We find a lower estimation for the projection constant of the projective tensor product $X \otimes \wedge Y$ and the injective tensor product $X \otimes \vee Y$, we apply this estimation on some previous results, and we also introduce a new concept of the projection constants of operators rather than that defined for Banach spaces.

1. Introduction

If Y is a closed subspace of a Banach space X, then the relative projection constant of Y in X is defined by

$$\lambda(Y, X) := \inf \{ \|P\| : P \text{ is a linear projection from } X \text{ onto } Y \}.$$ \hspace{1cm} (1.1)

And the absolute projection constant of Y is defined by

$$\lambda(Y) := \sup \{ \lambda(Y, X) : X \text{ contains } Y \text{ as a closed subspace} \}.$$ \hspace{1cm} (1.2)

It is well known that any Banach space Y can be isometrically embedded into $l_\infty(\Gamma_1)$ for some index set Γ_1 (Γ_1 is usually taken to be $\mathcal{F}(Y^*)$, where Y^* denotes the dual space of Y and $\mathcal{F}(Y^*)$ denotes the set $\{f : f \in Y^*, \|f\| \leq 1\}$) and that if Y is complemented in $l_\infty(\Gamma_1)$, then it is complemented in every Banach space containing it as a closed subspace, that is, Y is injective. We also know that for any such embedding the supremum in (1.2) is attained, that is, $\lambda(Y) = \lambda(\Gamma_1, l_\infty(\Gamma_1))$ (see [1, 4]). For each finite-dimensional space Y_n with dim $Y_n = n$, Kadets and Snobar [6] proved that $\lambda(Y_n) \leq \sqrt{n}$. König [7] showed that for each prime number n the space l_∞^n contains an n-dimensional subspace Y_n with projection constant

$$\lambda(Y_n) = \sqrt{n} - \frac{1}{\sqrt{n}} - \frac{1}{n}.$$ \hspace{1cm} (1.3)
König and Lewis [9] verified the strict inequality $\lambda(Y_n) < \sqrt{n}$ in case $n \geq 2$. Lewis [14] showed that

$$\lambda(Y_n) \leq \sqrt{n} \left[1 - \frac{1}{n} + O\left(\frac{1}{n^{1/4}}\right)\right].$$

(1.4)

König and Tomczak-Jaegermann [11] also showed that there is a sequence $\{X_n\}_{n \in \mathbb{N}}$ of Banach spaces X_n with $\dim X_n = n$ such that

$$\lim_{n \to \infty} \frac{\lambda(X_n)}{\sqrt{n}} = 1.$$ (1.5)

In fact, it is shown in [9] that for each Banach space Y_n with dimension n,

$$\lambda(Y_n) \leq \sqrt{n} - \frac{c}{\sqrt{n}},$$

where $c > 0$ is a numerical constant and the n-dimensional spaces X_n satisfy $\sqrt{n} - \frac{c}{\sqrt{n}} \leq \lambda(X_n)$. The improvement of these results was given in [12], where an upper estimate for $\lambda(Y_n)$ was found in the form

$$\lambda(Y_n) \leq \begin{cases} \sqrt{n} - \frac{1}{\sqrt{n}} + O\left(\frac{1}{n^{1/4}}\right), & \text{in the real field,} \\ \sqrt{n} - \frac{1}{2\sqrt{n}} + O\left(\frac{1}{n^{1/4}}\right), & \text{in the complex field.} \end{cases}$$

(1.6)

The precise values of l_1^n, l_2^n, and l_p^n, $1 < p < \infty$, $p \neq 2$, have been calculated by Grünbaum [4], Rutovitz [15], Gordon [3], and Garling and Gordon [2]. In the case of $1 < p < 2$, the improvement of these results was given by König, Schütt, and Tomczak-Jaegermann in [10], they showed that

$$\lim_{n \to \infty} \frac{\lambda(l_p^n)}{\sqrt{n}} = \begin{cases} \sqrt{n} - \frac{1}{\sqrt{n}} + O\left(\frac{1}{n^{1/4}}\right), & \text{in the real field,} \\ \sqrt{n} - \frac{1}{2\sqrt{n}} + O\left(\frac{1}{n^{1/4}}\right), & \text{in the complex field.} \end{cases}$$

(1.7)

Some other results are mentioned in [2, 3, 13, 15].

