, \]
\[\vec{\varphi}(t) = (\varphi_1(t), \ldots, \varphi_n(t)), \]
and
\[\Phi(t) = \vec{\varphi}(t) \cdot \vec{u}, \]
where \(B = (A-E)^{-1} \). Note that \(\Phi(t) \) is not a constant function and that \(\vec{\varphi}(t) \in \Delta^{n-1} \) if and only if \(\Phi(t) = 1 \).

3 FIXED POINTS

Suppose that \(\vec{x} \) is a fixed point of \(\vec{f} \), that is \(\vec{f}(\vec{x}) = \vec{x} \). We can find this fixed point of \(\vec{f} \) by
solving the nonlinear equation system
\[g_1(\vec{x}) = x_1 g(\vec{x}), \]
\[\vdots \]
\[g_n(\vec{x}) = x_n g(\vec{x}), \]
\[\vec{x} \cdot \vec{u} = 1. \]

However we note that it is difficult to solve this nonlinear equation system even numerically.

The following theorem shows that we can find all fixed points of \(f \) by solving a single nonlinear equation,
\[\Phi(t) = 1, \quad t > 0 \quad (*) \]
whose numerical solutions can be easily obtained.

Theorem 1 Let \(A \in \tilde{M}(n) \). Suppose that the equation \((*) \) has \(m \) distinct solutions \(t_1, \ldots, t_m \). Then \(f \) has just \(m \) fixed points \(\varphi(t_1), \ldots, \varphi(t_m) \).

Proof Suppose that \(f(\vec{x}) = \vec{x} \). Then \(g_i(\vec{x}) = x_i t_i, \quad i = 1, \ldots, n \), where \(t = g(\vec{x}) \) i.e.,
\[c_1 x_1^{a_1} \cdots x_n^{a_n} = x_i t_i, \quad i = 1, \ldots, n. \]
Taking logarithms on both sides, we have
\[\gamma_i + \sum_j a_j \log x_j = \log x_i + \log t, \quad i = 1, \ldots, n, \]
\[(A - E)(\log x_1, \ldots, \log x_n)^T = -\vec{\gamma} + (\log t) \vec{u}. \]
Since \(A - E \) has the inverse matrix \(B \), one has
\[(\log x_1, \ldots, \log x_n)^T = -B \vec{\gamma} + \log t \cdot B \vec{u}, \]
\[\log x_i = -(B \vec{\gamma})_i + \log t \cdot (B \vec{u})_i, \quad i = 1, \ldots, n. \]
Therefore one obtains
\[x_i = \frac{e^{(B \vec{u})_i}}{e^{(B \vec{u})_1} + \cdots + e^{(B \vec{u})_n}}, \quad i = 1, \ldots, n. \]
Since \(\vec{x} \cdot \vec{u} = 1, \) \(t \) is a solution of \(\Phi(t) = 1 \).

Conversely we show that if \(t \) is a solution of the equation \((*) \), then \(\Phi(t) = 1 \).

First we notice that \(AB = B + E \) since \(E = (A - E)B = AB - B \). Then
\[g_i(\varphi(t)) = c_i(\varphi(t))^{a_i} \cdots (\varphi_n(t))^{a_n} \]
\[= c_i \left(\frac{t (B \vec{u})_i}{e^{(B \vec{u})_1} + \cdots + e^{(B \vec{u})_n}} \right)^{a_i} \cdots \left(\frac{t (B \vec{u})_n}{e^{(B \vec{u})_1} + \cdots + e^{(B \vec{u})_n}} \right)^{a_n} \]
\[= \frac{t^{a_0} (B \vec{u})_1 + \cdots + a_n (B \vec{u})_n}{e^{a_0 (B \vec{u})_1} + \cdots + e^{a_n (B \vec{u})_n}} \]
\[= \frac{t^{a_0} (B \vec{u})_1 + \cdots + a_n (B \vec{u})_n}{e^{a_0 (B \vec{u})_1} + \cdots + e^{a_n (B \vec{u})_n}} = c_i \left(\frac{t (B \vec{u})_i}{e^{(B \vec{u})_1} + \cdots + e^{(B \vec{u})_n}} \right)^{a_i} \]
\[= t \varphi_i(t), \quad i = 1, \ldots, n, \]
and
\[g(\varphi(t)) = \vec{g}(\varphi(t)) \cdot \vec{u} \]
\[= (t \varphi_i(t)) \cdot \vec{u} = t \Phi(t). \]

Hence
\[f_i(\varphi(t)) = \frac{g_i(\varphi(t))}{g(\varphi(t))} = \frac{\varphi_i(t)}{\Phi(t)}, \quad i = 1, \ldots, n. \]
Therefore if \(i \) is a solution of the equation, then
\[f_i(\varphi(i)) = \frac{\varphi_i(i)}{\Phi(i)} = \varphi_i(i), \quad i = 1, \ldots, n, \]
so that \(\varphi(i) \) is a fixed point of \(f \).

