Erratum

Erratum to “Inapproximability and Polynomial-Time Approximation Algorithm for UET Tasks on Structured Processor Networks”

M. Bouznif¹ and R. Giroudeau²

¹ Laboratoire G-SCOP, 46 avenue Félix Viallet, 38031 Grenoble Cedex 1, France
² LIRMM, UMR 5056, 161 rue Ada, 34392 Montpellier Cedex 5, France

Correspondence should be addressed to R. Giroudeau, rgirou@lirmm.fr

Received 1 March 2012; Accepted 27 March 2012

Copyright © 2012 M. Bouznif and R. Giroudeau. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Related Works

This erratum is devoted to give some precisions on the related works in stand of view complexity and approximation given in [1].

1.1. Complexity Results

Table 1 gives the previous complexity results.

1.2. Approximation Results

If the network is a ring, there are two approximation results for Rayward-Smith’s [2] algorithm as follows.

(i) In the general case, the performance ratio is upper bounded by \(m/2 + 3/2 - 1/m \), and there exists an instance for which the performance ratio is equal to \(m/8 + 1/2 \) [3].

(ii) If the number of processors is even, the upper-bound can be improved to \(1 + (3/8)m - 1/2m \), and there exists an instance such that the performance ratio is equal to \(\lceil \sqrt{m} \rceil \) [4].

The first two corollaries of the paper must be replaced by the two following corollaries.
The problem of deciding whether an instance of Corollary 1.1. is given in the following theorem and two corollaries.

Corollary 1.1. The problem of deciding whether an instance of \((P, G^*) \) \(\mid \beta; c_{ij} = d(\pi^i, \pi^k); p_i = 1, \text{dup} \mid C_{\text{max}} \text{ with } G^* \in \mathcal{G} \) has a schedule of length at most three is \(\mathcal{NP} \)-complete with \(\beta \in \{\text{prec, bipartite of depth two}\} \).

Proof. See [3].

Moreover, nonapproximability results can be deduced.

Corollary 1.2. No polynomial-time algorithm exists with a performance bound less than 4/3 unless \(\mathcal{P} = \mathcal{NP} \) for the problems \((P, G^*) \) \(\mid \beta; c_{ij} = d(\pi^i, \pi^k); p_i = 1 \mid C_{\text{max}} \text{ and } (P, G^*) \) \(\mid \beta; c_{ij} = d(\pi^i, \pi^k); p_i = 1, \text{dup} \mid C_{\text{max}} \beta \in \{\text{prec, bipartite of depth two}\} \) with \(G^* \in \mathcal{G} \).

Proof. See [3].

The rest of the paper is devoted to extend the result to the bipartite of depth one and the main complexity result is given in the following theorem and two corollaries.

Theorem 1.3. The problem of deciding whether an instance of \((P, G^*) \) \(\mid \text{bipartite of depth one}, c_{ij} = d(\pi^i, \pi^k) = 1, p_i = 1 \mid C_{\text{max}} \) has a schedule of length at most three is \(\mathcal{NP} \)-complete.

Corollary 1.4. The problem of deciding whether an instance of \((P, G^*) \) \(\mid \text{bipartite of depth one}, c_{ij} = d(\pi^i, \pi^k); p_i = 1, \text{dup} \mid C_{\text{max}} \text{ with } G^* \in \mathcal{G} \) has a schedule of length at most three is \(\mathcal{NP} \)-complete.

Corollary 1.5. No polynomial-time algorithm exists with a performance bound less than 4/3 unless \(\mathcal{P} = \mathcal{NP} \) for the problems \((P, G^*) \) \(\mid \text{bipartite of depth one}, c_{ij} = d(\pi^i, \pi^k); p_i = 1 \mid C_{\text{max}} \text{ and } (P, G^*) \) \(\mid \text{bipartite of depth one}, c_{ij} = d(\pi^i, \pi^k); p_i = 1, \text{dup} \mid C_{\text{max}} \text{ with } G^* \in \mathcal{G} \).

References