2. Notations and basic definitions

The sets X, Y, Z, and E denote Banach spaces, X^* denotes the conjugate space of X and U_X denotes the unit ball of the space X. Elements of X, Y, X^*, and Y^* will be denoted by x, u, y, v, f, h, \ldots, and g, k, \ldots, respectively.
injective tensor product $X \otimes^\vee Y$ between the normed spaces X and Y is defined as the completion of the smallest cross norm on the space $X \otimes Y$ and the norm on the space $X \otimes Y$ is defined by

$$\left\| \sum_{i=1}^n x_i \otimes y_i \right\|_{X \otimes Y} = \sup \left\{ \sum_{i=1}^n |f(x_i)| |g(y_i)| \right\},$$

(2.1)

where the supremum is taken over all functionals $f \in U_X^*$ and $g \in U_Y^*$.

The projective tensor product $X \otimes^\wedge Y$ between the normed spaces X and Y is defined as the completion of the largest cross norm on the space $X \otimes Y$ and the norm on $X \otimes Y$ is defined by

$$\left\| \sum_{i=1}^n x_i \otimes y_i \right\|_{X \otimes^\wedge Y} = \inf \left\{ \sum_{j=1}^m \| u_j \| \| v_j \| \right\},$$

(2.2)

where the infimum is taken over all equivalent representations $\sum_{j=1}^m u_j \otimes v_j \in X \otimes Y$ of $\sum_{i=1}^n x_i \otimes y_i$ (see [5]).

If X is a Banach space on which every linear bounded operator from X into any Banach space Y is nuclear (this is the case in all finite-dimensional Banach spaces X), then for any Banach space Y the space $X \otimes^\vee Y$ is isomorphically isometric to $X \otimes^\wedge Y$ (see [16]).

The set $\Omega_1 = \{(f,g) : f \in U_X^*, g \in U_Y^*\} = U_X^* \times U_Y^*$. We start with the following two lemmas.

Lemma 2.1. For Banach spaces X and Y there is a norm one projection from $l_\infty(U_X^*) \otimes^\vee l_\infty(U_Y^*)$ onto $l_\infty(\Omega_1)$.

Proof. Since the space $l_\infty(\Omega_1)$ has the 1-extension property, it is sufficient to show that $l_\infty(\Omega_1)$ can be isometrically embedded in the space $l_\infty(U_X^*) \otimes^\vee l_\infty(U_Y^*)$. In fact, every nonzero element $0 \neq \Phi = [\Phi((f,g))]_{(f,g) \in U_X^* \times U_Y^*}$ in the space $l_\infty(\Omega_1)$, (note that the norm in this Banach space is given by $\| \Phi \|_{l_\infty(\Omega_1)} = \sup_{(f,g) \in U_X^* \times U_Y^*} \| \Phi((f,g)) \|$) defines two scalar-valued functions $F \in l_\infty(U_X^*)$ and $G \in l_\infty(U_Y^*)$ by the following formulas:

$$F(f) = \sup_{g \in U_Y^*} \| \Phi((f,g)) \|, \quad G(g) = \sup_{f \in U_X^*} \| \Phi((f,g)) \|. \quad (2.3)$$

Clearly the element $\tilde{\Phi} = (1/\| \Phi \|_{l_\infty(\Omega_1)}) \times (F \otimes G)$ is an element of the space $l_\infty(U_X^*) \otimes^\vee l_\infty(U_Y^*)$. Since both the injective and the projective tensor products are cross norms, $\| \tilde{\Phi} \|_{l_\infty(\Omega_1)} = \| \Phi \|_{l_\infty(\Omega_1)}$. The mapping J defined by the formula $J(\tilde{\Phi}) = \tilde{\Phi}$ is the required isometric embedding. □

