Research Article

Stability of Solutions for a Family of Nonlinear Difference Equations

Taixiang Sun,1 Hongjian Xi,1, 2 and Caihong Han1

1 College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China
2 Department of Mathematics, Guangxi College of Finance and Economics, Nanning, Guangxi 530003, China

Correspondence should be addressed to Taixiang Sun, stx1963@163.com

Received 8 September 2007; Accepted 31 January 2008

Recommended by Mariella Cecchi

We consider the family of nonlinear difference equations:

\[x_{n+1} = \left(\sum_{i=1}^{3} f_i(x_n, \ldots, x_{n-k}) + \sum_{i=3}^{5} f_i(x_n, \ldots, x_{n-k}) \right) / \left(\sum_{i=1}^{2} f_i(x_n, \ldots, x_{n-k}) + \sum_{i=3}^{5} f_i(x_n, \ldots, x_{n-k}) \right), \]

where \(f_i \in C([0, +\infty)^k, (0, +\infty)) \), for \(i \in \{1, 2, 4, 5\} \), and the initial values \(x_{-k}, x_{-k+1}, \ldots, x_0 \in (0, +\infty) \). We give sufficient conditions under which the unique equilibrium \(\bar{x} = 1 \) of these equations is globally asymptotically stable, which extends and includes corresponding results obtained in the cited references.

Copyright © 2008 Taixiang Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In [1], Papaschinopoulos and Schinas investigated the global asymptotic stability of the following nonlinear difference equation:

\[x_{n+1} = \frac{\sum_{i \in \mathbb{Z}_k - \{j, j-1\}} x_{n-i} + x_{n-j}x_{n-j+1} + 1}{\sum_{i \in \mathbb{Z}_k} x_{n-i}}, \quad n = 0, 1, \ldots, \] (1.1)

where \(k \in \{1, 2, 3, \ldots\} \), \(\{j, j-1\} \subset \mathbb{Z}_k \equiv \{0, 1, \ldots, k\} \), and the initial values \(x_{-k}, x_{-k+1}, \ldots, x_0 \in \mathbb{R}_+ \equiv (0, +\infty) \).

Moreover, Kruse and Nesemann [2] studied the global asymptotic stability of the unique equilibrium of a discrete dynamical system, and as a special result they proved that the unique equilibrium \(\bar{x} = 1 \) of the Putnam difference equation
\begin{equation}
\label{eq:1.2}
x_{n+1} = \frac{x_n x_{n-1} + x_{n-2} x_{n-3}}{n = 0, 1, \ldots,}
\end{equation}

is globally asymptotically stable, where the initial values \(x_0, x_{-1}, x_{-2}, x_{-3} \in \mathbb{R}_+\).

In [3], Çinar et al. investigated the global asymptotic stability of the following nonlinear difference equation:

\begin{equation}
\label{eq:2.1}
x_{n+1} = \frac{x_n \sum_{i=1}^k x_{n-i} + 1}{x_n + x_{n-1} + x_n \sum_{i=2}^k x_{n-i}}, \quad n = 0, 1, \ldots,
\end{equation}

where \(k \in \{1, 2, 3, \ldots\}\) and the initial values \(x_{-k}, x_{-k+1}, \ldots, x_n \in \mathbb{R}_+\). For closely related results, see [4–10].

In this paper, we consider the family of nonlinear difference equations:

\begin{equation}
\label{eq:2.2}
x_{n+1} = \frac{\sum_{i=1}^k f_i(x_{n-i}, \ldots, x_{n-k}) + f_4(x_{n-i}, \ldots, x_{n-k}) f_5(x_{n-i}, \ldots, x_{n-k})}{f_1(x_{n-i}, \ldots, x_{n-k}) f_2(x_{n-i}, \ldots, x_{n-k}) + \sum_{i=3}^k f_i(x_{n-i}, \ldots, x_{n-k})}, \quad n = 0, 1, \ldots
\end{equation}

where \(f_i \in C((0, +\infty)^k, (0, +\infty))\), for \(i \in \{1, 2, 4, 5\}\), \(f_3 \in C((0, +\infty)^k, (0, +\infty))\), \(k \in \{1, 2, \ldots\}\), and the initial values \(x_{-k}, x_{-k+1}, \ldots, x_n \in (0, +\infty)\). Our main result is the following theorem.

