Research Article

Structure of Intuitionistic Fuzzy Sets in Γ-Semihyperrings

Bayram Ali Ersoy1 and Bijan Davvaz2

1 Department of Mathematics, Yildiz Technical University, 34210 Istanbul, Turkey
2 Department of Mathematics, Yazd University, P.O. Box 89195-741, Yazd, Iran

Correspondence should be addressed to Bayram Ali Ersoy; ersoya@yildiz.edu.tr

Received 21 October 2012; Accepted 27 December 2012

Academic Editor: Feyzi Başar

Copyright © 2013 B. A. Ersoy and B. Davvaz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As we know, intuitionistic fuzzy sets are extensions of the standard fuzzy sets. Now, in this paper, the basic definitions and properties of intuitionistic fuzzy Γ-hyperideals of a Γ-semihyperring are introduced. A few examples are presented. In particular, some characterization of Artinian and Noetherian Γ-semihyperring are given.

1. Introduction

The theory of fuzzy sets proposed by Zadeh [1] has achieved a great success in various fields. In 1971, Rosenfeld [2] introduced fuzzy sets in the context of group theory and formulated the concept of a fuzzy subgroup of a group. Since then, many researchers are engaged in extending the concepts of abstract algebra to the framework of the fuzzy setting.

The concept of a fuzzy ideal of a ring was introduced by Liu [3]. The concept of intuitionistic fuzzy set was introduced and studied by Atanassov [4–6] as a generalization of the notion of fuzzy set. In [7], Biswas studied the notion of an intuitionistic fuzzy subgroup of a group. In [8], Kim and Jun introduced the concept of intuitionistic fuzzy ideals of semirings. Also, in [9], Gunduz and Davvaz studied the universal coefficient theorem in the category of intuitionistic fuzzy modules. Also see [10, 11].

In 1964, Nobusawa introduced Γ-rings as a generalization of ternary rings. Barnes [12] weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa. Barnes [12], Luh [13], and Kyuno [14] studied the structure of Γ-rings and obtained various generalization analogous to corresponding parts in ring theory. The concept of Γ-semigroups was introduced by Sen and Saha [15, 16] as a generalization of semigroups and ternary semigroups. Then the notion of Γ-semirings introduced by Rao [17].

Algebraic hyperstructures represent a natural extension of classical algebraic structures, and they were introduced by the French mathematician Marty [18]. Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. Since then, hundreds of papers and several books have been written on this topic, see [19–22].

In [23–25], Davvaz et al. introduced the notion of a Γ-semihypergroup as a generalization of a semihypergroup. Many classical notions of semigroups and semihypergroups have been extended to Γ-semihypergroups and a lot of results on Γ-semihypergroups are obtained. In [26–29], Davvaz et al. studied the notion of a Γ-semihyperring as a generalization of semiring, a generalization of a semihyperring, and a generalization of a Γ-semiring.

The study of fuzzy hyperstructures is an interesting research topic of fuzzy sets. There is a considerable amount of work on the connections between fuzzy sets and hyperstructures, see [20]. In [30], Davvaz introduced the notion of fuzzy subhypergroups as a generalization of fuzzy subgroups, and this topic was continued by himself and others. In [31], Leoreanu-Fotea and Davvaz studied fuzzy hyperrings. Recently, Davvaz et al. [32–35] considered the intuitionistic fuzzification of the concept of algebraic hyperstructures and investigated some properties of such hyperstructures.

Now, in this work we introduce the notion of an Atanassov's intuitionistic fuzzy hyperideals of a semihyperrings and investigate some basic properties about it.
2. Basic Definitions

Let S be a nonempty set, and let $\mathcal{P}(S)$ be the set of all non-empty subsets of S. A hyperoperation on S is a map $\circ : S \times S \to \mathcal{P}(S)$, and the couple (S, \circ) is called a hypergroupoid. If A and B are non-empty subsets of S, then we denote

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad x \circ A = \{x\} \circ A, \quad A \circ x = A \circ \{x\}. \quad (1)$$

A hypergroupoid (S, \circ) is called a semihypergroup if for all $x, y, z \in S$, we have $(x \circ y) \circ z = x \circ (y \circ z)$. That is,

$$\bigcup_{u \in x \circ y} u \circ z = \bigcup_{v \in y \circ z} x \circ u. \quad (2)$$

A semihypergroup (S, \circ) is called a hypergroup if for all $x \in S$, $x \circ S = S \circ x = S$.