Finally if \(i \) and \(\tilde{i} \) are distinct solutions of the equation, then \(\varphi_1(i) \neq \varphi_1(\tilde{i}) \) since \(\varphi_1(t) \) is a monotone function. Hence \(\varphi(t_1), \ldots, \varphi(t_m) \) are distinct.

In Section 5 we give Example 5 in which the coefficients \(c_1, c_2, c_3 \) are all equal to 1. Then the equation has no solution. In general:

Proposition 1 Suppose that \(A \in \tilde{M}(n) \) and \(c_1 = \cdots = c_n = 1 \). Then the equation \((*) \) has:
1. one solution if \((B \vec{u})_1 > 0, \ldots, (B \vec{u})_n > 0 \),
2. one solution if \((B \vec{u})_1 < 0, \ldots, (B \vec{u})_n < 0 \),
3. no solution if \((B \vec{u})_i \geq 0, (B \vec{u})_j \leq 0 \) for some \(1 \leq i, j \leq n \).
Proof In case (1) (resp. (2)), \(\Phi(t) \) is an increasing (resp. decreasing) function and

\[
\lim_{t \to +0} \Phi(t) = 0 \quad (\text{resp. } \infty), \quad \lim_{t \to -\infty} \Phi(t) = \infty \quad (\text{resp. } 0).
\]

Therefore the equation has unique solution. In case (3)

\[
\Phi(t) > \varphi(t) = \frac{t^{(b)}}{e^{(b)}} = t^{(b)} \geq 1 \quad \text{for any } t \geq 1
\]

and

\[
\Phi(t) > \varphi(t) = \frac{t^{(b)}}{e^{(b)}} = t^{(b)} \geq 1 \quad \text{for any } t < 1
\]

since \(\varphi = 0 \). Therefore the equation has no solution.

4 THE NUMBER OF FIXED POINTS

In this section we prove that almost all log-linear dynamics have at most two fixed points.

We first prove:

Lemma 1 Suppose that

\[
h(t) = a_1 t^{\alpha_1} + a_2 t^{\alpha_2} + \cdots + a_n t^{\alpha_n},
\]

where \(\alpha_1 > \alpha_2 > \cdots > \alpha_n \) and \(\alpha_n = 0 \).

1. If \(a_1, \ldots, a_n > 0 \), then \(h(t) > 0 \) for all \(t > 0 \).
2. If \(a_1, \ldots, a_k > 0 \), \(a_{k+1}, \ldots, a_n < 0 \) for some \(k (1 \leq k < n) \), then

\[
\begin{align*}
h(t) &< 0, \quad 0 < t < t_0, \\
h(t) &> 0, \quad t = t_0, \\
h(t) &> 0, \quad t_0 < t
\end{align*}
\]

for some \(t_0 > 0 \).

Proof Note that

\[
\lim_{t \to -\infty} h(t) = \infty.
\]

Lemma 1 is true when \(n = 2 \). We may therefore proceed by induction, assuming Lemma 1 true for \(n \). Let

\[
h(t) = a_1 t^{\alpha_1} + a_2 t^{\alpha_2} + \cdots + a_n t^{\alpha_n} + a_{n+1} t^{\alpha_{n+1}}
\]

(\(\alpha_1 > \alpha_2 > \cdots > \alpha_n > \alpha_{n+1} = 0 \)).

Then

\[
h'(t) = a_1 \alpha_1 t^{\alpha_1 - 1} + a_2 \alpha_2 t^{\alpha_2 - 1} + \cdots + a_n \alpha_n t^{\alpha_n - 1}
\]

since \(\alpha_{n+1} = 0 \). We write \(h'(t) \) in the form

\[
h'(t) = t^{\alpha_{n+1}} k(t),
\]

where

\[
k(t) = b_1 t^{\beta_1} + \cdots + b_n t^{\beta_n},
\]

\[
b_1 = a_1 \alpha_1, \ldots, b_n = a_n \alpha_n,
\]

\[
\beta_1 = \alpha_1 - \alpha_n, \ldots, \beta_n = \alpha_n - \alpha_n = 0.
\]

Note that \(\beta_1 > \beta_2 > \cdots > \beta_n = 0 \). If \(a_1, \ldots, a_{n+1} > 0 \), then \(b_1, \ldots, b_n > 0 \), so \(k(t) > 0 \), \(t > 0 \) by the assumption. Since \(h(0) = a_{n+1} > 0 \) and \(h'(t) > 0 \) for all \(t > 0 \), \(h(t) > 0 \) for all \(t > 0 \), so that (1) holds.