Theorem 1.1. Let \(u^* = \max\{u_0, 1/u\}\), for any \(u \in \mathbb{R}_+\). If \(f(u_0, u_1, \ldots, u_k) \leq \max\{u_0^*, u_1^*, \ldots, u_k^*\}\), for \(i = 1, 2, 4, 5\), then \(\alpha = 1\) is the unique positive equilibrium of (1.4) which is globally asymptotically stable.

2. The proof of Theorem 1.1

In this section, we will prove Theorem 1.1. To do this, we need the following lemma.

Lemma 2.1. Let \((a, b, c, d) \in \mathbb{R}_+^4 - \{(1, 1, 1, 1)\}, e \in [0, \infty),\) and \(\alpha = \max\{a^*, b^*, c^*, d^*\}\). Then,

\begin{equation}
\label{eq:2.1}
\frac{1}{\alpha} < \frac{c + d + e + ab}{cd + e + a + b} < \alpha.
\end{equation}

Proof. Since \((a, b, c, d) \in \mathbb{R}_+^4 - \{(1, 1, 1, 1)\}, e \in [0, \infty),\) and \(\alpha = \max\{a^*, b^*, c^*, d^*\}\), we have \(\alpha > 1\) and either \(\alpha \geq \beta > 1/\alpha\) or \(\alpha > \beta \geq 1/\alpha\), for every \(\beta \in \{a, b, c, d\}\). If \(c < 1\) or \(d < 1\), then

\begin{equation}
\label{eq:2.2}
acd + aa + ab + ae > ab + c + d + e.
\end{equation}

It follows that

\begin{equation}
\label{eq:2.3}
\frac{c + d + e + ab}{cd + e + a + b} < \alpha.
\end{equation}

If \(c \geq 1\) and \(d \geq 1\), then \(\alpha \geq c > 1\) or \(\alpha > c \geq 1\) and \(\alpha \geq d > 1\) or \(\alpha > d \geq 1\). Thus, we have the following inequalities:

\begin{equation}
\label{eq:2.4}
\begin{align*}
a(a + b) & \geq 2ab, \\
acd + aa & \geq ac + 1 > 2c, \\
acd + ab & \geq ad + 1 > 2d.
\end{align*}
\end{equation}
It follows from (2.4) that

\[acd + aa + ab + ae > ab + c + d + e, \]

which implies

\[\frac{c + d + e + ab}{cd + e + a + b} < a. \]

By the symmetry, we have also that

\[\frac{1}{a} < \frac{c + d + e + ab}{cd + e + a + b}. \]

This completes the proof.

Proof of Theorem 1.1. Let \(\{x_n\}_{n=k}^{\infty} \) be a positive solution of (1.4) with the initial values \(x_k, x_{k+1}, \ldots, x_0 \in \mathbb{R}^+ \). For any \(n > 0 \), write

\[p_n = \max\{x^*_n, x^*_{n-1}, \ldots, x^*_k\}. \]

From Lemma 2.1, it follows that for any \(n \geq 0 \),

\[
x_{n+1} = \frac{\sum_{i=1}^5 f_i(x_{n+1}, \ldots, x_{n+k}) + f_4(x_{n+1}, \ldots, x_{n+k}) f_5(x_{n+1}, \ldots, x_{n+k})}{f_1(x_{n+1}, \ldots, x_{n+k}) f_2(x_{n+1}, \ldots, x_{n+k}) + \sum_{i=3}^5 f_i(x_{n+1}, \ldots, x_{n+k})}
\]

\[\leq \max \left\{ \left[f_i(x_{n+1}, \ldots, x_{n+k}) \right]^* : i = 1, 2, 4, 5 \right\} \]

\[\leq \max \{x^*_{n-i} : 0 \leq i \leq k\} = p_n, \]

\[
x_{n+1} + 1 = \frac{\sum_{i=1}^5 f_i(x_{n+1}, \ldots, x_{n+k}) + f_4(x_{n+1}, \ldots, x_{n+k}) f_5(x_{n+1}, \ldots, x_{n+k})}{f_1(x_{n+1}, \ldots, x_{n+k}) f_2(x_{n+1}, \ldots, x_{n+k}) + \sum_{i=3}^5 f_i(x_{n+1}, \ldots, x_{n+k})}
\]

\[\geq \frac{1}{\max \{f_i(x_{n+1}, \ldots, x_{n+k})^* : i = 1, 2, 4, 5\}} \]

\[\geq \frac{1}{\max \{x^*_{n-i} : 0 \leq i \leq k\}} = \frac{1}{p_n}. \]