A semihyperring $(S, +, \cdot)$ is an algebraic structure $(S, +, \cdot)$ which satisfies the following properties:

1. $(S, +)$ is a commutative semihypergroup; that is,

 (i) $(x + y) + z = x + (y + z)$,

 (ii) $x + y = y + x$, for all $x, y, z \in S$.

2. (S, \cdot) is a semihypergroup; that is, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, for all $x, y, z \in S$.

3. The multiplication is distributive with respect to hyperoperation $+$; that is,

 $$x \cdot (y + z) = x \cdot y + x \cdot z,$$

 $$(x + y) \cdot z = x \cdot z + y \cdot z, \quad (3)$$

 for all $x, y, z \in S$.

4. The element $0 \in S$ is an absorbing element; that is, $0 \cdot x = x \cdot 0 = 0$, for all $x \in S$. A semihyperring $(S, +, \cdot)$ is called commutative if $x \cdot y = y \cdot x$ for all $x, y \in S$. Vougiouklis in [22] studied the notion of semihyperrings in a general form. That is, both sum and multiplication are hyperoperations.

A semihyperring S has identity element if there exists $1_S \in S$, such that $1_S \cdot x = x = 1_S \cdot x$, for all $x \in S$. An element $x \in S$ is called unit if there exists $y \in S$, such that $y \cdot x = x = x \cdot y = 1_S$. A non-empty subset A of a semihyperring $(S, +, \cdot)$ is called subsemihyperring if $x + y \subseteq A$ and $x \cdot y \subseteq A$, for all $x, y \in A$. A left hyperideal of a semihyperring S is a non-empty subset I of S satisfying the following:

(i) $x + y \subseteq I$, for all $x, y \in I$,

(ii) $x \cdot a \subseteq I$, for all $a \in I$ and $x \in S$.

Let S and Γ be two non-empty sets. Then, S is called a Γ-semihypergroupoid if for every hyperoperation $\gamma \in \Gamma$, $\alpha, \beta \in \Gamma$, and $x, y, z \in S$, we have

$$(x\beta y)yz = x\beta (y\gamma z). \quad (4)$$

For example, $S = [0, 1]$ and $\Gamma \subseteq S$. For all $\alpha \in \Gamma$ and for all $x, y \in S$, we define $xay = \min\{x, \alpha, y\}$. Then, S is a Γ-semihypergroup.

The concept of Γ-semihyperring was introduced and studied by Dehkordi and Davvaz [26–28]. We recall the following definition from [26].

Definition 1. Let S be a commutative semihypergroup, and Γ be a commutative group. Then, S is called a Γ-semihyperring if there exists a map $S \times \Gamma \times S \to \mathcal{P}(S)$ (image to denoted by $x\gamma y$) satisfying the following conditions:

1. $(i) \gamma x(x + y) = xay + xaz, \quad (ii) (x + y)\gamma z = xaz + yaz, \quad (iii) x(\gamma \alpha + \gamma \beta)z = xaz + x\beta z,$
2. $(iv) x(\gamma y\gamma z) = (x\gamma y)\beta z,$
3. for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$.

