Oscillation Criteria for Some New Generalized Emden-Fowler Dynamic Equations on Time Scales

Haidong Liu \(^1\) and Puchen Liu \(^2\)

\(^1\) School of Mathematical Sciences, Qufu Normal University, Shandong 273165, China
\(^2\) Department of Mathematics, University of Houston, Houston, TX 77204, USA

Received 4 September 2012; Revised 8 January 2013; Accepted 11 January 2013

Copyright © 2013 H. Liu and P. Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By means of novel analytical techniques, we have established several new oscillation criteria for the generalized Emden-Fowler dynamic equation on a time scale \(\mathbb{T}\), that is, \((r(t)|Z^\Delta(t)|^{\alpha-1}Z^\Delta(t))^{\Delta} + f(t, x(\sigma(t))) = 0\), with respect to the case \(\int_\tau^\infty r^{-1/\alpha}(s)\Delta s = \infty\) and the case \(\int_\tau^\infty r^{-1/\alpha}(s)\Delta s < \infty\), where \(Z(t) = x(t) + p(t)x(\tau(t))\), \(\alpha\) is a constant, \(|f(t,u)| \geq q(t)|u|\beta\), \(\beta\) is a constant satisfying \(\alpha > \beta > 0\), and \(r, p, q, \) and \(\Delta\) are real valued right-dense continuous nonnegative functions defined on \(\mathbb{T}\). Noting the parameter value \(\alpha\) probably unequal to \(\beta\), our equation factually includes the existing models as special cases; our results are more general and have wider adaptive range than others’ work in the literature.

1. Introduction

In the past two decades, the theory of time scales proposed by Hilger [1] in 1990 has received extensive attention because of its advantage to unify continuous model and discrete model into one case under the scholars’ investigation. Numerous authors have considered many aspects of this new theory. Many of those results focus on oscillation and nonoscillation of some equations on time scales. Reader can refer to articles [2–25] and there references cited therein.

In this paper, we consider the oscillatory behavior of the solutions of second-order generalized Emden-Fowler dynamic equation of the form

\[
\left(r(t)|Z^\Delta(t)|^{\alpha-1}Z^\Delta(t)\right)^\Delta + f(t, x(\sigma(t))) = 0, \quad t \in \mathbb{T}, \ t \geq t_0, \tag{1}
\]

with \(Z(t) = x(t) + p(t)x(\tau(t))\), parameter constant \(\alpha\), and conditions \((H_1)-(H_6)\):

\((H_1)\) \(\mathbb{T}\) is a time scale which is unbounded above.

\(\{t_0, \infty\}_{\mathbb{T}} := \{t_0, \infty\} \cap \mathbb{T}\), where \(t_0 \in \mathbb{T}\) with \(t_0 > 0\), \(C_{rd}(\mathbb{T}, \mathbb{S})\) denotes the collection of all functions \(f : \mathbb{T} \to \mathbb{S}\) which are right-dense continuous on \(\mathbb{T}\);

\((H_2)\) \(r(t) \in C_{rd}(\mathbb{T}, (0, \infty)), R(t) := \int_{t_0}^{t} r^{-1/\alpha}(s)\Delta s\); \(r(t) \in C_{rd}(\mathbb{T}, [0, 1])\);

\((H_3)\) \(p(t) \in C_{rd}(\mathbb{T}, (0, \infty))\);

\((H_4)\) \(q(t) \in C_{rd}(\mathbb{T}, \mathbb{T}), \tau(t) \leq t, \text{ for } t \in \mathbb{T}, \lim_{t \to \infty} \tau(t) = \infty, \delta(t) \in C_{rd}(\mathbb{T}, \mathbb{T}), \delta(t) \leq t, \text{ for } t \in \mathbb{T}, \lim_{t \to \infty} \delta(t) = \infty\);

\((H_5)\) \(\delta^{\Delta}(t) > 0\) is right-dense continuous on \(\mathbb{T}\), and \(\delta(\sigma(t)) = \alpha(\delta(t))\) for all \(t \in \mathbb{T}\), where \(\delta(t)\) is the forward jump operator on \(\mathbb{T}\);

\((H_6)\) \(f(t,u) \in C(\mathbb{T} \times \mathbb{T}, \mathbb{T})\) is a continuous function such that \(uf(t,u) > 0\), for all \(u \neq 0\) and there exists a positive right-dense continuous function \(q(t)\) defined on \(\mathbb{T}\) such that \(|f(t,u)| \geq q(t)|u|\beta\) for all \(t \in \mathbb{T}\) and for all \(u \in \mathbb{R}\), where \(\beta\) is a constant satisfying \(\alpha > \beta > 0\).

As a solution of (1), we mean a function \(x(t)\) such that \(x(t) + p(t)x(\tau(t)) \in C_{rd}(\mathbb{T}, (0, \infty))\) and \(r(t)|x(t) + p(t)x(\tau(t))|^{\alpha-1}[x(t) + p(t)x(\tau(t))]^{\alpha} \in C_{rd}(\mathbb{T}, (0, \infty))\) satisfying (1) for all \(t \geq t_0\), which \(C_{rd}(\mathbb{T}, (0, \infty))\) denotes the set of right-dense continuously \(\alpha\)-differentiable functions on \((t_0, \infty)\). In the sequel, we restrict our attention to those solutions of (1) which exist on the half-line \([t_0, \infty)\) and satisfy \(\sup(|x(t)| : t > T) > 0\) for any \(T \geq t_0\). We say that
a nontrivial solution of (1) is oscillatory if it has arbitrary large zeros, otherwise we say that it is nonoscillatory. We say that (1) is oscillatory if all its solutions are oscillatory.

Among researchers in the oscillation of functional equations with time scales, Agarwal et al. [2] studied a special case of (1), which is

\[
\left(r(t) \left[\left(y(t) + p(t) y(t - \tau_0) \right)^\gamma \right]^\Delta \right)^\Delta + f(t, y(t - \delta_0)) = 0, \quad t \in \mathbb{T}, \ t \geq t_0,
\]

where

\[
\int_{t_0}^{\infty} r^{-1/\gamma}(s) \Delta s = \infty,
\]

\(
\tau_0 \text{ and } \delta_0 \text{ are positive constants and } y > 0 \text{ is a quotient of odd positive integers.}
\)

They got some oscillation criteria of (2) for the equation with the condition \(\gamma > 1 \) under the condition \(r^\Delta(t) \geq 0 \), and the case when \(y \geq 1 \) under the condition \(\mu(t) > 0 \). Subsequently, for the case when \(y \geq 1 \) is an odd positive integer, Saker [7] did not require the conditions \(r^\Delta(t) \geq 0 \) and \(\mu(t) > 0 \), obtaining some new oscillation results for (2) under the conditions (5).

Very Recently, in [10–13], Saker et al. have considered the oscillation of several equations with time scales. For example in paper [13], the author is concerned with the quasilinear equation of the form:

\[
\left(p(t) \left[\left(y(t) + r(t) y(r(t)) \right)^\gamma \right]^\Delta \right)^\Delta + f(t, y(\delta(t))) = 0, \quad t \in \mathbb{T}, \ t \geq t_0,
\]

where

\[
\int_{t_0}^{\infty} r^{-1/\gamma}(s) \Delta s = \infty,
\]

\(\tau_0 \text{ and } \delta_0 \text{ are positive constants and } y > 0 \text{ is a quotient of odd positive integers.} \)

They obtained some oscillation criteria when \(y > 0 \) is a constant and without assuming the conditions \(r^\Delta(t) \geq 0 \) and \(\mu(t) > 0 \).

All the above results cannot apply to our model (1) since our model (1) is more general than (2), (6) and those in [10–13], and the function \(f(t, u) \) in (1) satisfies (H\(_6\)) which makes our model (1) distinguished from all the existing cases. To the best of our knowledge, nothing is known regarding the necessary and sufficient conditions for the qualitative behavior of (1) with \(\alpha \neq \beta \) in (H\(_6\)) on time scales.

In this paper, even if \(\alpha \neq \beta \) in (H\(_6\)) and there is no assumptions \(r^\Delta(t) \geq 0 \) and \(\mu(t) > 0 \), we have established several new oscillation criteria of (1) for the both cases

\[
\lim_{t \to \infty} \int_{t_0}^{t} r^{-1/\gamma}(s) \Delta s = \infty,
\]

\[
\lim_{t \to \infty} \int_{t_0}^{t} r^{-1/\gamma}(s) \Delta s < \infty.
\]

Fuctually, we have employed new analytical techniques to present and construct our criteria in Section 3 after reciting two useful lemmas in Section 2. Our results have extended and unified a number of other existing results and handled the cases which are not covered by current criteria. Finally, in Section 4 two examples are demonstrated to illustrate the efficiency of our work with relevant remark.