Lemma 2.2. Let X and Y be two Banach spaces. Then $\lambda(X \otimes^\wedge Y) = \lambda(X \otimes^\vee Y, l_\infty(\Omega_1))$.
Proof. It is also sufficient to show that the space $X \otimes Y$ can be isometrically embedded in $l_\infty(\Omega_1)$. In fact, every element $F = \sum_{i=1}^{m} x_i \otimes y_i \in X \otimes Y$ defines a scalar-valued bounded function $\hat{F} \in l_\infty(\Omega_1)$ by the formula $\hat{F}(f, g) = \sum_{i=1}^{m} f(x_i)g(y_i)$. Using definition (2.1) for the injective tensor product, we have $\|\hat{F}\| = \|\hat{F}\|_{l_\infty(\Omega_1)}$. The mapping i defined by the formula $i(F) = \hat{F}$ is the required isometric embedding.

We have the following theorem.

Theorem 2.3. (1) If Y_1 and Y_2 are complemented subspaces of Banach spaces X_1 and X_2, respectively, then the injective (resp., projective) tensor product $Y_1 \otimes Y_2$ (resp., $Y_1 \otimes X_2$) of the spaces Y_1 and Y_2 is complemented in the injective (resp., projective) tensor product $X_1 \otimes X_2$ (resp., $X_1 \otimes X_2$) of the spaces X_1 and X_2 and

$$\lambda\left(Y_1 \otimes (\vee \text{or } \wedge) Y_2, X_1 \otimes (\vee \text{or } \wedge) X_2\right) \leq \lambda(Y_1, X_1)\lambda(Y_2, X_2).$$

(2.4)

(2) If X and Y are injective spaces, then the space $X \otimes Y$ is injective. Moreover,

$$\lambda(X \otimes Y) \leq \lambda(X)\lambda(Y).$$

(2.5)

Proof. Let P_1 and P_2 be any projections from X_1 onto Y_1 and from X_2 onto Y_2, respectively. Then the operator P from the space $X_1 \otimes X_2$ onto the space $Y_1 \otimes Y_2$ (resp., from the space $X_1 \otimes X_2$ onto the space $Y_1 \otimes Y_2$) defined by

$$P\left(\sum_{i=1}^{m} x_i \otimes y_i\right) = \sum_{i=1}^{m} P_1(x_i) \otimes P_2(y_i)$$

(2.6)

is a projection and its norm $\|P\|$ is not exceeding $\|P_1\|\|P_2\|$. In fact, let $\sum_{i=1}^{m} x_i \otimes y_i$ be any element of the space $X_1 \otimes (\vee \text{or } \wedge) X_2$. Then, in the case of projective tensor product we have

$$\left\|P\left(\sum_{i=1}^{m} x_i \otimes y_i\right)\right\|_{Y_1 \otimes Y_2} = \left\|\sum_{i=1}^{m} P_1(x_i) \otimes P_2(y_i)\right\|_{Y_1 \otimes Y_2} = \sum_{i=1}^{m} \|P_1(x_i)\|\|P_2(y_i)\| \leq \|P\|\|P_1\|\|P_2\|\sum_{i=1}^{m} \|x_i\|\|y_i\|.$$
for all equivalent representations $\sum_{i=1}^{n} u_i \otimes v_i$ of $\sum_{i=1}^{n} x_i \otimes y_i$. So

$$
\left\| P \left(\sum_{i=1}^{n} u_i \otimes v_i \right) \right\|_{T_1 \otimes T_2} \leq \left\| P_1 \right\| \left\| P_2 \right\| \left\| \sum_{i=1}^{n} u_i \otimes v_i \right\|_{X \otimes Y}.
$$

(2.8)

And in the case of injective tensor product we have

$$
\left\| P \left(\sum_{i=1}^{n} u_i \otimes v_i \right) \right\|_{T_1 \otimes T_2} = \sup \left\{ \left\| P \left(\sum_{i=1}^{n} u_i \otimes v_i \right) \right\|_{X \otimes Y} : f \in U_{T_1}, g \in U_{T_2} \right\} = \left\| P_1 \right\| \left\| P_2 \right\| \left\| \sum_{i=1}^{n} u_i \otimes v_i \right\|_{X \otimes Y}.
$$