In the above definition, if S is a semigroup, then S is called a multiplicative Γ-semihyperring. A Γ-semihyperring S is called commutative if $xay = yax$, for all $x, y \in S$ and $\alpha \in \Gamma$. We say that a Γ-semihyperring S is with zero, if there exists $0 \in S$, such that $x + 0 = 0$, for all $x \in S$. Let A and B be two non-empty subsets of a Γ-semihyperring and $x \in S$. We define

$$A + B = \{x \mid x \in a + b, \ a \in A, \ b \in B\}, \quad (5)$$

$$A\Gamma B = \{x \mid x \in a\alpha b, \ a \in A, \ b \in B, \ \alpha \in \Gamma\}.$$

A non-empty subset of S_1 of Γ-semihyperring S is called a Γ-semihyperring if it is closed with respect to the multiplication and addition. In other words, a non-empty subset S_1 of Γ-semihyperring S is a sub Γ-semihyperring if

$$S_1 + S_1 \subseteq S_1, \quad S_1 \Gamma S_1 \subseteq S_1. \quad (6)$$

Example 2. Let $(S, +, \cdot)$ be a semiring, and let Γ be a subsemiring of S. We define

$$x\gamma y = \langle x, \gamma, y \rangle,$$

the ideal generated by $x, \gamma,$ and y, for all $x, y \in S$ and $\gamma \in \Gamma$. Then, it is not difficult to see that S is a multiplicative Γ-semihyperring.

Example 3. Let $S = \mathbb{Q}^+, \Gamma = \{\gamma_i \mid i \in \mathbb{N}\}$ and $A_i = i\mathbb{Z}^+$. We define $x\gamma_i y \to xA_i y$ for every $\gamma_i \in \Gamma$ and $x, y \in S$. Then, S is a Γ-semihyperring under ordinary addition and multiplication.

Example 4. Let $(S, +, \cdot)$ be a semihyperring, and let $M_{m,n}(S)$ be the set of all matrices with entries in S. We define $\circ : M_{m,n}(S) \times M_{n,m}(S) \times M_{m,n}(S) \to P^*(M_{m,n}(S))$ by

$$A \circ B \circ C = \{Z \in M_{m,n}(S) \mid Z \in ABC\}, \quad (8)$$

for all $A, C \in M_{m,n}(S)$ and $B \in M_{n,n}(S)$.

Abstract and Applied Analysis
Then, $M_{m,n}(S)$ is $M_{n,m}(S)$-semihyperring [29]. Now, suppose that
\[X = \left\{ (a_{ij})_{m,n} \mid a_{11} \neq 0, \quad a_{21} \neq 0, \quad a_{ij} = 0 \text{ otherwise} \right\}. \] (9)

Now, it is easy to see that X is a sub Γ-semihyperring of S.

A non-empty subset I of a Γ-semihyperring S is a left (right) Γ-hyperideal of S if for any $I_1, I_2 \subseteq I$ implies $I_1 + I_2 \subseteq I$ and $IIS \subseteq I$ ($SFI \subseteq I$) and is a Γ-hyperideal of S if it is both left and right Γ-hyperideal.

Example 5. Consider the following:
\[
S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{Z}^+ \cup \{0\} \right\},
\]
\[
A_i = \left\{ \begin{bmatrix} i \epsilon & 0 \\ 0 & i \xi \end{bmatrix} \mid e, f \in 2\mathbb{Z}^+ \right\}, \quad \forall i \in \mathbb{N},
\]
\[\Gamma = \{ \gamma_i \mid i \in \mathbb{N} \}. \]

Then, S is a Γ-semihyperring under the matrix addition and the hyperoperation as follows:
\[
\chi \gamma_i, y = xA_i y,
\] (11)

for all $x, y \in S$ and $\gamma_i \in \Gamma$. Let
\[
I_1 = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \mid a, b \in \mathbb{Z}^+ \cup \{0\} \right\},
\]
\[
I_2 = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} \mid a, c \in \mathbb{Z}^+ \cup \{0\} \right\},
\] (12)
\[
I_3 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in 2\mathbb{Z}^+ \cup \{0\} \right\}.
\]

Then, I_1 is a right Γ-hyperideal of S, but not left. I_2 is a left Γ-hyperideal of S, but not right. I_3 is both right and left Γ-hyperideal of S.