2. Some Lemmas

Lemma 1 (see [25]). Suppose that (H\(_2\)) holds. Let \(x : \mathbb{T} \to \mathbb{R} \). If \(x^\Delta \) exists for all sufficiently large \(t \in \mathbb{T} \), then \(x(\delta(t)) = x^\Delta(\delta(t)) \Delta^\alpha(t) \) for all sufficiently large \(t \in \mathbb{T} \).

Lemma 2 (Bohner and Peterson [26, Theorem 1.90]). Assume that \(x(t) \) is \(\Delta \)-differentiable and eventually positive or eventually negative, then

\[
(x^\alpha(t)) = \alpha \left[\int_{t_0}^{t} [1 - h(x(t) + h x(\sigma(t)))^\alpha] \Delta h \right] x^\Delta(t).
\]

Lemma 3 (see [27]). Let \(\Psi(u) = au - bu^{(\alpha+1)/\alpha} \), where \(a, b, \alpha \) are constants, \(a \geq 0, b > 0, \lambda > 0, \) and \(u \in [0, \infty) \). Then \(\Psi(u) \) attains its maximum value on \([0, \infty)\) at \(u^* := (a\lambda/b(\lambda + 1))^{1/\alpha} \), and

\[
\max_{u \in [0, \infty)} \Psi(u) = \Psi(u^*) = \frac{a}{(\lambda + 1)^{1/\alpha} - b\lambda}.
\]

3. Main Results

The case

\[
\lim_{t \to \infty} \int_{t_0}^{t} r^{-1/\gamma}(s) \Delta s = \infty.
\]
Theorem 4. Assume that (H₁)–(H₆) and (7) hold. If there exists a function \(\xi(t) \in C_\text{r}^1(T, (0, \infty)) \) such that for any positive number \(M \),

\[
\lim_{t \to \infty} \int_{t_0}^t (\xi(s) \sigma_0(s) - Q(s)) \Delta s = \infty,
\]

where

\[
\sigma_0(s) = q(s) \left[1 - p(\delta(s)) \right]^{\beta},
\]

\[
Q(s) = \frac{\alpha M(R(\sigma(s)))^{\alpha-\beta} r(\delta(s)) \left((\xi(s))_+^{\alpha+1} + (\xi(s))_+ \right) (\alpha+1)^{\alpha+1}}{(\alpha+1)^{\alpha+1} \beta^\alpha (\delta(s))^{\alpha}},
\]

\[
(\xi(s))_+ := \max \{\xi(s), 0\},
\]

which follows that

\[
Z^\Delta (\delta(t)) \geq Z^\Delta (\alpha(t)) \left(\frac{r(\sigma(t))}{r(\delta(t))} \right)^{1/\alpha}, \quad t \geq T_1,
\]

(20)

On the other hand, from (1), (H₆), and (15), we have

\[
(\sigma(t) \left(Z^\alpha(t) \right)^{\alpha} + q(t) (Z(\delta(t)) - p(\delta(t)) r(\delta(t)))^{\beta}) \leq 0, \quad t \geq T_1.
\]

(21)

Noticing (15) and the fact \(Z(t) \geq x(t) \), we get

\[
(\sigma(t) \left(Z^\alpha(t) \right)^{\alpha} + \sigma(t) Z^\beta (\delta(t))) \leq 0, \quad t \geq T_1,
\]

(22)

where \(\sigma(t) = q(t)[1 - p(\delta(t))]^{\beta} \).

Define

\[
\omega(t) = \xi(t) \frac{r(t) \left(Z^\alpha(t) \right)^{\alpha}}{Z^\beta (\delta(t))}, \quad t \geq T_1.
\]

(23)

Obviously, \(\omega(t) > 0 \). By (22), (23) and the product rule and the quotient rule, we obtain

\[
\omega^\Delta(t) = \frac{\xi(t)}{Z^\beta (\delta(t))} (\sigma(t) \left(Z^\alpha(t) \right)^{\alpha} + r(\sigma(t)) \left(Z^\alpha (\sigma(t)) \right)^{\alpha})
\]

\[
\times \frac{(\xi(t) Z^\beta (\delta(t)) \xi(t) \left(Z^\beta (\delta(t)) \right)^{\Delta}}{Z^\beta (\delta(t)) Z^\beta (\delta(\sigma(t)))}
\]

\[
\leq - \xi(t) \sigma(t) + \frac{\xi(t) Z^\beta (\delta(t)) \xi(t) \left(Z^\beta (\delta(t)) \right)^{\Delta}}{Z^\beta (\sigma(t)) Z^\beta (\delta(\sigma(t)))}
\]

\[
- \frac{r(\sigma(t)) \left(Z^\alpha (\sigma(t)) \right)^{\alpha} \xi(t) \left(Z^\beta (\delta(t)) \right)^{\Delta}}{Z^\beta (\sigma(t)) Z^\beta (\delta(\sigma(t)))}.
\]

(24)

Now we consider the following two cases.

Case 1. Let \(\beta \geq 1 \). By (15), Lemmas 1 and 2, we have

\[
Z^\Delta (\delta(t)) \geq \beta \left\{ \int_0^1 [(1 - h) Z(\delta(t)) + h Z(\delta(\sigma(t)))]^{\beta-1} \Delta h \right\}
\]

(25)

\[
\geq \beta (Z(\delta(t)))^{\beta-1} Z^\Delta (\delta(t)) \Delta (t).
\]
From \((H_4), (20), (23)–(25),\) and the fact that \(Z(t)\) is nondecreasing, we obtain
\[
\begin{align*}
&w^\Delta(t) \\
&\leq -\xi(t)\varphi(t) + \frac{\xi^2(t)}{\xi^2(\sigma(t))}w(\sigma(t)) \\
&\quad - r(\sigma(t)) \left[\frac{Z^\Delta(\sigma(t))}{Z^\Delta(\delta(t))} \right]^\alpha \xi(t) \beta(Z(\delta(t)))^\beta \langle \delta(t) \rangle^\beta \langle \delta(t) \rangle^\Delta(t) \\
&\quad - \frac{r(\sigma(t))}{Z^\Delta(\delta(t))} Z^\Delta(\delta(\sigma(t))) \\
&\leq -\xi(t)\varphi(t) + \frac{\xi^2(t)}{\xi^2(\sigma(t))}w(\sigma(t)) \\
&\quad - r(\sigma(t)) \left[\frac{Z^\Delta(\sigma(t))}{Z^\Delta(\delta(t))} \right]^\alpha \xi(t) \beta Z^\Delta(\delta(t))^\Delta(t) \\
&\quad - \frac{r(\sigma(t))}{Z^\Delta(\delta(\sigma(t)))} Z^\Delta(\delta(\sigma(t))) \\
&\leq -\xi(t)\varphi(t) + \frac{\xi^2(t)}{\xi^2(\sigma(t))}w(\sigma(t)) \\
&\quad - \frac{r(\sigma(t))}{Z^\Delta(\delta(t))} Z^\Delta(\delta(\sigma(t))) \\
&\quad \times \left[\frac{r(\sigma(t))}{r(\delta(t))} \right]^{1/\alpha} \\
&= -\xi(t)\varphi(t) + \frac{\xi^2(t)}{\xi^2(\sigma(t))}w(\sigma(t)) \\
&\quad - \frac{\beta \xi(t) \delta^\Delta(t)}{(\xi(\sigma(t)))^{1+1/\alpha}(Z(\delta(\sigma(t))))^{(\alpha-\beta)/\alpha}(r(\delta(t)))^{1/\alpha}} \\
&\quad \times \omega^{(\alpha+1)/\alpha}(\sigma(t)) .
\end{align*}
\]

Case 2. Let \(0 < \beta < 1.\) By \((15),\) Lemmas 1 and 2, we get
\[
\begin{align*}
&\left(Z^\delta(\delta(t)) \right)^\Delta \\
&= \beta \left\{ \int_0^1 \{ (1-h) Z(\delta(t)) + h Z(\delta(\sigma(t))) \} \delta^{-1} \frac{dh}{h} \right\} \times (Z(\delta(t)))^\Delta \\
&\geq \beta(\xi(\sigma(t)))^\beta \delta^{-1} Z^{\Delta}(\delta(t))^\Delta(t) .
\end{align*}
\]