By (2.9), we have that for any \(n \geq 0 \),

\[1 \leq x^*_{n+1} \leq p_n, \quad p_{n+1} \leq p_n. \]

From (2.10), we may assume that

\[\lim_{n \to \infty} p_n = M \geq 1. \]

Then,

\[\frac{1}{M} \leq \liminf_{n \to \infty} x_n \leq \limsup_{n \to \infty} x_n \leq M. \]

Since $p_n = \max\{x^*_n, x^*_{n-1}, \ldots, x^*_{n-4}\}$, there exists a sequence $l_n \to \infty$ such that

$$\lim_{s \to \infty} x_s = M$$

(2.13)

or

$$\lim_{s \to \infty} x_{l_n} = \frac{1}{M}.$$

(2.14)

We may suppose (by taking a subsequence) that for $1 \leq i \leq k + 1$,

$$\lim_{s \to \infty} x_{l_n - i} = M_i.$$

(2.15)

From (2.12), it follows that $1/M \leq M_i \leq M$.

We claim that $M = 1$. Indeed, if $M > 1$, then $f_i(M_1, \ldots, M_k) \neq 1$, for some $i \in \{1, 2, 4, 5\}$. If $\lim_{s \to \infty} x_{l_n} = M$, then it follows from Lemma 2.1 and (1.4) that

$$M = \frac{\sum_{i=1}^3 f_i(M_1, \ldots, M_{k+1}) + f_4(M_1, \ldots, M_{k+1}) f_5(M_1, \ldots, M_{k+1})}{f_1(M_1, \ldots, M_{k+1}) f_2(M_1, \ldots, M_{k+1}) + \sum_{i=3}^{5} f_i(M_1, \ldots, M_{k+1})}$$

$$< \max \{ [f_i(M_1, \ldots, M_{k+1})]^* : i = 1, 2, 4, 5 \}$$

$$\leq \max \{ M_i : 1 \leq i \leq k + 1 \} \leq M,$$

which is a contradiction.

If $\lim_{s \to \infty} x_{l_n} = 1/M$, then it follows from Lemma 2.1 and (1.4) that

$$\frac{1}{M} = \frac{\sum_{i=1}^3 f_i(M_1, \ldots, M_{k+1}) + f_4(M_1, \ldots, M_{k+1}) f_5(M_1, \ldots, M_{k+1})}{f_1(M_1, \ldots, M_{k+1}) f_2(M_1, \ldots, M_{k+1}) + \sum_{i=3}^{5} f_i(M_1, \ldots, M_{k+1})}$$

$$> \frac{1}{\max \{ [f_i(M_1, \ldots, M_{k+1})]^* : i = 1, 2, 4, 5 \}}$$

$$\geq \frac{1}{\max \{ M_i : 1 \leq i \leq k + 1 \}} \geq \frac{1}{M},$$

which is a contradiction. This completes the proof of the claim.

By (1.4) and (2.12), it follows that $\lim_{n \to \infty} x_n = 1$ and

$$1 = \frac{\sum_{i=1}^3 f_i(1, \ldots, 1) + f_4(1, \ldots, 1) f_5(1, \ldots, 1)}{f_1(1, \ldots, 1) f_2(1, \ldots, 1) + \sum_{i=3}^{5} f_i(1, \ldots, 1)}.$$

(2.18)

Thus, $\bar{x} = 1$ is the unique positive equilibrium of (1.4).

For any $0 < \varepsilon < 1$, choose $\delta = \varepsilon/(\varepsilon + 1)$ and let $\{x_n\}_{n=k}^\infty$ be a solution of (1.4) with the initial values $x_{-k}, x_{-k+1}, \ldots, x_0 \in (1 - \delta, 1 + \delta)$. Then, for any $-k \leq i \leq 0$, we have that $x_i < 1 + \varepsilon$ and $1/x_i < 1/(1 - \delta) = 1 + \varepsilon$. By (2.9) it follows that for any $n \geq 0$,

$$1 - \varepsilon < \frac{1}{p_0} \leq \frac{1}{p_n} \leq x_{n+1} \leq p_n \leq p_0 < 1 + \varepsilon,$$

(2.19)

which implies that $\bar{x} = 1$ is globally asymptotically stable. This completes the proof.
3. Example

In this section, we will give an application of Theorem 1.1.