A fuzzy subset μ of a non-empty set S is a function from S to $[0,1]$. For all $x \in S$, μ_x, the complement of μ is the fuzzy subset defined by $\mu_x(x) = 1 - \mu(x)$. The intersection and the union of two fuzzy subsets μ and λ of S, denoted by $\mu \cap \lambda$ and $\mu \cup \lambda$, are defined by
\[
(\mu \cap \lambda)(x) = \min \{\mu(x), \lambda(x)\},
\]
\[
(\mu \cup \lambda)(x) = \max \{\mu(x), \lambda(x)\},
\] (13)

Definition 6. Let S be a Γ-semihyperring, and let μ be a fuzzy subset of S. Then,
\begin{enumerate}
 \item μ is called a fuzzy left Γ-hyperideal of S if
 \[\min \{\mu(x), \mu(y)\} \leq \inf_{z \in x \gamma y} \{\mu(z)\}, \]
 \[\mu(y) \leq \inf_{z \in x \gamma y} \{\mu(z)\} \quad \forall x, y \in S, \forall \gamma \in \Gamma. \] (14)
 \item μ is called a fuzzy right Γ-hyperideal of S if
 \[\min \{\mu(x), \mu(y)\} \leq \inf_{z \in x \gamma y} \{\mu(z)\}, \]
 \[\mu(x) \leq \inf_{z \in x \gamma y} \{\mu(z)\} \quad \forall x, y \in S, \forall \gamma \in \Gamma. \] (15)
\end{enumerate}

(3) μ is called a fuzzy Γ-hyperideal of S if μ is both a fuzzy left Γ-hyperideal and fuzzy right Γ-hyperideal of S.

Example 7. Let $S_1 = \mathbb{Z}_6$, $\Gamma = \{\gamma_2, \gamma_3\}$, $S_2 = \{\overline{0}, \overline{3}\}$, and $S_3 = \{\overline{0}\}$ be non-empty subsets of S_1. We define $x \gamma y = xS_1 y$, for every $\gamma \in \Gamma$ and $x, y \in S_1$. Then, S_1 is a Γ-semihyperring. Now, we define the fuzzy subset μ of S_1 as follows:
\[
\mu(x) = \begin{cases} 0 & \text{if } x = \overline{1}, \overline{2}, \overline{3}, \\
1 & \text{if } x = \overline{0}.
\end{cases}
\] (16)

It is easy to see that μ is a fuzzy Γ-hyperideal of S_1.

3. Atanassov’s Intuitionistic Fuzzy Γ-Hyperideals

The concept of intuitionistic fuzzy set was introduced and studied by Atanassov [4–6]. Intuitionistic fuzzy sets are extensions of the standard fuzzy sets. An intuitionistic fuzzy set A in a non-empty set S has the form $A = \{(x, \mu_A(x), \lambda_A(x)) \mid x \in S\}$. Here, $\mu_A : S \rightarrow [0, 1]$ is the degree of membership of the element $x \in S$ to the set A, and $\lambda_A : S \rightarrow [0, 1]$ is the degree of nonmembership of the element $x \in S$ to the set A. We have also $0 \leq \mu_A(x) + \lambda_A(x) \leq 1$, for all $x \in S$.

Example 8 (see [35]). Consider the universe $X = \{10, 100, 500, 1000, 1200\}$. An intuitionistic fuzzy set “Large” of X denoted by A and may be defined by
\[
A = \{(10, 0.01, 0.9), (100, 0.1, 0.88), (500, 0.4, 0.05), (1000, 0.8, 0.1) , (1200, 1, 0)\}.
\] (17)

One may define an intuitionistic fuzzy set “Very Large” denoted by B, as follows:
\[
\mu_B(x) = (\mu_A(x))^2, \quad \lambda_B(x) = 1 - (1 - \lambda_A(x))^2,
\] (18)

for all $x \in X$. Then,
\[
B = \{(10, 0.0001, 0.99) , (100, 0.01, 0.9856), (500, 0.16, 0.75), (1000, 0.64, 0.19) , (1200, 1, 0)\}.
\] (19)