From \((H_4), (H_5), (20), (23)–(25),\) and the fact that \(Z(t)\) is nondecreasing, we have
\[
\begin{align*}
&w^\Delta(t) \\
&\leq -\xi(t)\varphi(t) + \frac{\xi^2(t)}{\xi^2(\sigma(t))}w(\sigma(t)) \\
&\quad - r(\sigma(t)) \left[\frac{Z^\Delta(\sigma(t))}{Z^\Delta(\delta(t))} \right]^\alpha \xi(t) \beta Z^\Delta(\delta(t))^\Delta(t) \\
&\quad - \frac{r(\sigma(t))}{Z^\Delta(\delta(\sigma(t)))} Z^\Delta(\delta(\sigma(t))) \\
&\leq -\xi(t)\varphi(t) + \frac{\xi^2(t)}{\xi^2(\sigma(t))}w(\sigma(t)) \\
&\quad - \frac{r(\sigma(t))}{Z^\Delta(\delta(t))} Z^\Delta(\delta(\sigma(t))) \\
&\quad \times \left[\frac{r(\sigma(t))}{r(\delta(t))} \right]^{1/\alpha} \\
&= -\xi(t)\varphi(t) + \frac{\xi^2(t)}{\xi^2(\sigma(t))}w(\sigma(t)) \\
&\quad - \frac{\beta \xi(t) \delta^\Delta(t)}{(\xi(\sigma(t)))^{1+1/\alpha}(Z(\delta(\sigma(t))))^{(\alpha-\beta)/\alpha}(r(\delta(t)))^{1/\alpha}} \\
&\quad \times \omega^{(\alpha+1)/\alpha}(\sigma(t)) .
\end{align*}
\]

Therefore, for \(\beta > 0,\) from \((26)\) and \((28),\) we get
\[
\begin{align*}
&w^\Delta(t) \leq -\xi(t)\varphi(t) + \frac{\xi^2(t)}{\xi^2(\sigma(t))}w(\sigma(t)) \\
&\quad - \frac{\beta \xi(t) \delta^\Delta(t)}{(\xi(\sigma(t)))^{1+1/\alpha}(Z(\delta(\sigma(t))))^{(\alpha-\beta)/\alpha}(r(\delta(t)))^{1/\alpha}} \\
&\quad \times \omega^{(\alpha+1)/\alpha}(\sigma(t)) .
\end{align*}
\]

From \((14)\) and \((15),\) there exists a constant \(M_1 > 0\) such that
\[
r(t) \left(Z^\Delta(t) \right)^\alpha \leq M_1, \quad t \geq T_1 ,
\]

that is
\[
Z^\Delta(t) \leq \left(\frac{M_1}{r(t)} \right)^{1/\alpha} , \quad t \geq T_1 .
\]
integrating the above inequality from T_1 to t, we have

$$Z(t) \leq Z(T_1) + M_1^{1/\alpha} (R(t) - R(T_1)).$$ \hspace{1cm} (32)

Thus, there exist a constant $M_2 > 0$, and $T_2 \geq T_1$ such that

$$Z(t) \leq M_2 R(t), \quad t \geq T_2,$$ \hspace{1cm} (33)

so we have

$$Z^{(\alpha-\beta)/\alpha}(\sigma(t)) \leq M_2^{(\alpha-\beta)/\alpha} (R(\sigma(t)))^{(\alpha-\beta)/\alpha} = M_3 (R(\sigma(t)))^{(\alpha-\beta)/\alpha}, \quad t \geq T_2,$$ \hspace{1cm} (34)

where $M_3 = M_2^{(\alpha-\beta)/\alpha}$.

From (29) and (34), we obtain

$$w^\Delta(t) \leq -\xi(t) \overline{p}(t) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t))$$

$$- \frac{\beta \xi(t) \delta^\Delta(t)}{(\xi(\sigma(t)))^{1+1/\alpha} M_3 (R(\sigma(t)))^{(\alpha-\beta)/\alpha} (r(\delta(t)))^{1/\alpha}} \times \omega^{(\alpha+1)/\alpha}(\sigma(t)), \quad t \geq T_2.$$ \hspace{1cm} (35)

Let

$$\Psi(t) = \frac{\beta \xi(t) \delta^\Delta(t)}{(\xi(\sigma(t)))^{1+1/\alpha} M_3 (R(\sigma(t)))^{(\alpha-\beta)/\alpha} (r(\delta(t)))^{1/\alpha}};$$ \hspace{1cm} (36)

then $\Psi(t) > 0$. So from (35) and (36) we get

$$w^\Delta(t) \leq -\xi(t) \overline{p}(t) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t))$$

$$- \Psi(t) \omega^{(\alpha+1)/\alpha}(\sigma(t))$$

$$\leq -\xi(t) \overline{p}(t) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t))$$

$$- \Psi(t) \omega^{(\alpha+1)/\alpha}(\sigma(t)), \quad (37)$$

where $(\xi^\Delta(t))_+ := \max[\xi^\Delta(t), 0]$.

Taking $a = (\xi^\Delta(t))_+, b = \Psi(t)$, by Lemma 3 and (37), we obtain

$$w^\Delta(t) \leq -\xi(t) \overline{p}(t) + \frac{\alpha^\alpha}{(\alpha + 1)^{\alpha+1}} \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t))^{\alpha+1}$$

$$= -\xi(t) \overline{p}(t)$$

$$- \frac{\alpha^\alpha}{(\alpha + 1)^{\alpha+1}} \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t))^{\alpha+1}$$

$$= -\xi(t) \overline{p}(t)$$

$$- \frac{\alpha^\alpha}{(\alpha + 1)^{\alpha+1}} \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t))^{\alpha+1},$$ \hspace{1cm} (38)

where $M_4 = M_3^\alpha$.

Integrating the above inequality (38) from T_2 to t, we have

$$w(t) \leq w(T_2)$$

$$- \int_{T_2}^t \left(\xi(s) \overline{p}(s) - \left(\alpha^\alpha M_4 (R(\sigma(s)))^{\alpha-\beta} r(\delta(s)) \right) \omega(\sigma(s))^{\alpha+1} \right) \Delta s$$

$$\leq w(T_2) + \int_{T_0}^{T_2} \xi(s) \overline{p}(s) \Delta s.$$
\begin{align*}
- \int_{t_0}^{t} \left(\xi(s) \bar{p}(s) - \left(\alpha^a M_{\delta}(R(\sigma(s)))^{\alpha-\beta} r(\delta(s)) \right) \times \left(\left(\xi^\Delta(s) \right)^{\alpha+1} \right) \right) \Delta s.
\end{align*}

(39)

Since \(w(t) > 0 \) for \(t > T_2 \), we have

\begin{align*}
\int_{t_0}^{t} \left(\xi(s) \bar{p}(s) - \frac{\alpha^a M_{\delta}(R(\sigma(s)))^{\alpha-\beta} r(\delta(s)) \left(\left(\xi^\Delta(s) \right)^{\alpha+1} \right)}{(\alpha + 1)^{\alpha+1} \beta^a x_\alpha(s) (\delta^\Delta(s))^{\alpha}} \right) \Delta s
\leq w(T_2) + \int_{t_0}^{T_2} \xi(s) \bar{p}(s) \Delta s - w(t)
\leq w(T_2) + \int_{t_0}^{T_2} \xi(s) \bar{p}(s) \Delta s,
\end{align*}

(40)

which contradicts (12). This completes the proof of Theorem 4.

Next, we use the general weighted functions from the class \(\mathcal{F} \) which will be extensively used in the sequel.

Letting \(D = \{(t, s) \in \mathbb{T} \times \mathbb{T} : t \geq s \geq t_0\} \), we say that a continuous function \(H(t, s) \in C_{rd}(D, \mathbb{R}) \) belongs to the class \(\mathcal{F} \) if

(i) \(H(t, t) = 0 \) for \(t \geq t_0 \) and \(H(t, s) > 0 \) for \(t > s \geq t_0 \),

(ii) \(H(t, s) \) has a nonpositive right-dense continuous \(\Delta \)-partial derivative \(H^\Delta(t, s) \) with respect to the second variable.