If \(a_1, \ldots, a_n > 0 \) and \(a_{n+1} < 0 \), then \(b_1, \ldots, b_n > 0 \), so \(h(0) = a_{n+1} < 0 \) and \(h'(t) > 0 \) for all \(t > 0 \). Since

\[
\lim_{t \to -\infty} h(t) = \infty,
\]

there exists \(t_0 > 0 \) such that:

\[
\begin{align*}
h(t) &< 0, \quad 0 < t < t_0, \\
h(t) &= 0, \quad t = t_0, \\
h(t) &> 0, \quad t_0 < t
\end{align*}
\]

If \(a_1, \ldots, a_k > 0 \) and \(a_{k+1}, \ldots, a_{n+1} < 0 \) for some \(k (1 \leq k < n) \), then \(b_1, \ldots, b_k > 0 \) and \(b_{k+1}, \ldots, b_n < 0 \). Hence there exists \(t_0 > 0 \) such that:

\[
\begin{align*}
h'(t) &< 0, \quad 0 < t < t_0, \\
h'(t) &= 0, \quad t = t_0, \\
h'(t) &> 0, \quad t_0 < t
\end{align*}
\]
Moreover since \(h(0) = a_{n+1} < 0, \ h(t) < 0 \) for \(0 < t \leq t_0 \).

Since \(h'(t) > 0 \) for all \(t > t_0 \) and \(\lim_{t \to \infty} h(t) = \infty \), there exists \(t'_0 > t_0 > 0 \) such that:

\[
\begin{align*}
 h(t) &< 0, \quad 0 < t < t'_0, \\
 h(t_0) &< 0, \quad t = t'_0, \\
 h(t) &> 0, \quad t'_0 < t.
\end{align*}
\]

Therefore (2) holds.

Theorem 2 Almost all log-linear dynamics have at most two fixed points.

Proof It suffices to show that the equation (\(\ast \))

\[
\Phi(t) = 1, \quad t > 0
\]

has at most two solutions.

Without the loss of generality, we may write

\[
\Phi(t) = a_1 t^{\alpha_1} + \cdots + a_l t^{\alpha_l} + \text{const.}
\]

where \(a_1, \ldots, a_l > 0 \) and \(\alpha_1 > \alpha_2 > \cdots > \alpha_l \).

If \(\alpha_1, \ldots, \alpha_l > 0 \) (resp. \(\leq 0 \)), then by the same arguments as the proof of Proposition 1, equation (\(\ast \)) has a unique solution.

Suppose the \(\alpha_1, \ldots, \alpha_k > 0 \) and \(\alpha_{k+1}, \ldots, \alpha_l < 0 \) for some \(k \ (1 \leq k < l) \). Then

\[
\Phi'(t) = a_1 \alpha_1 t^{\alpha_1 - 1} + \cdots + a_k \alpha_k t^{\alpha_k - 1}
\]

\[
= \alpha_1 a_1 t^{\alpha_1 - 1} (b_1 + \beta_1 t^\beta_1 + \cdots + b_l t^\beta_l),
\]

where

\[
\beta_1 = \alpha_1 - \alpha_l, \quad \beta_2 = \ldots, \beta_l = \alpha_l - \alpha_l,
\]

\[
b_1 = 1, \quad b_2 = \frac{a_2 a_1}{\alpha_2 a_1}, \ldots, b_l = \frac{a_l a_1}{\alpha_l a_1}.
\]

Note that \(\beta_1 > \cdots > \beta_l = 0, b_1, \ldots, b_k > 0 \) and \(b_{k+1}, \ldots, b_l < 0 \). By Lemma 1, there exist \(t_0 > 0 \) such that:

\[
\begin{align*}
 \Phi'(t) &< 0, \quad 0 < t < t_0, \\
 \Phi'(t_0) &= 0, \quad t = t_0, \\
 \Phi'(t) &> 0, \quad t_0 < t.
\end{align*}
\]

Therefore \(\Phi(t) \) is monotonically decreasing for \(t < t_0 \) and \(\Phi(t) \) is monotonically increasing for \(t > t_0 \).

Since

\[
\lim_{t \to t_0^-} \Phi(t) = \infty, \quad \lim_{t \to \infty} \Phi(t) = \infty,
\]

the number of solutions is 0, 1 or 2 depending on the value of \(\Phi(t_0) \). Hence the number of the fixed points is at most two.

