Research Article

Certain Properties of a Class of Close-to-Convex Functions Related to Conic Domains

Wasim Ul-Haq and Shahid Mahmood

Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan

Correspondence should be addressed to Wasim Ul-Haq; wasim474@hotmail.com

Received 30 September 2012; Revised 3 March 2013; Accepted 17 March 2013

Academic Editor: Nikolaos Papageorgiou

Copyright © 2013 W. Ul-Haq and S. Mahmood. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We aim to define a new class of close-to-convex functions which is related to conic domains. Many interesting properties such as sufficiency criteria, inclusion results, and integral preserving properties are investigated here. Some interesting consequences of our results are also observed.

1. Introduction

Let \mathcal{A} be the class of functions f

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$ \hspace{1cm} (1)

which are analytic in the open unit disc $E = \{ z \in \mathbb{C} : |z| < 1 \}$. Let f and g be analytic in E, and we say that f is subordinate to g, written as $f(z) < g(z)$ if there exists a Schwarz function w, which is analytic in E with $w(0) = 0$ and $|w(z)| < 1$ ($z \in E$), such that $f(z) = g(w(z))$. In particular, when g is univalent, then the above subordination is equivalent to $f(0) = g(0)$ and $f(E) \subseteq g(E)$; see [1].

Kanas and Wisniowska [2, 3] introduced and studied the classes of k-uniformly convex functions denoted by $k-\mathcal{UCV}$ and the corresponding class $k-\mathcal{ST}$ related by the Alexander-type relation. Later, the class k-uniformly close-to-convex functions denoted by $k-\mathcal{K}$ defined as

$$k-\mathcal{K} = \left\{ f \in \mathcal{A} : \right. \left. \Re \left(\frac{zf'(z)}{g(z)} \right) > k \left| \frac{zf'(z)}{g(z)} - 1 \right| + \delta, \; z \in E \right\},$$ \hspace{1cm} (2)

was considered by Acu [4]; for study details on these classes, we refer to [5–7]. All these above mentioned classes were generalized to the classes $\mathcal{SD}(k, \delta)$, $\mathcal{CD}(k, \delta)$, and $\mathcal{KD}(k, \beta, \delta)$ by Shams et al. [8] and Srivastava et al. [9], respectively. The classes $\mathcal{SD}(k, \delta)$ and $\mathcal{CD}(k, \delta)$ are defined as

$$\mathcal{SD}(k, \delta) = \left\{ f \in \mathcal{A} : \right. \left. \Re \left(\frac{zf'(z)}{f(z)} \right) > k \left| \frac{zf'(z)}{f(z)} - 1 \right| + \delta, \; z \in E \right\},$$

$$\mathcal{CD}(k, \delta) = \left\{ f \in \mathcal{A} : \right. \left. \Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > k \left| \frac{zf''(z)}{f'(z)} \right| + \delta, \; z \in E \right\},$$ \hspace{1cm} (3)

where $k \geq 0$, $0 \leq \beta, \delta < 1$. The class $\mathcal{KD}(k, \beta, \delta)$ known as k-uniformly close-to-convex functions of order β type δ
is the class of all those functions $f \in \mathcal{S}$ which satisfies the following condition:

\[
\text{Re} \left(\frac{f'(z)}{g'(z)} \right) \geq k \left| \frac{f'(z)}{g'(z)} - 1 \right| + \beta, \quad (k \geq 0, \ 0 \leq \beta, \ \delta < 1; \ z \in E),
\]

for some $g \in \mathcal{D}(k, \delta)$.

Motivated by the work of Noor et al. [10–13], we define

\[
\Omega_k = \left\{ u + iv; \ u > k \sqrt{(u-1)^2 + v^2} \right\}.
\]

Extremal functions for these conic regions are denoted by $p_k(z)$, which are analytic in E and map E onto Ω_k such that $p_k(0) = 1$ and $p_k'(0) > 1$. These functions are given as:

\[
\begin{align*}
\left\{ \begin{array}{ll}
1 + z & \text{if } k = 0, \\
1 - z & \text{if } k = 1, \\
1 + \frac{2}{\pi^2} \log \left(1 + \sqrt{r^2 - 1} \right)^2 & \text{if } 0 < k < 1, \\
1 + \frac{2}{1 - k^2} \sinh^2 \left(\frac{2}{\pi} \arccos k \right) \arctan h \sqrt{z} & \text{if } k > 1,
\end{array} \right.
\end{align*}
\]

where $u(z) = (z - \sqrt{1 - t^2})/(1 - \sqrt{2})$, $t \in (0, 1)$, $z \in E$, and z is chosen such that $k = \cosh(\pi R(t)/4R(t))$, where $R(t)$ is Legendre’s complete elliptic integral of the first kind and $R'(t)$ is complementary integral of $R(t)$; see [2, 3].