Theorem 5. Assume that (H1)–(H6) and (7) hold. If there exist a function \(H(t, s) \in \mathcal{F} \) and a function \(\xi(t) \in C^1_{rd}(\mathbb{T}, (0, \infty)) \) such that for any positive number \(M \),

\[\lim_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^{t} \left[H(t, s) \xi(s) \bar{p}(s) - \bar{U}(t, s) \right] \Delta s = \infty, \]

(41)

where

\[\bar{p}(t, s) = q(s) \left[1 - p(\delta(s)) \right]^{\beta}, \]

(42)

\[\bar{U}(t, s) = \frac{\alpha^a (\phi_+ (t, s))^{\alpha+1} \xi(\sigma(s))^{\alpha+1} M(R(\sigma(s)))^{\alpha-\beta} r(\delta(s))}{(\alpha + 1)^{\alpha+1} \beta^a x_\alpha(s) (\delta^\Delta(s))^{\alpha}}, \]

(43)

then (1) is oscillatory.

Proof. We proceed as in the proof of Theorem 4 to have (37). From (37) we obtain

\[\xi(t) \bar{p}(t) \leq -w(t) + \left(\frac{\xi^\Delta(t)}{\xi(\sigma(t))} \right) w(\sigma(t)) \]

(46)

which, when \(t \) is replaced by \(s \), by \(H(t, s) \), integrating it with respect to \(s \) from \(T_2 \) to \(t \) for \(t > T_2 \), using integration by parts and (i)-(ii), we get

\[\int_{T_2}^{t} H(t, s) \xi(s) \bar{p}(s) \Delta s \]

\[\leq - \int_{T_2}^{t} H(t, s) w^\Delta(s) \Delta s \]

\[+ \int_{T_2}^{t} H(t, s) \left(\frac{\xi^\Delta(s)}{\xi(\sigma(s))} \right) w(\sigma(s)) \Delta s \]

\[- \int_{T_2}^{t} H(t, s) \Psi(s) w(\sigma(s)) \Delta s \]

\[= H(t, T_2) w(T_2) + \int_{T_2}^{t} H^\Delta(t, s) w(\sigma(s)) \Delta s \]

\[+ \int_{T_2}^{t} H(t, s) \left(\frac{\xi^\Delta(s)}{\xi(\sigma(s))} \right) w(\sigma(s)) \Delta s \]

\[- \int_{T_2}^{t} H(t, s) \Psi(s) w(\sigma(s)) \Delta s \]

\[= H(t, T_2) w(T_2) + \int_{T_2}^{t} \left(H^\Delta(t, s) + \frac{H(t, s)}{\xi(\sigma(s))} \right) w(\sigma(s)) \Delta s \]

\[- \int_{T_2}^{t} H(t, s) \Psi(s) w(\sigma(s)) \Delta s \]

\[\leq H(t, T_2) w(T_2) \]

Multiplying (46) (with \(t \) replaced by \(s \)) by \(H(t, s) \), integrating it with respect to \(s \) from \(T_2 \) to \(t \) for \(t > T_2 \), using integration by parts and (i)-(ii), we get

\[\int_{T_2}^{t} H(t, s) \xi(s) \bar{p}(s) \Delta s \]

\[\leq - \int_{T_2}^{t} H(t, s) w^\Delta(s) \Delta s \]

\[+ \int_{T_2}^{t} H(t, s) \left(\frac{\xi^\Delta(s)}{\xi(\sigma(s))} \right) w(\sigma(s)) \Delta s \]

\[- \int_{T_2}^{t} H(t, s) \Psi(s) w(\sigma(s)) \Delta s \]

\[= H(t, T_2) w(T_2) + \int_{T_2}^{t} H^\Delta(t, s) w(\sigma(s)) \Delta s \]

\[+ \int_{T_2}^{t} H(t, s) \left(\frac{\xi^\Delta(s)}{\xi(\sigma(s))} \right) w(\sigma(s)) \Delta s \]

\[- \int_{T_2}^{t} H(t, s) \Psi(s) w(\sigma(s)) \Delta s \]

\[= H(t, T_2) w(T_2) + \int_{T_2}^{t} \left(H^\Delta(t, s) + \frac{H(t, s)}{\xi(\sigma(s))} \right) w(\sigma(s)) \Delta s \]

\[- \int_{T_2}^{t} H(t, s) \Psi(s) w(\sigma(s)) \Delta s \]
\[-H(t,s)\Psi(s)\omega^{(\alpha+1)/\alpha}(\sigma(s))\Delta s\]
\[\leq H(t, T_2)\omega(T_2)
+ \int_{T_2}^{t} \left[\phi_r(t, s)\omega(\sigma(s)) \right] \Delta s
- H(t,s)\Psi(s)\omega^{(\alpha+1)/\alpha}(\sigma(s))\Delta s,\]

(47)

where \(\phi_r(t, s)\) is defined as in (44).

Taking \(a = \phi_r(t, s), b = H(t,s)\Psi(s)\), by Lemma 3 and (47), we obtain

\[
\int_{T_2}^{t} H(t, s)\xi(s)\overline{p}(s)\Delta s \\
\leq H(t, T_2)\omega(T_2)
+ \int_{T_2}^{t} \left[\left(\alpha^\alpha(\phi_r(t, s))^{\alpha+1}(\xi(\sigma(s)))^{\alpha+1} \times M_4^\alpha(R(\sigma(s)))^{\alpha-\beta}r(\delta(s)) \right) \right.
\times \left((\alpha + 1)^{\alpha+1}\beta^\alpha(H(t,s))^\alpha \times \xi^\alpha(s)(\delta^\alpha(s))^{\alpha+1} \right] \Delta s
\leq H(t, T_2)\omega(T_2)
+ \int_{T_2}^{t} U(t, s)\Delta s,\]

(48)

Then it follows that

\[
\frac{1}{H(t, t_0)} \int_{t_0}^{t} [H(t, s)\xi(s)\overline{p}(s) - U(t, s)]\Delta s \leq \omega(T_2),\]

(50)

Thus we get

\[
\frac{1}{H(t, t_0)} \int_{t_0}^{t} [H(t, s)\xi(s)\overline{p}(s) - U(t, s)]\Delta s
= \frac{1}{H(t, t_0)} \left(\int_{t_0}^{T_2} + \int_{T_2}^{t} \right) [H(t, s)\xi(s)\overline{p}(s) - U(t, s)]\Delta s
\leq \omega(T_2) + \frac{1}{H(t, t_0)} \int_{t_0}^{T_2} [H(t, s)\xi(s)\overline{p}(s) - U(t, s)]\Delta s
\leq \omega(T_2) + \int_{t_0}^{T_2} \left[\frac{H(t, s)}{H(t, t_0)}\xi(s)\overline{p}(s) - \frac{U(t, s)}{H(t, t_0)} \right]\Delta s
\leq \omega(T_2) + \int_{t_0}^{T_2} \xi(s)\overline{p}(s)\Delta s.\]

(51)

Then

\[
\lim_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^{t} [H(t, s)\xi(s)\overline{p}(s) - U(t, s)]\Delta s < \infty,\]

(52)

which contradicts (41). This completes the proof of Theorem 5. \(\square\)

Theorem 6. Assume that \((H_1)-(H_6)\) and (7) hold and \(\beta \geq 1\).
Furthermore, assume that \(r^\Delta(\tau) \geq 0\). If there exists a function \(\xi(t) \in C^1_{rd}(T, (0, \infty))\) such that for any positive number \(M\),

\[
\lim_{t \to \infty} \int_{t_0}^{t} [\xi(s)\overline{p}(s) - Q(s)]\Delta s = \infty,\]

(53)

where

\[
\overline{p}(s) = q(s)\left[1 - p(\delta(s))\right]^\beta,\]
\[
Q(s) = \frac{\xi^\Delta(\delta(s))^{(\alpha-\beta)/\alpha}(r(\delta(s)))^{\beta/\alpha}}{4\beta^\alpha(\delta(s))^{(\alpha+1)}\xi^\Delta(\delta(s))^{\alpha}},\]

(54)

then (1) is oscillatory.