Remark We suppose in Theorems 1 and 2 that \(A - E \) is invertible. As the coefficients of \(A \) are taken randomly, the probability that \(A - E \) is noninvertible is zero. However, when the coefficients are restricted to integers, or when one changes an entry of \(A \) continuously, one often has to consider a matrix \(A \) with \(\det(A - E) = 0 \). So we will study the case \(A - E \) when it is noninvertible.

Suppose that \(\det(A - E) = 0 \). In this case one may try to modify \(A \) to \(A[\tilde{d}] \) so that \(\det(A[\tilde{d}]) - E \neq 0 \).

Let \(C = (c_{ij}) = A - E \). Since

\[
\det(A[\tilde{d}] - E) = \det(C[\tilde{d}]) = \det(C)
\]

\[
+ d_1 \det(\bar{u}, \bar{e}_2, \ldots, \bar{e}_n)
\]

\[
+ \ldots + d_n \det(\bar{e}_1, \ldots, \bar{e}_{n-1}, \bar{u})
\]

one can choose \(\tilde{d} \) so that \(\det(A[\tilde{d}] - E) \neq 0 \) except for the case where

\[
\det(\bar{u}, \bar{e}_2, \ldots, \bar{e}_n) = \cdots = \det(\bar{e}_1, \ldots, \bar{e}_{n-1}, \bar{u}) = 0.
\]

Example Let

\[
A = \begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 1 \\
1 & 2 & 3
\end{pmatrix}.
\]

Then

\[
\det(A - E) = \det\begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 2 & 2
\end{pmatrix} = 0.
and
\[
\det \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 2 \end{pmatrix} = \det \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \det \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} = 0.
\]

So one cannot modify \(A \) to \(A[\bar{d}] \) with \(\det(A[\bar{d}]) = -E \neq 0 \). For this example, one can get fixed points by simple calculations.

Suppose that \(c_1 = 1 \). Then \(\bar{x} = (x_1, x_2, x_3)^T \) is a fixed point if and only if
\[x_1 + x_2 + x_3 = 1, \quad x_1, x_2, x_3 > 0, \]
\[c_2x_1x_2x_3 = c_3(x_1x_2x_3)^2 = 1. \]

This system of equations has no solution except for the case where
\[c_3 = c_2^2, \quad c_2 > 27, \]
in which case the fixed points make a closed curve in the 2-simplex.

5 EXAMPLE

In this section we give some numerical examples illustrating the forms of the function \(\Phi(t) \).

Example 1:
\[c_1 = 1, \quad c_2 = 1, \quad c_3 = 1, \quad A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -3 & -1 & 3 \end{pmatrix}. \]

Then
\[\Phi(t) = t + t^2 + t^3 \]
is monotonically increasing and the equation has one solution.

Example 2:
\[c_1 = 1, \quad c_2 = 1, \quad c_3 = 1, \quad A = \begin{pmatrix} -1 & -1 & 1 \\ -1 & 1 & 0 \\ 3 & 1 & -1 \end{pmatrix}. \]

Then
\[\Phi(t) = t + t^2 + t^3 \]
is monotonically decreasing and the equation has one solution.

Example 3:
\[c_1 = 1, \quad c_2 = 7, \quad c_3 = 50, \quad A = \begin{pmatrix} 0 & 1 & -2 \\ 3 & 0 & 2.5 \\ 2 & 0.5 & 0 \end{pmatrix}. \]

Then
\[\Phi(t) = 0.209128t^{0.2} + 0.123576t^{0.488889} + \frac{0.768706}{t^{0.355556}} \]
has one minimum \((< 1)\) and the equation has two solutions.

Example 4:
\[c_1 = 1, \quad c_2 = 7, \quad c_3 = 50, \quad A = \begin{pmatrix} 0 & 1 & -2 \\ 3 & 0 & -2.57419151135 \\ 2 & 0.5 & 0 \end{pmatrix}. \]

Then
\[\Phi(t) = 0.209128t^{0.2} + 0.124635t^{0.500423} + \frac{0.771993}{t^{0.349789}} \]
has one minimum (1) and the equation has one solution.

Example 5:

\[c_1 = 1, \quad c_2 = 1, \quad c_3 = 1, \]

\[A = \begin{pmatrix} 0 & 1 & -2 \\ 3 & 0 & -2.5 \\ 2 & 0.5 & 0 \end{pmatrix}. \]

Then

\[\Phi(t) = t^{0.2} + t^{0.488889} + \frac{1}{t^{0.355556}} \]

has one minimum (1) and the equation has no solution.

References