2. Preliminaries Result

We require the following results which are essential in our investigations.

Lemma 2 (see [17, page 70]). Let h be convex function in E and $q : E \mapsto C$ with $\text{Re} q(z) > 0$, $z \in E$. If p is analytic in E with $p(0) = h(0)$, then

\[
p(z) + q(z)zp'(z) < h(z) \implies p(z) < h(z).
\]

Lemma 3 (see [17, page 195]). Let h be convex function in E with $h(0) = 0$ and $A \geq 0$. Suppose that $j \geq 4/h'(0)$ and that $B(z)$, $C(z)$, and $D(z)$ are analytic in E and satisfy

\[
\text{Re} B(z) \geq A + |C(z) - 1| - \text{Re} C(z) - 1 + jD(z),
\]

for $z \in E$. If p is analytic in E with $p(z) = a_1 z + a_2 z^2 + a_3 z^3 + \cdots$ and the following subordination relation holds:

\[
A z^2 p''(z) + B(z) z p'(z) + C(z) p(z) + D(z) < h(z),
\]

then

\[
p(z) < h(z).
\]

Lemma 4 (see [12]). If $f(z) < h(z)$ and $g(z) < h(z)$, then for $\alpha \in [0, 1]$,

\[
(1 - \alpha) f(z) + \alpha g(z) < h(z).
\]

3. Main Results

First, we prove the following sufficiency criteria for the functions in the class $\mathcal{D}(k, \alpha, \beta, \gamma, \delta)$.
Theorem 5. A function \(f \in \mathcal{A} \) is said to be in the class \(\mathcal{T} \mathcal{S}(k, \alpha, \beta, \gamma, \delta) \), if

\[
\sum_{n=2}^{\infty} \Phi_n(k; \alpha, \beta, \gamma, \delta) < (1 - \beta) (1 - \gamma), \quad (14)
\]

where

\[
\Phi_n(k; \alpha, \beta, \gamma, \delta) = (k + 1) [(1 - \alpha)(1 - \gamma)n + \alpha (1 - \beta)n^2] |a_n| + [(k + 2 - \beta)(1 - \gamma) + \alpha(k + 1)(\gamma - \beta)n |b_n|]. \quad (15)
\]

Proof. Let us assume that relation (6) holds. Now, it is sufficient to show that

\[
k |H(\alpha, \beta, \gamma, \delta; f, g) - 1| - \text{Re} [H(\alpha, \beta, \gamma, \delta; f, g) - 1] < 1. \quad (16)
\]

First, we consider

\[
|H(\alpha, \beta, \gamma, \delta; f, g) - 1| = \left|1 - \alpha \left[f'(z) g'(z) - \beta \right] \right|
= \left|1 - \alpha \frac{f'(z)}{g'(z)} \right| - \frac{\alpha}{1 - \gamma} \left[\frac{g'(z)}{f'(z)} - 1 \right]
= \left|\frac{(1 - \alpha)(1 - \gamma)f'(z)}{(1 - \beta)(1 - \gamma)g'(z)} \right| + \frac{\alpha(1 - \beta)(1 - \gamma)g'(z)}{(1 - \beta)(1 - \gamma)g'(z)}
- \frac{(1 - \alpha) \beta - \alpha \gamma}{1 - \gamma} - 1
\]

\[
= \left[\frac{(1 - \alpha)(1 - \gamma)f'(z)}{(1 - \beta)(1 - \gamma)g'(z)} \right] + \frac{\alpha(1 - \beta)(1 - \gamma)g'(z)}{(1 - \beta)(1 - \gamma)g'(z)}
- [(1 - \gamma) + \alpha(\gamma - \beta)] g'(z)
= \frac{(1 - \gamma) + \alpha(\gamma - \beta)}{(1 - \beta)(1 - \gamma)g'(z)}. \quad (17)
\]