For the sake of simplicity, we shall use the symbol $A = (\mu_A, \lambda_A)$ instead of $A = \{(x, \mu_A(x), \lambda_A(x)) \mid x \in S\}$. Let $A = (\mu_A, \lambda_A)$ and $B = (\mu_B, \lambda_B)$ be two intuitionistic fuzzy sets of S. Then, the following expressions are defined in [4] as follows:
\begin{enumerate}
 \item $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\lambda_A(x) \geq \lambda_B(x)$, for all $x \in S$,
 \item $A^C = \{(x, \lambda_A(x), \mu_A(x)) \mid x \in S\}$,
\end{enumerate}
(3) $A \cap B = \{(x, \min\{\mu_A(x), \mu_B(x)\}, \max\{\lambda_A(x), \lambda_B(x)\}) \mid x \in S\}$.

(4) $A \cup B = \{(x, \max\{\mu_A(x), \mu_B(x)\}, \min\{\lambda_A(x), \lambda_B(x)\}) \mid x \in S\}$.

(5) $\square A = \{(x, \mu_A(x), \mu_A^c(x)) \mid x \in S\}$.

(6) $\Diamond A = \{(x, \lambda_A^c(x), \lambda_A(x)) \mid x \in S\}$.

Now, we introduce the notion of intuitionistic fuzzy Γ-hyperideals of Γ-semihyperrings.

Definition 9. Let S be a Γ-semihyperring.

1. An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ in S is called a *left intuitionistic fuzzy Γ-hyperideal* of Γ-semihyperring S if

 \(\inf_{z \in x \gamma y} \mu_A(z) \leq \inf_{z \in x \gamma y} \mu_A(z) \text{ and } \max \lambda_A(x), \lambda_A(y) \geq \sup_{z \in x \gamma y} \lambda_A(z), \)
 for all $x, y \in S$, $\gamma \in \Gamma$.

2. An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ in S is called a *right intuitionistic fuzzy Γ-hyperideal* of Γ-semihyperring S if

 \(\inf_{z \in x \gamma y} \mu_A(z) \leq \inf_{z \in x \gamma y} \mu_A(z) \text{ and } \max \lambda_A(x), \lambda_A(y) \geq \sup_{z \in x \gamma y} \lambda_A(z), \)
 for all $x, y \in S$, $\gamma \in \Gamma$.

3. An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ in S is called an *intuitionistic fuzzy Γ-hyperideal* of Γ-semihyperring S if it is both left intuitionistic fuzzy Γ-hyperideal and right intuitionistic fuzzy Γ-hyperideal of S.

Example 10. Let S_I be a Γ-semihyperring in Example 7. We define the fuzzy subsets μ_A and λ_A of S_I as follows:

\[
\begin{align*}
\mu_A(x) &= \begin{cases}
0 & \text{if } x = 1, 3, 4, 5, \\
\frac{1}{2} & \text{if } x = \bar{3}, \\
\frac{1}{4} & \text{if } x = \bar{2}, \\
\frac{2}{5} & \text{if } x = 0, \\
\end{cases} \\
\lambda_A(x) &= \begin{cases}
\frac{1}{2} & \text{if } x = 1, 3, 4, 5, \\
\frac{1}{3} & \text{if } x = \bar{3}, \\
\frac{3}{10} & \text{if } x = 0.
\end{cases}
\end{align*}
\]

Then, A is an intuitionistic fuzzy Γ-hyperideal of S_I.

Example II. Let S be a Γ-semihyperring defined in Example 5. Suppose that

\[
\begin{align*}
\mu_{A_1}(x) &= \begin{cases}
5 & \text{if } a, b, c, d \in 2\mathbb{Z}^+ \cup \{0\}, \\
\frac{2}{5} & \text{otherwise},
\end{cases} \\
\lambda_{A_1}(x) &= \begin{cases}
\frac{1}{9} & \text{if } a, b, c, d \in 2\mathbb{Z}^+ \cup \{0\}, \\
\frac{4}{7} & \text{otherwise},
\end{cases}
\end{align*}
\]

for all $x \in S$. Then, $A_1 = (\mu_{A_1}, \lambda_{A_1})$ is an intuitionistic fuzzy Γ-hyperideal of S.