(2.9)

Thus in both cases, $\left\| P \right\| \leq \left\| P_1 \right\| \left\| P_2 \right\|$. Taking the infimum of each side with respect to all such P_1 and P_2, we get inequality (2.4). To prove inequality (2.5), we apply inequality (2.4) and get in particular

$$
\lambda(X \otimes Y, l_{\infty}(U_{X'}) \otimes l_{\infty}(U_{Y'})) \geq \lambda(X, l_{\infty}(U_{X})) \lambda(Y, l_{\infty}(U_{Y})).
$$

(2.10)

Using Lemma 2.2 and definition (1.2), we get $\lambda(X \otimes Y, l_{\infty}(\Omega_1)) \geq \lambda(X \otimes Y, l_{\infty}(U_{X'}) \otimes l_{\infty}(U_{Y'}))$. We claim that the sign \geq is an equal sign. In fact, if P is any projection from $l_{\infty}(U_{X'}) \otimes l_{\infty}(U_{Y'})$ onto $X \otimes Y$ and J is the embedding given in Lemma 2.1, then $P = PJ$ is a projection from $l_{\infty}(\Omega_1)$ onto $X \otimes Y$ with $\left\| P \right\| \leq \left\| P \right\|$. This is the sufficient condition for the two infimums.
On the projection constants of some topological spaces

\[\lambda(X \otimes^\oplus Y, I_{\lambda}) = \lambda(X \otimes^\oplus Y, I_{\lambda}(U_X \otimes^\oplus U_Y)) \]

Therefore

\[\lambda(X \otimes^\oplus Y) = \lambda(X \otimes^\oplus Y, I_{\lambda}(U_X \otimes^\oplus U_Y)) \]

(2.11)

Using inequality (2.10), we get (2.5).

Remark 2.4. Since \(\lambda(l^\infty(\Gamma_1)) = 1 \) for any index set \(\Gamma_1 \), we conclude that \(\lambda(l^\infty(\Gamma_1) \otimes (\oplus \text{ or } \otimes) l^\infty(\Lambda_1), X \otimes (\oplus \text{ or } \otimes) Y) = 1 \) for every \(X \supset l^\infty(\Gamma_1) \) and \(Y \supset l^\infty(\Lambda_1) \).

We have the following two corollaries.

Corollary 2.5. For any finite sequence \(\{X_i\}_{i=1}^n \) of Banach spaces with complemented subspaces \(\{Y_i\}_{i=1}^n \), the relative projection constant of the injective (resp., projective) tensor product \(\bigotimes_{i=1}^n Y_i \) of the spaces \(Y_i \) in the space \(\bigotimes_{i=1}^n X_i \) satisfies

\[\lambda \left(\bigotimes_{i=1}^n Y_i, \bigotimes_{i=1}^n X_i \right) \leq \prod_{i=1}^n \lambda(Y_i, X_i) \]

(2.12)

Corollary 2.6. Let \(\{Y_i\}_{i=1}^n \) be a finite sequence of finite-dimensional Banach spaces. Then the relation between the absolute projection constant of the projective (or injective) tensor product \(\bigotimes_{i=1}^n Y_i \) and the direct sum \(\sum_{i=1}^n Y_i \) (with the supremum norm) is as follows:

\[\lambda \left(\bigotimes_{i=1}^n Y_i \right) \leq
\left(\lambda \left(\sum_{i=1}^n Y_i \right) \right)^n \]

(2.13)

Proof. In fact, the proof is a combination of Corollary 2.5 and the results of [3, Theorem 4].

3. Applications

In this section, using Theorem 2.3, we obtain new results.