Using (1) and the series \(g(z) = z + \sum_{n=2}^{\infty} b_n z^n \) in (17), we have

\[
|H(\alpha, \beta, \gamma, \delta; f, g) - 1|
= \left|\frac{(1 - \alpha)(1 - \gamma)}{(1 - \beta)(1 - \gamma)} \left(1 + \sum_{n=2}^{\infty} n a_n z^{n-1}\right) \right|
+ \frac{\alpha(1 - \beta)}{(1 - \gamma)} \left(1 + \sum_{n=2}^{\infty} n^2 b_n z^{n-1}\right)
- \frac{[(1 - \gamma) + \alpha(\gamma - \beta)]}{(1 - \beta)(1 - \gamma)} \left(1 + \sum_{n=2}^{\infty} n b_n z^{n-1}\right)
\]

\[
= \left|\frac{(1 - \alpha)(1 - \gamma)}{(1 - \beta)(1 - \gamma)} \left(\sum_{n=2}^{\infty} n a_n z^{n-1}\right) \right|
+ \frac{\alpha(1 - \beta)}{(1 - \gamma)} \left(\sum_{n=2}^{\infty} n^2 b_n z^{n-1}\right)
- \frac{[(1 - \gamma) + \alpha(\gamma - \beta)]}{(1 - \beta)(1 - \gamma)} \left(\sum_{n=2}^{\infty} n b_n z^{n-1}\right). \quad (18)
\]

Now,

\[
k |H(\alpha, \beta, \gamma, \delta; f, g) - 1| - \text{Re} [H(\alpha, \beta, \gamma, \delta; f, g) - 1]
\leq (k + 1) |H(\alpha, \beta, \gamma, \delta; f, g) - 1|
\leq (k + 1) \left[\frac{(1 - \alpha)(1 - \gamma)}{(1 - \beta)(1 - \gamma)} \left(\sum_{n=2}^{\infty} n |a_n| \right) \right]
+ \frac{\alpha(1 - \beta)}{(1 - \gamma)} \left(\sum_{n=2}^{\infty} n^2 |b_n| \right)
- \frac{[(1 - \gamma) + \alpha(\gamma - \beta)]}{(1 - \beta)(1 - \gamma)} \left(\sum_{n=2}^{\infty} n |b_n| \right). \quad (19)
\]
The last inequality is bounded above by 1, if
\[
(k + 1) \left[(1 - \alpha)(1 - \gamma) \left(\sum_{n=2}^{\infty} |a_n| \right) + \alpha(1 - \beta) \left(\sum_{n=2}^{\infty} n^2 |a_n| \right) \right] \\
+ [(1 - \gamma) + \alpha(\gamma - \beta)] \left(\sum_{n=2}^{\infty} |b_n| \right) \\
\leq (1 - \beta)(1 - \gamma) \left(1 - \sum_{n=2}^{\infty} n |b_n| \right).
\]

(20)

Hence,
\[
\sum_{n=2}^{\infty} \Phi_n(k; \alpha, \beta, \gamma, \delta) \leq (1 - \beta)(1 - \gamma),
\]

where \(\Phi_n(k; \alpha, \beta, \gamma, \delta) \) is given by (15). This completes the proof.

When we take \(\alpha = 0, k = 1, \) and \(g(z) = z \) in the above theorem, we obtain the following sufficient condition for the functions to be in the class \(\mathcal{U}(\beta) \) which is proved in [14].

Corollary 6 (see [14]). A function \(f \in A \) is said to be in the class \(\mathcal{U}(\beta) \) if
\[
\sum_{n=2}^{\infty} n |a_n| \leq \frac{(1 - \beta)}{2}.
\]

(22)

Corollary 7 (see [14]). A function \(f \in A \) is said to be in the class \(\mathcal{U}(\beta) \) if
\[
\sum_{n=2}^{\infty} n^2 |a_n| \leq \frac{(1 - \gamma)}{2}.
\]

(23)

The above corollary is obtained when we take \(\alpha = 1, k = 1, \) and \(g(z) = z \) in Theorem 5.

Theorem 8. Let \(f \in \mathcal{T}(k, \alpha, \beta, \gamma, \delta) \) and \(\alpha \geq 4(\beta/(1 + 3\beta)) \).
Then, \(f \in \mathcal{K}(k, 0, \delta) \).