Proof. We proceed as in the proof of Theorem 4 to have (24).
On the other hand, from (22) and \((H_3)\), we deduce

\[
(r(t)Z^\Delta(t))^{\alpha} \leq 0, \quad t \geq T_1,\]

(55)

and from \(r^\Delta(t) \geq 0\) for \(t \geq t_0\), we can get \(Z^\Delta(t)\) is nonincreasing. Hence, we have

\[
Z(t) - Z(T_1) = \int_{T_1}^{t} Z^\Delta(s)\Delta s \geq (t - T_1)Z^\Delta(t),\]

(56)
which implies
\[Z(t) \geq \frac{t}{2} Z^\Delta(t), \quad \text{for} \quad t \geq T_2 > 2T_1. \] (57)

Choosing \(T_3 \geq T_2 \) such that \(\delta(t) \geq T_2 \) for \(t \geq T_3 \), we get
\[Z(\delta(t)) \geq \frac{\delta(t)}{2} Z^\Delta(\delta(t)), \quad \text{for} \quad t \geq T_3. \] (58)

From \((H_6),(15),(20),(24),(25),(58)\), and as \(Z^\Delta(t) \) is nonincreasing, we obtain

\[
w^\Delta(t) \leq -\xi(t) \overline{p}(t) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t)) \\
\quad - \left(r(\sigma(t)) \left(Z^\Delta(\sigma(t)) \right)^\alpha \xi(t) \beta \left(Z(\delta(t)) \right)^{\beta-1} \\
\quad \times Z^\Delta(\delta(t)) \delta^\Delta(t) \right) \left(Z^{2\beta}(\delta(\sigma(t))) \right)^{-1} \\
\leq -\xi(t) \overline{p}(t) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t)) \\
\quad - \left(r(\sigma(t)) \left(Z^\Delta(\sigma(t)) \right)^\alpha \xi(t) \\
\quad \times \beta \left((\delta(t)/2) Z^\Delta(\delta(t)) \right)^{\beta-1} Z^\Delta(\delta(t)) \delta^\Delta(t) \right) \\
\quad \times \left(Z^{2\beta}(\delta(\sigma(t))) \right)^{-1} \\
\leq -\xi(t) \overline{p}(t) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t)) \\
\quad - \left(\beta \xi(\delta(t)) \left(Z^\Delta(\sigma(t)) \right)^{\alpha+\beta} \left(\delta(t)/2 \right)^{\beta-1} \delta^\Delta(t) \right) \\
\quad \times \left(Z^{2\beta}(\delta(\sigma(t))) \right)^{-1} \left(\frac{r(\sigma(t))}{r(\delta(t))} \right)^{\beta/\alpha} \\
= -\xi(t) \overline{p}(t) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t)) \\
\quad - \left(\beta \xi(\delta(t)) \left(\delta(t)/2 \right)^{\beta-1} \delta^\Delta(t) \right) \\
\quad \times \left(\xi^2(\sigma(t)) \left(r(\sigma(t)) \right)^{\alpha+\beta/\alpha} \left(Z^\Delta(\sigma(t)) \right)^{\alpha-\beta} \\
\quad \times \left(r(\delta(t)) \right)^{\beta/\alpha} \right)^{-1} w^2(\sigma(t)) \]

Now, from the fact that \(Z^\Delta(t) \) is nonnegative and nonincreasing, there exists a \(T_4 > T_3 \) sufficiently large such that
\[Z^\Delta(t) \leq \frac{1}{M}, \quad t \geq T_4, \] (60)
holds for some positive constant \(M \) and therefore
\[\left(Z^\Delta(t) \right)^{\alpha-\beta} \leq \left(\frac{1}{M} \right)^{\alpha-\beta}, \quad t \geq T_4. \] (61)
Combining (59) and (61), we obtain that

\[
w^\Delta(t) \leq -\xi(t) \overline{p}(t) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t)) \\
\quad - \frac{\beta \xi(\delta(t)) \left(\delta(t)/2 \right)^{\beta-1} \delta^\Delta(t) M^{\alpha-\beta}}{\xi^2(\sigma(t)) \left(\left(r(\sigma(t)) \right)^{\alpha+\beta/\alpha} \left(r(\delta(t)) \right)^{\beta/\alpha} \right)} \times w^2(\sigma(t)), \quad t \geq T_4. \] (62)

Letting
\[\Phi(t) = \frac{\beta \xi(\delta(t)) \left(\delta(t)/2 \right)^{\beta-1} \delta^\Delta(t) M^{\alpha-\beta}}{\xi^2(\sigma(t)) \left(\left(r(\sigma(t)) \right)^{\alpha+\beta/\alpha} \left(r(\delta(t)) \right)^{\beta/\alpha} \right)}, \]
then \(\Phi(t) \geq 0 \). So
\[
w^\Delta(t) \leq -\xi(t) \overline{p}(t) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \omega(\sigma(t)) - \Phi(t) w^2(\sigma(t)) \\
= -\xi(t) \overline{p}(t) + \frac{1}{4 \Phi(t) \xi^2(\sigma(t))} \left(\frac{\xi^\Delta(t)}{\xi(\sigma(t))} \right)^2 \\
\quad - \left(\sqrt{\Phi(t)} \omega(\sigma(t)) - \frac{1}{2 \sqrt{\Phi(t) \xi(\sigma(t))}} \right)^2 \\
\leq -\xi(t) \overline{p}(t) + \frac{1}{4 \Phi(t) \xi^2(\sigma(t))} \left(\frac{\xi^\Delta(t)}{\xi(\sigma(t))} \right)^2 \\
= -\left[\xi(t) \overline{p}(t) - \frac{\xi^\Delta(t)}{\xi(\sigma(t))} \right] \\
\quad - \frac{\left(\xi^\Delta(t) \right)^2 \left(\left(r(\sigma(t)) \right)^{\alpha+\beta/\alpha} \left(r(\delta(t)) \right)^{\beta/\alpha} \right)}{4 \beta \xi(t) \left(\delta(t)/2 \right)^{\beta-1} \delta^\Delta(t) M^{\alpha-\beta}}. \]
(64)
Integrating the above inequality from T_4 to t, we have

$$w(t) \leq w(T_4)$$

$$- \int_{T_4}^{t} \left(\xi(s) \bar{p}(s) - \frac{\left(\xi^\Delta(s) \right)^2 (r(\sigma(s)))^{(\alpha-\beta)/\alpha} (r(\delta(s)))^{\beta/\alpha}}{4b\xi(s)(\delta(s)/2)^{\beta-1}\delta^\Delta(s)M^{\alpha-\beta}} \right) ds$$

$$\leq w(T_4) + \int_{T_4}^{t} \xi(s) \bar{p}(s) ds$$

$$- \int_{t_0}^{t} \left(\xi(s) \bar{p}(s) - \frac{\left(\xi^\Delta(s) \right)^2 (r(\sigma(s)))^{(\alpha-\beta)/\alpha} (r(\delta(s)))^{\beta/\alpha}}{4b\xi(s)(\delta(s)/2)^{\beta-1}\delta^\Delta(s)M^{\alpha-\beta}} \right) ds$$

Since $w(t) > 0$ for $t > T_4$, we have

$$\int_{t_0}^{t} \left(\xi(s) \bar{p}(s) - \frac{\left(\xi^\Delta(s) \right)^2 (r(\sigma(s)))^{(\alpha-\beta)/\alpha} (r(\delta(s)))^{\beta/\alpha}}{4b\xi(s)(\delta(s)/2)^{\beta-1}\delta^\Delta(s)M^{\alpha-\beta}} \right) ds$$

$$\leq w(T_4) + \int_{t_0}^{T_4} \xi(s) \bar{p}(s) ds - w(t)$$

$$< w(T_4) + \int_{t_0}^{T_4} \xi(s) \bar{p}(s) ds.$$

(66)

which contradicts (53). This completes the proof of Theorem 6.

\[\square \]

Theorem 7. Assume that (H_1)–(H_6) and (7) hold and $\beta \geq 1$. Furthermore, assume that $r^\Delta(t) \geq 0$. If there exist a function $H(t, s) \in \mathcal{F}$ and a function $\xi(t) \in C_{rd}(T, (0, \infty))$ such that

$$H^\Delta(t, s) + \frac{H(t, s) \xi^\Delta(s)}{\xi(\sigma(s))} \leq 0, \quad \text{for } t \geq s \geq t_0,$$

(67)

$$\lim_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^{t} H(t, s) \xi(s) \bar{p}(s) ds = \infty,$$

(68)

where

$$\bar{p}(s) = q(s) \left[1 - p(\delta(s)) \right]^\beta,$$

(69)

then (1) is oscillatory.