1. For finite-dimensional Banach spaces \(X \) and \(Y \) with dimensions \(n \) and \(m \), respectively, we have

\[\lambda(X \otimes Y) \leq \sqrt{nm} - \frac{1}{\sqrt{nm}} + O(\text{min}^{-3/4}) \]

\[- \left(\sqrt{m} - \frac{1}{\sqrt{m}} \right) \left(\sqrt{n} - O(\text{min}^{-3/4}) \right) \]

(3.1)

\[+ \left(\sqrt{n} - \frac{1}{\sqrt{n}} \right) \left(\frac{1}{\sqrt{nm}} - O(n^{-3/4}) \right) \].
in the real field and
\[\lambda(X \otimes Y) \leq \sqrt{\frac{m}{2}} + O\left(\frac{m^{-3/4}}{\sqrt{m}}\right) \]
\[- \left(\sqrt{m} - \frac{1}{2\sqrt{m}}\right) \left(\frac{1}{2\sqrt{m}} - O\left(\frac{m^{-3/4}}{\sqrt{m}}\right)\right) \]
\[+ \left(\sqrt{m} - \frac{1}{2\sqrt{m}}\right) \left(\frac{1}{2\sqrt{m}} - O\left(\frac{m^{-3/4}}{\sqrt{m}}\right)\right) \].

(3.2)
in the complex field. Compare this result with the result in (1.6).

(2) For any positive integer \(m \) (not necessarily prime) with a prime factorization \(m = \prod_{i=1}^{n} q_i \) where the numbers \(q_i \) are distinct prime numbers, the space \(\bigotimes_{i=1}^{n} l^p_{q_i} \) contains a subspace \(Y \) of dimension \(m \) with
\[\lambda(Y) \leq \prod_{i=1}^{n} \left(\sqrt{q_i} - \frac{1}{2\sqrt{q_i}}\right) - C(m), \]
where \(C(m) \) is a positive number depending on \(m \) (in case of \(m = q_1 q_2 \), \(C(m) = (1/\sqrt{q_2} - 1/q_2) + (1/\sqrt{q_1} - 1/q_1) \)). Comparing this result with (1.3), we mention that the \(m^2 \)-dimension of the space \(\bigotimes_{i=1}^{n} l^p_{q_i} \) is not a square of a prime number, so it gives a new subspace \(Y \) with a new projection constant.

(3) For numbers \(p, q \) with \(1 \leq p, q \leq 2 \), we have
\[\lim_{n,m \to \infty} \frac{\lambda_{l}(ln \otimes lm)}{\sqrt{nm}} \leq \begin{cases} \frac{2}{n} & \text{in the real field}, \\ \frac{\pi}{4} & \text{in the complex field}. \end{cases} \]

(3.4)

4. The projection constants of operators

Now we start with our basic definitions of the projection constants of operators.

Definition 4.1. (1) A linear bounded operator \(A \) from a Banach space \(X \) into a Banach space \(Y \) is said to be left complemented with respect to a Banach space \(Z \) (\(Z \) contains \(Y \) as a closed subspace) if and only if there exists a linear bounded operator \(B \) from \(Z \) into \(X \) such that the composition \(AB \) is a projection from \(Z \) onto \(Y \). In this case \(Z \) is said to be a left complementation of \(A \).

If \(P_Z(A) \) denotes the convex set of all operators \(B \) from \(Z \) into \(X \) such that the composition \(AB \) is a projection, then
\[\lambda(\mathcal{L}(A)) := \inf \left\{ \|AB\| : B \in P_Z(A) \right\}. \]
(4.1)
306 On the projection constants of some topological spaces

(3) And the left absolute projection constant of \(A \) is defined as

\[
\lambda_l(A) := \sup \{ \lambda_l(A, Z) : Z \text{ is a left complementation of the operator } A \}.
\]

We define the same analogy from the right.

Remark 4.2. We notice the following.

(1) From the definition of \(\lambda_l(A, Z) \), the infimum in (4.1) is taken only with respect to the projections that are factored (through \(X \)) into two operators one of them is \(A \) and the other is an operator from \(Z \) into \(X \), so

\[
1 \leq \lambda(Y, Z) \leq \lambda_l(A, Z)
\]

for every left complementation \(Z \) of \(A \).