Proof. Let
\[
\frac{f'(z)}{g'(z)} = p(z),
\]
where \(p(z) \) is analytic and \(p(0) = 1 \). Now differentiating (24), we have
\[
\frac{(zf'(z))'}{g'(z)} = z p'(z) + p(z) \psi(z),
\]

(25)

where \(\psi(z) = (zg'(z))/g'(z) \). Using (24) and (25) in relation (6), we obtain
\[
H(\alpha, \beta, \gamma, \delta; f(z))
\]
\[
= \frac{1 - \alpha}{1 - \beta} \left[p(z) - \beta \right] + \frac{\alpha}{1 - \gamma} \left[z p'(z) + p(z) \psi(z) - \gamma \right]
\]
\[
= \frac{\alpha}{1 - \gamma} z p'(z) + \frac{(1 - \alpha)(1 - \gamma) + \alpha(1 - \beta) \psi(z)}{(1 - \beta)(1 - \gamma)} p(z)
\]
\[
- \frac{\beta(1 - \alpha)(1 - \gamma) + \alpha\gamma(1 - \beta)}{(1 - \beta)(1 - \gamma)}
\]
\[
= B(z) z p'(z) + C(z) p(z) + D(z),
\]

(26)

where
\[
B(z) = \frac{\alpha}{1 - \gamma}, \quad C(z) = \frac{(1 - \alpha)(1 - \gamma) + \alpha(1 - \beta) \psi(z)}{(1 - \beta)(1 - \gamma)},
\]
\[
D(z) = \frac{\beta(1 - \alpha)(1 - \gamma) + \alpha\gamma(1 - \beta)}{(1 - \beta)(1 - \gamma)}.
\]

(27)

Now, since \(f \in \mathcal{T}(k, \alpha, \beta, \gamma, \delta) \), we have
\[
B(z) z p'(z) + C(z) p(z) + D(z) < p_k(z).
\]

(28)

Replacing \(p(z) \) by \(p_\alpha(z) = p(z) - 1 \) and \(p_k(z) \) by \(p_k^*(z) = p_k(z) - 1 \), the above subordination is equivalent to
\[
B(z) z p_\alpha'(z) + C(z) p_\alpha(z) + D_\alpha(z) < p_k^*(z),
\]

(29)

where \(D_\alpha(z) = C(z) - D(z) - 1 \). Using Lemma 3 with \(A = 0 \), we obtain
\[
p_\alpha(z) < p_k^*(z).
\]

(30)

This implies that
\[
\frac{f'(z)}{g'(z)} = p(z) < p_k(z).
\]

(31)

Hence, \(f \in \mathcal{K}(k, 0, \delta) \). This completes the proof.

Corollary 9. Let \(f \in \mathcal{T}(k, \alpha, 0, 0, 0) = \mathcal{Q}_\alpha \). Then, \(f \in \mathcal{K}(0, 0, 0) = \mathcal{K} \). That is, \(\mathcal{Q}_\alpha \subset \mathcal{K}, \alpha \geq 0 \).

The above result is well-known inclusion proved in [11].

For \(f \in A \), consider the following integral operator defined by
\[
F(z) = I_m[f] = \frac{m + 1}{z^m} \int_0^z t^{m-1} f(t) \, dt, \quad m = 1, 2, 3, \ldots
\]

(32)

This operator was given by Bernardi [18] in 1969. In particular, the operator \(I_1 \) was considered by Libera [19]. Now let us prove the following.
Theorem 10. Let \(f \in \mathcal{T}\mathcal{D}(k, \alpha, \beta, \gamma, \delta) \). Then, \(I_m[f] \in \mathcal{K}\mathcal{D}(k, 0, \delta) \).