Proof. We proceed as in the proof of Theorem 6 to have (64). From (64) we obtain

$$\xi(t) \bar{p}(t) \leq - w^\Delta(t) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} w(\sigma(t))$$

$$- \Phi(t) w^2(\sigma(t)), \quad t \geq T_4.$$

(70)

Multiplying (70) (with t replaced by s) by $H(t, s)$, integrating it with respect to s from T_4 to t for $t > T_4$, using integration by parts and (i)-(ii), we get

$$\int_{T_4}^{t} H(t, s) \xi(s) \bar{p}(s) ds$$

$$\leq - \int_{T_4}^{t} H(t, s) w^\Delta(s) ds + \int_{T_4}^{t} \frac{H(t, s) \xi^\Delta(s)}{\xi(\sigma(s))} w(\sigma(s)) ds$$

$$- \int_{T_4}^{t} H(t, s) \Phi(s) w^2(\sigma(s)) ds$$

$$= H(t, T_4) w(T_4) + \int_{T_4}^{t} H^\Delta(t, s) w(\sigma(s)) ds$$

$$+ \int_{T_4}^{t} \frac{H(t, s) \xi^\Delta(s)}{\xi(\sigma(s))} w(\sigma(s)) ds$$

$$- \int_{T_4}^{t} H(t, s) \Phi(s) w^2(\sigma(s)) ds$$

(71)

Using (67) in the above inequality (71), we get

$$\int_{T_4}^{t} H(t, s) \xi(s) \bar{p}(s) ds \leq H(t, t_0) w(T_4).$$

(72)

Then it follows that

$$\frac{1}{H(t, t_0)} \int_{T_4}^{t} H(t, s) \xi(s) \bar{p}(s) ds \leq w(T_4).$$

(73)
Thus we get
\[
\frac{1}{H(t, t_0)} \int_{t_0}^{t} H(t, s) \xi(s) \overline{p}(s) \Delta s
\]
\[
= \frac{1}{H(t, t_0)} \left(\int_{t_0}^{T_4} + \int_{T_4}^{t} \right) H(t, s) \xi(s) \overline{p}(s) \Delta s
\]
\[
\leq w(T_4) + \frac{1}{H(t, t_0)} \int_{T_4}^{t} H(t, s) \xi(s) \overline{p}(s) \Delta s
\]
\[
\leq w(T_4) + \int_{T_4}^{t} \frac{H(t, s)}{H(t, t_0)} \xi(s) \overline{p}(s) \Delta s
\]
\[
\leq w(T_4) + \int_{T_4}^{t} \xi(s) \overline{p}(s) \Delta s.
\]

Then
\[
\lim_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^{t} H(t, s) \xi(s) \overline{p}(s) \Delta s \leq \infty,
\]
which contradicts (68). This completes the proof of Theorem 7.

Theorem 8. Assume that (H₁)–(H₆) and (7) hold and \(\beta \geq 1 \). Furthermore, assume that \(r^\delta(t) \geq 0 \). If there exist a function \(H(t, s) \in \mathcal{F} \) and a function \(\xi(t) \in C^1_{rd}(\mathbb{T}, (0, \infty)) \) such that for any positive number \(M \),

\[
\lim_{t \to \infty} \frac{1}{H(t, t_0)} \times \int_{t_0}^{t} \left[H(t, s) \xi(s) \overline{p}(s) \right. - \left. \frac{(H^{\Delta}(t, s) + H(t, s) \xi^2(s) / \xi(\sigma(s)))^2}{4H(t, s) \Phi(s)} \Delta s \right] = \infty,
\]

where
\[
\overline{p}(s) = q(s) [1 - p(\delta(s))]^\beta,
\]
\[
\Phi(s) = \frac{\beta \xi(s) (\delta(s))^{2\beta-1} \delta^\Delta(s) M^{\alpha-\beta}}{\xi^2(\sigma(s)) r(\sigma(s))^{(\alpha-\beta)/\alpha} r(\delta(s))^{\beta/\alpha}}.
\]

then (1) is oscillatory.

Proof. We proceed as those in the proof of Theorem 7 to have (71), that is,
\[
\int_{T_4}^{t} H(t, s) \xi(s) \overline{p}(s) \Delta s
\]
\[
\leq H(t, T_4) w(T_4)
\]
\[
+ \int_{T_4}^{t} \left(H^{\Delta}(t, s) + \frac{H(t, s) \xi^2(s)}{\xi(\sigma(s))} \right) w(\sigma(s)) \Delta s
\]
\[
- \int_{T_4}^{t} H(t, s) \Phi(s) w^2(\sigma(s)) \Delta s
\]
\[
= H(t, T_4) w(T_4)
\]
\[
+ \int_{T_4}^{t} \left(H^{\Delta}(t, s) + \frac{H(t, s) \xi^2(s)}{\xi(\sigma(s))} \right)^2 \Delta s
\]
\[
- \int_{T_4}^{t} \left(H^{\Delta}(t, s) + \frac{H(t, s) \xi^2(s)}{\xi(\sigma(s))} \right)^2 \Phi(s) \Delta s
\]
\[
\leq H(t, T_4) w(T_4)
\]
\[
+ \int_{T_4}^{t} \left(H^{\Delta}(t, s) + \frac{H(t, s) \xi^2(s)}{\xi(\sigma(s))} \right)^2 \Delta s
\]
\[
\leq H(t, t_0) w(T_4)
\]
\[
+ \int_{T_4}^{t} \left(H^{\Delta}(t, s) + \frac{H(t, s) \xi^2(s)}{\xi(\sigma(s))} \right)^2 \Delta s
\]
\[
\leq H(t, t_0) w(T_4)
\]
\[
+ \int_{T_4}^{t} \left(H^{\Delta}(t, s) + \frac{H(t, s) \xi^2(s)}{\xi(\sigma(s))} \right)^2 \Phi(s) \Delta s
\]
\[
\leq w(T_4).
\]

Then it follows that
\[
\lim_{t \to \infty} \frac{1}{H(t, t_0)} \times \int_{t_0}^{t} \left[H(t, s) \xi(s) \overline{p}(s) \right. - \left. \frac{(H^{\Delta}(t, s) + H(t, s) \xi^2(s) / \xi(\sigma(s)))^2}{4H(t, s) \Phi(s)} \Delta s \right] \leq w(T_4).
\]

Thus we get
\[
\frac{1}{H(t, t_0)} \int_{t_0}^{t} H(t, s) \xi(s) \overline{p}(s)
\]
\[
\leq \frac{H(t, t_0) \xi(\sigma(s))}{\xi^2(\sigma(s)) r(\sigma(s))^{(\alpha-\beta)/\alpha} r(\delta(s))^{\beta/\alpha}}.
\]
\[
\lim_{t \to \infty} \int_{t_0}^{t} r^{-1/\alpha}(s) \, ds < \infty.
\] (82)

Theorem 9. Assume that \((H_1)-(H_6)\) and (8) hold and there exists a \(T_* \in [t_0, \infty)\) such that \(p^h(t) \geq 0, r^h(t) \geq 0\) for \(t \geq T_*\), and suppose that there exists a function \(\xi(t) \in C^1_{rd}(T_1, (0, \infty))\) such that (12) holds for any positive number \(M\), and there exists a function \(\psi(t) \in C^1_{rd}(T_1, (0, \infty))\) satisfying \(\psi(t) \geq t, \psi^\Lambda(t) > 0, \delta(t) \leq \tau(\psi(t))\) for \(t \geq T_*\) such that for any positive number \(M\) and for every \(T_1 \in [T_1, \infty)\)
\[
\lim_{t \to \infty} \int_{t_0}^{T_1} \left[\bar{p}(s) V^{\alpha}(\sigma(s)) - G(s) \right] \, ds = \infty,
\] (83)

where
\[
\bar{p}(s) = q(s) \left(\frac{1}{1 + p(\psi(s))} \right)^\beta,
\]
\[
V(s) = \int_{\psi(s)}^{\infty} r^{-1/\alpha}(t) \, dt,
\]
\[
G(s) = \left\{ \begin{array}{ll}
\alpha^{-1} r^{-1/\alpha}(\psi(s)) \psi^\Lambda(s), & \text{if } 0 < \alpha < 1, \\
(\alpha + 1) r^{-1/\alpha}(\psi(s)) M^{-\alpha - \beta} V^{\alpha - 1}(\sigma(s)), & \text{if } \alpha \geq 1,
\end{array} \right.
\]

then (1) is oscillatory.

Proof. Suppose to the contrary that \(x(t)\) is an eventually positive solution of (1), then there exists a \(T_1 \geq T_* \geq t_0\) such that \(x(t) > 0, x(\delta(t)) > 0, x(\sigma(t)) > 0\) for all \(t \geq T_1\), (the case of \(x(t)\) negative and can be considered by the same method). It follows from \((H_3)\) that \(Z(t) \geq x(t) > 0\) for \(t \geq T_1\). From (14) it is easy to conclude that there exist two possible cases of the sign of \(Z^\Delta(t)\).