(2) If \(A \) is a projection from \(X \) onto \(Y \), then \(A \) is left complemented with respect to \(Y \). In fact \(AJ \) is a projection for any embedding \(J \) from \(Y \) into \(X \).

(3) If \(I_Y \) is the identity operator on \(Y \) and \(X \) contains \(Y \) as a complemented subspace, then \(I_Y P = P \) for every projection \(P \) from \(X \) onto \(Y \) and hence \(I_Y \) is left complemented with respect to \(X \). Moreover, \(\lambda_l(I_Y, X) = \lambda(Y, X) \), that is, the relative projection constant of the identity operator on the space \(Y \) with respect to the space \(X \) is the relative projection constant of the space \(Y \) in the space \(X \).

(4) If \(Z \) is a left complementation of the linear bounded operator \(A : X \to Y \), then \(Y \) is complemented in \(Z \) and the operator \(A \) is onto.

(5) If \(Z \) is a separable or reflexive Banach space and \(X \) is a Banach space, then for any index set \(\Gamma \) the space \(Z \) is not a right complementation of any linear bounded operator from \(l_\infty(\Gamma) \) into \(X \). In particular, if \(X \) is a Banach space, then for any index set \(\Gamma \), the space \(l_\infty(\Gamma) \) is not a left complementation of any linear bounded operator from \(X \) into the space \(c_0 \).

The following lemma is parallel to that lemma mentioned in [8] for Banach spaces and we omit the proof since the proof is nearly similar.

Lemma 4.3. Let \(\Gamma \) be an index set such that \(Y \) is isometrically embedded into \(l_\infty(\Gamma) \) and let \(A \) be a linear bounded operator from \(X \) onto \(Y \) such that \(l_\infty(\Gamma) \) is one of its left complementation. Then for a given \(B \in P_{l_\infty(\Gamma)}(A) \),

(1) For all Banach spaces \(E, Z, E \subseteq Z \) and every linear bounded operator \(T \) from \(E \) into \(Y \) there is an operator \(T' \) from \(Z \) into \(Y \) extending the operator \(T \) with \(\| T' \| \leq \| AB \| \| T \| \), that is, the space \(Y \) has \(\| AB \| \)-extension property, and in particular, if \(Z \supseteq X \), the operator \(A \) has a linear extension \(\hat{A} \) from \(Z \) into \(Y \) with \(\| \hat{A} \| \leq \| AB \| \| A \| \). That is, the extension constant \(c(A) \) of the operator \(A \) defined by \(c(A) := \sup_{E \subseteq Z } \inf \{ \| \hat{A} \| : \hat{A} \text{ is an extension of } A \text{ and } \hat{A} : Z \to Y \} \) satisfies \(c(A) \leq \| AB \| \| A \| \).

(2) For every Banach space \(Z \supseteq Y \), there exists a projection \(P \) from \(Z \) onto \(Y \) such that \(\| P \| \leq \| AB \| \).

The following theorem is also parallel to that given in (1.3) for Banach spaces.
Theorem 4.4. Let Y be isometrically embedded in $l_\infty(\Gamma)$ and let A be a linear bounded operator from X onto Y such that $l_\infty(\Gamma)$ is a left complementation of A. Then A is left complemented with respect to any other Banach space Z containing Y as a closed subspace. Moreover,

$$\lambda_1(A, Z) \leq \lambda_1(A, l_\infty(\Gamma))$$

(4.3)

for every Banach space Z containing Y as a closed subspace, that is, $\lambda_1(A)$ attains its supremum at $l_\infty(\Gamma)$. Therefore,

$$\lambda_1(A) = \lambda_1(A, l_\infty(\Gamma)),$$

(4.4)

References

On the projection constants of some topological spaces

Entisarat El-Shobaky: Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
E-mail address: solar@photoenergy.org

Sahar Mohammed Ali: Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
E-mail address: sahar@is.titech.ac.jp

Wataru Takahashi: Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
E-mail address: wataru@is.titech.ac.jp