Theorem 12. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy Γ-hyperideal of Γ-semihyperring S and $0 \leq t \leq 1$. We define an intuitionistic fuzzy set $B = (\mu_B, \lambda_B)$ in S by $\mu_B(x) = t\mu_A(x)$ and $\lambda_B(x) = (1-t)\lambda_A(x)$, for all $x \in S$. Then, $B = (\mu_B, \lambda_B)$ is an intuitionistic fuzzy Γ-hyperideal of S.

Proof. Note that $0 \leq \mu_B(x) + \lambda_B(x) = t\mu_A(x) + (1-t)\lambda_A(x) \leq t + 1 - t = 1$.

Theorem 13. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy Γ-hyperideal of Γ-semihyperring S. We define an intuitionistic fuzzy set $B = (\mu_B, \lambda_B)$ in S by $\mu_B(x) = (\mu_A(x))^2$ and $\lambda_B(x) = (1 - (1 - \lambda_A(x))^2)^2$, for all $x \in S$. Then, $B = (\mu_B, \lambda_B)$ is an intuitionistic fuzzy Γ-hyperideals of S.

Proof. Since $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy Γ-hyperideal, we have $\inf_{z \in x \gamma y} \mu_A(z) \geq \min \{\mu_A(x), \mu_A(y)\}$ and so

\[
\left(\inf_{z \in x \gamma y} \mu_A(z) \right)^2 \geq (\inf \{\mu_A(x), \mu_A(y)\})^2.
\]

Hence, $\inf_{z \in x \gamma y} \mu_A(z)^2 \geq \min \{\mu_A(x)^2, \mu_A(y)^2\}$; that is,

\[
\inf_{z \in x \gamma y} \mu_B(z) \geq \min \{\mu_B(x), \mu_B(y)\}.
\]

Since $\inf_{z \in x \gamma y} \mu_A(z) \geq \mu_A(y)$, so $\inf_{z \in x \gamma y} \mu_A(z)^2 \geq (\mu_A(y))^2$ which implies that $\inf_{z \in x \gamma y} \mu_A(z)^2 \geq (\mu_A(y))^2$. Hence, $\inf_{z \in x \gamma y} \mu_B(z) \geq \mu_B(y)$. Also, we have

\[
\sup_{z \in x \gamma y} \lambda_A(z) \leq \max \{\lambda_A(x), \lambda_A(y)\} \implies \inf_{z \in x \gamma y} \lambda_A(z) \geq \min \{-\lambda_A(x), -\lambda_A(y)\} \implies 1 - \inf_{z \in x \gamma y} \lambda_A(z) \geq 1 + \min \{-\lambda_A(x), -\lambda_A(y)\}.
\]
We proved the theorem for left intuitionistic fuzzy Γ-hyperideals. For the proof of right intuitionistic fuzzy Γ-hyperideals similar proof is used.

Lemma 14. If \(A_i = (\mu_{A_i}, \lambda_{A_i}) \) is a collection of intuitionistic fuzzy Γ-hyperideals of \(S \), then \(\bigcap_{i \in \Lambda} A_i \) and \(\bigcup_{i \in \Lambda} A_i \) are intuitionistic fuzzy Γ-hyperideals of \(S \), too.

Proof. The proof is straightforward. \(\square \)

Theorem 15. An intuitionistic fuzzy subset \(A = (\mu_A, \lambda_A) \) of a Γ-semihypererring \(S \) is a left (res. right) intuitionistic fuzzy Γ-hyperideal of \(S \) if and only if for every \(t \in [0, 1] \), the fuzzy sets \(\mu_A = (\mu_A, \lambda_A) \) and \(\lambda_A^c = (\lambda_A^c, \lambda_A) \) are left (res. right) fuzzy Γ-hyperideals of \(S \).