Case 1. Suppose \(Z^\Delta(t) > 0\) for sufficiently large \(t\), then we are back to the case of Theorem 4. Thus the proof of Theorem 4 goes through, and we may get contradiction by (12).

Case 2. Suppose \(Z^\Delta(t) < 0\) for \(t \geq T_1\). Define
\[
w(t) = \frac{r(t) \left(-Z^\Delta(t) \right)^{\alpha - 1} Z^\Delta(t)}{Z^\beta(\psi(t))}, \quad t \geq T_1.
\] (85)

Then \(w(t) < 0\) for \(t \geq T_1\). From the fact that \(Z(t)\) is positive and nonincreasing, we get that
\[
Z(\psi(t)) \leq \frac{1}{M_0}, \quad t \geq T_1,
\] (86)
holds for some positive constant M_0.

Noting that $(r(t)(-Z^\Delta(t))^{\alpha-1} Z^\Delta(t))^\Delta \leq 0$, $\psi(t) \geq t$, so we have

$$Z^\Delta(\psi(t)) \leq \left(\frac{r(t)}{r(\psi(t))} \right)^{1/\alpha} Z^\Delta(t), \quad (87)$$

$$Z^\Delta(s) \leq \frac{r^{1/\alpha}(t)}{r^{1/\alpha}(s)} Z^\Delta(t), \quad s \geq t. \quad (88)$$

Integrating the above inequality (88) with respect to s from $\psi(t)$ to v, we have

$$Z(v) \leq Z(\psi(t)) + r^{1/\alpha}(t) Z^\Delta(t) \int_{\psi(t)}^{v} r^{1/\alpha}(s) \Delta s. \quad (89)$$

Letting $v \to \infty$ in the above inequality, we obtain

$$0 \leq Z(\psi(t)) + r^{1/\alpha}(t) Z^\Delta(t) V(t). \quad (90)$$

From (86) and (90), we have

$$-\frac{1}{M_0^{\alpha-\beta}} \leq w(t) V^\alpha(t) \leq 0, \quad t \geq T_1. \quad (91)$$

If $0 < \beta < 1$. From $Z^\Delta(t) < 0$, Lemmas 1 and 2, we have

$$\left(Z^\Delta(\psi(t)) \right)^\Delta = \beta \left\{ \int_0^1 \left[(1-h) Z(\psi(t)) + hZ(\psi(\sigma(t))) \right] \Delta \right\} \quad (92)$$

From (1), (H_6), (85), and (92), we get

$$w^\Delta(t) = \frac{1}{Z^\beta(\psi(t))} \left(r(t) \left(-Z^\Delta(t) \right)^{\alpha-1} Z^\Delta(t) \right)^\Delta \quad (93)$$

If $\beta \geq 1$. From $Z^\Delta(t) < 0$, Lemmas 1 and 2, we have

$$\left(Z^\Delta(\psi(t)) \right)^\Delta = \beta \left\{ \int_0^1 \left[(1-h) Z(\psi(t)) + hZ(\psi(\sigma(t))) \right] \Delta \right\} \quad (94)$$

From (1), (H_6), (85) and (94), we get

$$w^\Delta(t) = \frac{1}{Z^\beta(\psi(t))} \left(r(t) \left(-Z^\Delta(t) \right)^{\alpha-1} Z^\Delta(t) \right)^\Delta \quad (95)$$

$$\leq -q(t) \frac{x^\beta(\delta(t))}{Z^\beta(\psi(t))} \left(r(\sigma(t)) \left(-Z^\Delta(\sigma(t)) \right)^{\alpha-1} Z^\Delta(\sigma(t)) \right)^\Delta \quad (96)$$

$$\times (Z^\beta(\psi(t)))^{-1} \quad (97)$$
\[
\times \left(Z^\beta \left(\psi \left(t \right) \right) Z^\beta \left(\psi \left(\sigma \left(t \right) \right) \right) \right)^{-1}
\leq - q \left(t \right) \frac{x^\beta \left(\delta \left(t \right) \right)}{Z^\beta \left(\psi \left(t \right) \right)}
- \left(r \left(\sigma \left(t \right) \right) \left(- Z^\Delta \left(\sigma \left(t \right) \right) \right)^{\alpha - 1} Z^\Delta \left(\sigma \left(t \right) \right) \right)
\times \beta Z^\Delta \left(\psi \left(t \right) \right) \psi^\Delta \left(t \right)
\times \left(Z^\beta \left(\psi \left(t \right) \right) Z \left(\psi \left(\sigma \left(t \right) \right) \right) \right)^{-1}
\leq - q \left(t \right) \frac{x^\beta \left(\delta \left(t \right) \right)}{Z^\beta \left(\psi \left(t \right) \right)}
- \left(r \left(\sigma \left(t \right) \right) \left(- Z^\Delta \left(\sigma \left(t \right) \right) \right)^{\alpha - 1} Z^\Delta \left(\sigma \left(t \right) \right) \right)
\times \beta Z^\Delta \left(\psi \left(t \right) \right) \psi^\Delta \left(t \right)
\left(Z^{\beta + 1} \left(\psi \left(t \right) \right) \right)^{-1}.
\]
(95)

Therefore, for \(\beta > 0 \), from (93) and (95), we get

\[
\omega^\Delta \left(t \right)
\leq - q \left(t \right) \frac{x^\beta \left(\delta \left(t \right) \right)}{Z^\beta \left(\psi \left(t \right) \right)}
- \frac{r \left(\sigma \left(t \right) \right) \left(- Z^\Delta \left(\sigma \left(t \right) \right) \right)^{\alpha - 1} Z^\Delta \left(\sigma \left(t \right) \right) \beta Z^\Delta \left(\psi \left(t \right) \right) \psi^\Delta \left(t \right)}{Z^{\beta + 1} \left(\psi \left(t \right) \right)}.
\]
(96)

Noticing that \(p^\Delta \left(t \right) \geq 0 \) and \(r^\Delta \left(t \right) \geq 0 \), from \(Z^\Delta \left(t \right) = x^\Delta \left(t \right) + p^\Delta \left(t \right) x \left(\tau \left(t \right) \right) + p \left(\sigma \left(t \right) \right) x \left(\tau \left(t \right) \right) r^\Delta \left(t \right) \), we see that \(x^\Delta \left(t \right) \leq 0 \) for \(t \geq T_1 \), and from \(\delta \left(t \right) \leq \tau \left(\psi \left(t \right) \right) \leq \psi \left(t \right) \) we can get

\[
\frac{x^\beta \left(\delta \left(t \right) \right)}{Z^\beta \left(\psi \left(t \right) \right)} = \left(\frac{x \left(\psi \left(t \right) \right)}{x \left(\delta \left(t \right) \right)} + p \left(\psi \left(t \right) \right) \frac{x \left(\tau \left(\psi \left(t \right) \right) \right)}{x \left(\delta \left(t \right) \right)} \right)^{-1} \beta
\geq \left(\frac{1}{1 + p \left(\psi \left(t \right) \right)} \right)^\beta.
\]
(97)

Thus from (86), (87), (96), (97) and the fact that \(\left(r \left(t \right) \left(- Z^\Delta \left(t \right) \right)^{\alpha - 1} Z^\Delta \left(\psi \left(t \right) \right) \right) \leq 0 \), we have

\[
\omega^\Delta \left(t \right) \leq - \tilde{p} \left(t \right)
- \frac{r \left(\sigma \left(t \right) \right) \left(- Z^\Delta \left(\sigma \left(t \right) \right) \right)^{\alpha - 1} Z^\Delta \left(\sigma \left(t \right) \right) \beta Z^\Delta \left(\psi \left(t \right) \right) \psi^\Delta \left(t \right)}{Z^{\beta + 1} \left(\psi \left(t \right) \right)}
\times \left(\frac{r \left(t \right)}{r \left(\psi \left(t \right) \right)} \right)^{1/\alpha}
\leq - \tilde{p} \left(t \right) - \frac{r \left(t \right) \left(- Z^\Delta \left(t \right) \right)^{\alpha - 1} Z^\Delta \left(t \right) \beta Z^\Delta \left(t \right) \psi^\Delta \left(t \right)}{Z^{\beta + 1} \left(\psi \left(t \right) \right)}
\times \left(\frac{r \left(t \right)}{r \left(\psi \left(t \right) \right)} \right)^{1/\alpha}
\leq - \tilde{p} \left(t \right) - \frac{\beta M_0 \left(\alpha - \beta \right) / \alpha \psi^\Delta \left(t \right)}{r^{1/\alpha} \left(\psi \left(t \right) \right)} \left(- w \left(t \right) \right)^{\left(\alpha + 1 \right)/\alpha},
\]
(98)

where \(\tilde{p} \left(t \right) = q \left(t \right) \left(1 / \left(1 + p \left(\psi \left(t \right) \right) \right) \right)^\beta \).