Proof. Let the function \(g \) be such that (6) is satisfied. It can easily be seen that according to [4], the function \(G = I_m[f] \in \mathcal{C}\mathcal{D}(k, \delta) \), and from (32), we deduce
\[
(1 + m) f'(z) = (1 + m) F'(z) + z F''(z),
\]
\[
(1 + m) g'(z) = (1 + m) G'(z) + z G''(z).
\]

If we let \(p(z) = F'(z)/G'(z) \) and \(q(z) = 1/(m + 1 + (z G'(z)/G'')) \), then simple computations yield us
\[
\frac{f'(z)}{g'(z)} = p(z) + z p'(z) q(z) = h(z),
\]
where \(h(z) \) is analytic and \(p(0) = 1 \). From (36), we have
\[
\frac{(z f'(z))'}{g'(z)} = \psi(z) h(z) + z h'(z),
\]
where \(\psi(z) = (z g'(z))'/g'(z) \). Using (36) and (37) in (6), we have
\[
H(\alpha, \beta, \gamma, \delta; f(z)) = 1 - \frac{\alpha}{1 - \beta} \left[h(z) - \beta \right] + \frac{\alpha}{1 - \gamma} \left[(z f'(z))'/g'(z) - \gamma \right]
\]
\[
= \frac{\alpha}{1 - \gamma} z h'(z) + \left[\frac{1 - \alpha}{1 - \beta} (1 - \gamma) + \frac{\alpha (1 - \beta) \psi(z)}{(1 - \beta)(1 - \gamma)} \right] h(z)
\]
\[
- \frac{\beta (1 - \alpha)(1 - \gamma) + \alpha \gamma (1 - \beta)}{(1 - \beta)(1 - \gamma)} h(z)
\]
\[
= B(z) z h'(z) + C(z) h(z) + D(z),
\]
where
\[
B(z) = \frac{\alpha}{1 - \gamma}, \quad C(z) = \frac{(1 - \alpha)(1 - \gamma) + \alpha (1 - \beta) \psi(z)}{(1 - \beta)(1 - \gamma)},
\]
\[
D(z) = -\frac{\beta (1 - \alpha)(1 - \gamma) + \alpha \gamma (1 - \beta)}{(1 - \beta)(1 - \gamma)}.
\]

Now proceeding in the similar manner as in the proof of Theorem 5 and using Lemma 3 with \(A = 0 \), we obtain
\[
\frac{f'(z)}{g'(z)} = h(z) < p_k(z).
\]

From (36), it implies that
\[
p(z) + z p'(z) q(z) < p_k(z).
\]

By employing Lemma 2, we immediately obtain the desired result.

Theorem 11. For \(\alpha > \alpha_1 \geq 0 \),
\[
\mathcal{T}\mathcal{D}(k, \alpha, \beta, \gamma, \delta) \subseteq \mathcal{T}\mathcal{D}(k, \alpha_1, \beta, \gamma, \delta).
\]

Proof. Let \(f \in \mathcal{T}\mathcal{D}(k, \alpha, \beta, \gamma, \delta) \). Then, consider
\[
H(\alpha_1, \beta, \gamma, \delta; f, g) = \frac{1 - \alpha_1}{1 - \beta} \left[\frac{f'(z)}{g'(z)} - \beta \right]
\]
\[
+ \frac{\alpha_1}{1 - \gamma} \left[\frac{(z f'(z))'}{g'(z)} - \gamma \right].
\]

After some simple computations, we have
\[
H(\alpha_1, \beta, \gamma, \delta; f, g)
\]
\[
= 1 - \frac{\alpha_1}{1 - \beta} \left[h(z) - \beta \right] + \frac{\alpha_1}{1 - \gamma} \left[(z f'(z))'/g'(z) - \gamma \right]
\]
\[
= \left(1 - \frac{\alpha_1}{\alpha} \right) H(0, \beta, \gamma, \delta; f, g) + \frac{\alpha_1}{\alpha} H(\alpha, \beta, \gamma, \delta; f, g).
\]

Now, since \(f \in \mathcal{T}\mathcal{D}(k, \alpha, \beta, \gamma, \delta) \), we have \(H(\alpha, \beta, \gamma, \delta; f, g) < p_k(z) \). Also, Theorem 8 gives us that \(H(0, \beta, \gamma, \delta; f, g) < p_k(z) \). The use of Lemma 4 leads us to the required relation; that is, \(H(\alpha_1, \beta, \gamma, \delta; f, g) < p_k(z) \). This completes the proof.

Acknowledgment

The authors would like to thank the reviewer of this paper for his/her valuable comments on the earlier version of this paper. They would also like to acknowledge Prof. Dr. Ehsan Ali, VC AWKUM, for the financial support on the publication of this article.

References