Example 3.1. Consider the following equation:

\[
x_{n+1} = x_{n-1} + x_{n-j} + g(x_n, \ldots, x_{n-k}) + x_{n-s}x_{n-t} \quad n = 0, 1, \ldots,
\]

where \(k \in \{1, 2, \ldots\} \), \(i, j, s, t \in \{0, 1, \ldots, k\} \), the initial conditions \(x_{-k}, x_{-k+1}, \ldots, x_0 \in \mathbb{R}_+ \), and \(g \in C([0, +\infty)^{k+1}, [0, +\infty]) \). Then, \(\bar{x} = 1 \) is the unique positive equilibrium of (3.1) which is globally asymptotically stable.

Proof. Let \(f_1(u_0, u_1, \ldots, u_k) = u_i, f_2(u_0, u_1, \ldots, u_k) = u_j, f_3(u_0, u_1, \ldots, u_k) = g(u_0, u_1, \ldots, u_k) \), \(f_4(u_0, u_1, \ldots, u_k) = u_s \), and \(f_5(u_0, u_1, \ldots, u_k) = u_t \). It is easy to verify that \([f_i(u_0, u_1, \ldots, u_k)]^* \leq \max\{u_0, u_1^*, \ldots, u_k^*\} \), for \(i = 1, 2, 4, 5 \). By Theorem 1.1, we know that \(\bar{x} = 1 \) is the unique positive equilibrium of (3.1) which is globally asymptotically stable.

Remark 3.2. Let \(k \geq 3 \), \(f_1(u_0, u_1, \ldots, u_k) = 1, f_2(u_0, u_1, \ldots, u_k) = u_j, \) for some \(t \in \mathbb{Z}_k - \{j - 1, j\} \). \(f_3(u_0, u_1, \ldots, u_k) = \sum_{i=1}^{k} u_{j-i+1}, f_4(u_0, u_1, \ldots, u_k) = u_{j-1}, \) and \(f_5(u_0, u_1, \ldots, u_k) = u_i \). Then, (1.4) is (1.1), since \([f_i(u_0, u_1, \ldots, u_k)]^* \leq \max\{u_0, u_1^*, \ldots, u_k^*\} \), for \(i = 1, 2, 4, 5 \). By Theorem 1.1, we know that the unique positive equilibrium \(\bar{x} = 1 \) of (1.1) is globally asymptotically stable.

Remark 3.3. Let \(k = 3 \), \(f_1(u_0, u_1, u_2) = u_0, f_2(u_0, u_1, u_2, u_3) = u_1, f_3(u_0, u_1, u_2, u_3) = 0, f_4(u_0, u_1, u_2, u_3) = u_2, \) and \(f_5(u_0, u_1, u_2, u_3) = u_3 \). Then, (1.4) is (1.2), since \([f_i(u_0, u_1, \ldots, u_k)]^* \leq \max\{u_0, u_1^*, \ldots, u_k^*\} \), for \(i = 1, 2, 4, 5 \). By Theorem 1.1, we know that the unique positive equilibrium \(\bar{x} = 1 \) of (1.2) is globally asymptotically stable.

Remark 3.4. Let \(f_1(u_0, u_1, \ldots, u_k) = 1/u_0, f_2(u_0, u_1, \ldots, u_k) = u_1, f_3(u_0, u_1, \ldots, u_k) = u_2 + \cdots + u_{k-1}, f_4(u_0, u_1, \ldots, u_k) = u_k, \) and \(f_5(u_0, u_1, \ldots, u_k) = 1 \). Then, (1.4) is (1.3), since \([f_i(u_0, u_1, \ldots, u_k)]^* \leq \max\{u_0, u_1^*, \ldots, u_k^*\} \), for \(i = 1, 2, 4, 5 \). By Theorem 1.1, we know that the unique positive equilibrium \(\bar{x} = 1 \) of (1.3) is globally asymptotically stable.

Acknowledgements

The project was supported by NSFC (10461001) and NFSGX (0640205, 0728002).

References