That is

\[
\omega^\Delta \left(t \right) + \tilde{p} \left(t \right) + \frac{\beta M_0 \left(\alpha - \beta \right) \psi^\Delta \left(t \right)}{r^{1/\alpha} \left(\psi \left(t \right) \right)} \left(- w \left(t \right) \right)^{\left(\alpha + 1 \right)/\alpha} \leq 0,
\]
(99)

\(t \geq T_1 \).

Multiplying (99) (with \(t \) replaced by \(s \)) by \(V^\alpha \left(\sigma \left(s \right) \right) \), integrating it with respect to \(s \) from \(T_1 \) to \(t \), we have

\[
V^\alpha \left(t \right) w \left(t \right) - V^\alpha \left(T_1 \right) w \left(T_1 \right) - \int_{T_1}^{t} \left(V^\alpha \left(s \right) \right)^{\Delta} w \left(s \right) \Delta s
+ \int_{T_1}^{t} \tilde{p} \left(s \right) V^\alpha \left(\sigma \left(s \right) \right) \Delta s
+ \int_{T_1}^{t} \frac{\beta M_0 \left(\alpha - \beta \right) \psi^\Delta \left(s \right)}{r^{1/\alpha} \left(\psi \left(s \right) \right)} \left(- w \left(s \right) \right)^{\left(\alpha + 1 \right)/\alpha} \Delta s \leq 0.
\]
(100)
Next, we consider the following two cases.

Case (i) (let $0 < \alpha < 1$). From Lemma 2 and $V^\alpha(t) = -r^{-1/\alpha}(\psi(t))\psi^\alpha(t) < 0$, we have

$$
(V^\alpha(t))^\Delta = \alpha \left\{ \int_0^1 [(1-h)V(t) + hV(\sigma(t))]|^\alpha \right\} V^\Delta(t)
\geq \alpha \left[\int_0^1 V^{\alpha-1}(\sigma(t)) \right] V^\Delta(t)
= \alpha V^{\alpha-1}(\sigma(t)) V^\Delta(t).
$$

(101)

From (100) and (101), we get

$$
V^\alpha(t) w(t) - V^\alpha(T_1) w(T_1) - \int_{T_1}^t \alpha V^{\alpha-1}(s) V^\Delta(s) w(s) \Delta s
+ \int_{T_1}^t \bar{p}(s) V^\alpha(s) \Delta s
+ \int_{T_1}^t \beta M_0^{(\alpha-\beta)/\alpha} V^\alpha(s) \psi^\alpha(s) \left(-w(s) \right)^{(\alpha+1)/\alpha} \Delta s
\leq 0.
$$

(102)

That is

$$
V^\alpha(t) w(t) + \int_{T_1}^t \bar{p}(s) V^\alpha(s) \psi^\alpha(s) \Delta s
- \int_{T_1}^t \alpha V^{\alpha-1}(s) \left(-V^\Delta(s) \right) \left(-w(s) \right) \Delta s
- \beta M_0^{(\alpha-\beta)/\alpha} V^\alpha(s) \psi^\alpha(s) \left(-w(s) \right)^{(\alpha+1)/\alpha} \Delta s
\leq V^\alpha(T_1) w(T_1).
$$

(103)

Taking $a = \alpha V^{\alpha-1}(s) (-V^\Delta(s)) (-w(s))$, $b = \beta M_0^{(\alpha-\beta)/\alpha} V^\alpha(s) \psi^\alpha(s) / r^{1/\alpha}(\psi(s))$, by Lemma 3 and (103), we obtain

$$
V^\alpha(t) w(t) + \int_{T_1}^t \bar{p}(s) V^\alpha(s) \psi^\alpha(s) \Delta s
- \int_{T_1}^t \alpha V^{\alpha-1}(s) \left(-V^\Delta(s) \right) \left(-w(s) \right) \Delta s
- \beta M_0^{(\alpha-\beta)/\alpha} V^\alpha(s) \psi^\alpha(s) \left(-w(s) \right)^{(\alpha+1)/\alpha} \Delta s
\leq V^\alpha(T_1) w(T_1).
$$

(104)

That is

$$
V^\alpha(t) w(t) - V^\alpha(T_1) w(T_1)
- \int_{T_1}^t \bar{p}(s) V^\alpha(s) \psi^\alpha(s) \Delta s
- \frac{\alpha^{2\alpha r-1/\alpha} \psi^\alpha(s)}{(\alpha + 1)^{\alpha-1/\alpha}} \beta M_0^{(\alpha-\beta)/\alpha} V^\alpha(s) \psi^\alpha(s) \Delta s.
$$

(105)

By (83), we get a contradiction with (91).

Case (ii) (let $\alpha \geq 1$). From Lemma 2 and $V^\Delta(t) < 0$, we get

$$
(V^\alpha(t))^\Delta = \alpha \left\{ \int_0^1 [(1-h)V(t) + hV(\sigma(t))]|^{\alpha-1} \right\} V^\Delta(t)
\geq \alpha \left[\int_0^1 V^{\alpha-1}(\sigma(t)) \right] V^\Delta(t)
= \alpha V^{\alpha-1}(\sigma(t)) V^\Delta(t).
$$

(106)

From (100) and (106), we obtain

$$
V^\alpha(t) w(t) - V^\alpha(T_1) w(T_1) - \int_{T_1}^t \alpha V^{\alpha-1}(s) V^\Delta(s) w(s) \Delta s
+ \int_{T_1}^t \bar{p}(s) V^\alpha(s) \Delta s
+ \int_{T_1}^t \beta M_0^{(\alpha-\beta)/\alpha} V^\alpha(s) \psi^\alpha(s) \left(-w(s) \right)^{(\alpha+1)/\alpha} \Delta s
\leq 0.
$$

(107)

That is

$$
V^\alpha(t) w(t) + \int_{T_1}^t \bar{p}(s) V^\alpha(s) \psi^\alpha(s) \Delta s
- \int_{T_1}^t \alpha V^{\alpha-1}(s) \left(-V^\Delta(s) \right) \left(-w(s) \right) \Delta s
- \beta M_0^{(\alpha-\beta)/\alpha} V^\alpha(s) \psi^\alpha(s) \left(-w(s) \right)^{(\alpha+1)/\alpha} \Delta s
\leq V^\alpha(T_1) w(T_1).
$$

(108)

Taking $a = \alpha V^{\alpha-1}(s) (-V^\Delta(s)) (-w(s))$, $b = \beta M_0^{(\alpha-\beta)/\alpha} V^\alpha(s) \psi^\alpha(s) / r^{1/\alpha}(\psi(s))$, by Lemma 3 and (108), we obtain

$$
V^\alpha(t) w(t) + \int_{T_1}^t \bar{p}(s) V^\alpha(s) \psi^\alpha(s) \Delta s
- \int_{T_1}^t \alpha V^{\alpha-1}(s) \left(-V^\Delta(s) \right) \left(-w(s) \right) \Delta s
- \beta M_0^{(\alpha-\beta)/\alpha} V^\alpha(s) \psi^\alpha(s) \left(-w(s) \right)^{(\alpha+1)/\alpha} \Delta s
\leq V^\alpha(T_1) w(T_1).
$$

(109)
That is
\[V^\alpha(t) w(t) \leq V^\alpha(T_1) w(T_1) \]
\[- \int_{T_1}^{t} \left[\bar{p}(s) \right] V^\alpha(\sigma(s)) \Delta s + \frac{\alpha + 1}{\alpha \beta} M_0^{\beta} V^{\alpha-1}(\psi(s)) V^\alpha(\sigma(s)) \right] \Delta s. \]

By (83), we get a contradiction with (91). This completes the proof of Theorem 9.

\[\lim_{t \to \infty} \int_{t_0}^{t} H(t, s) \xi(s) \bar{p}(s) \Delta s = \infty. \]

Hence, by Theorem 7, (113) is oscillatory.

\section*{References}

Submit your manuscripts at http://www.hindawi.com