Proof. Assume that \(A = (\mu_A, \lambda_A) \) is a left intuitionistic fuzzy Γ-hyperideal of \(S \). Clearly, by using the definition, we have that \(\lambda_A \) is a left (res. right) fuzzy Γ-hyperideal.

Also, \[
\inf_{x \in S} \{1 - \lambda_A^c(x)\} = \inf_{x \in S} \{1 - \lambda_A(x)\} = 1 - \sup_{x \in S} \{\lambda_A(x)\} \geq \min\{1 - \lambda_A(x), 1 - \lambda_A(y)\} = \min\{\lambda_A^c(x), \lambda_A^c(y)\},
\]

(26)

Moreover, we have \[
\sup_{x \in S} \{\lambda_A^c(x)\} \leq \lambda_A(y).
\]

(24)

for all \(x, y \in S \) and \(y \in \Gamma \).

Conversely, suppose that \(\mu_A \) and \(\lambda_A^c \) are left (res. right) fuzzy Γ-hyperideals of \(S \). We have \(\min\{\mu_A(x), \mu_A(y)\} \leq \inf_{x \in S} \{\mu_A(x)\} \) and \(\mu_A(y) \leq \inf_{x \in S} \{\mu_A(y)\} \), for all \(x, y \in S \) and \(y \in \Gamma \). We obtain \[
\sup_{x \in S} \{\lambda_A(x)\} = \sup_{x \in S} \{1 - \lambda_A^c(x)\} = 1 - \inf_{x \in S} \{\lambda_A(x)\} \leq \max\{1 - \lambda_A^c(x), 1 - \lambda_A^c(y)\} = \max\{\lambda_A(x), \lambda_A(y)\},
\]

(27)

Therefore, \(A = (\mu_A, \lambda_A) \) is a left intuitionistic fuzzy Γ-hyperideal of \(S \).
For any fuzzy set μ of S and any $t \in [0,1]$, $U(\mu; t) = \{x \in S \mid \mu(x) \geq t\}$ is called an upper bound t-level cut of μ, and $L(\mu; t) = \{x \in S \mid \mu(x) \leq t\}$ is called a lower bound t-level cut of μ.

Theorem 16. An intuitionistic fuzzy subset A of a Γ-semihyperring S is a left (right) intuitionistic fuzzy Γ-hyperideal of S if and only if for every $t, s \in [0,1]$, the subsets $U(\mu; t)$ and $L(\lambda; s)$ of S are left (right) Γ-hyperideals, when they are non-empty.

Proof. Assume that $A = (\mu, \lambda)$ is a left intuitionistic fuzzy Γ-hyperideal of S. Let $x, y \in U(\mu; t)$. Since $\inf_{z \in x+y} \mu(z) \geq \min \{\mu(x), \mu(y)\} \geq t$, then we have $x + y \subseteq U(\mu; t)$. Let $x \in S$ and $y \in U(\mu; t)$. We have $\inf_{z \in x+y} \mu(z) \geq \mu(y) \geq t$.

Therefore, $z \in U(\mu; t)$ and so $xy \subseteq U(\mu; t)$.

Now, let $x, y \in L(\lambda; s)$. Since $\lambda(x) \leq s$ and $\lambda(y) \leq s$, we have $\sup_{z \in x+y} \lambda(z) \leq \max \{\lambda(x), \lambda(y)\} \leq s$. Then, $z \in L(\lambda; s)$, and so $x + y \subseteq L(\lambda; s)$. Now, for all $x \in S$, $y \in L(\lambda; s)$ and $y \in \Gamma$ we have $\sup_{z \in x+y} \lambda(z) \leq \lambda(y) \leq s$. Therefore, $z \in L(\lambda; s)$ and so $xy \subseteq L(\lambda; s)$.

Conversely, suppose that all non-empty level sets $U(\mu; t)$ and $L(\lambda; s)$ are left Γ-hyperideals. Let $x, y \in S$ and $y \in \Gamma$. Let $t_0 = \mu(x), t_1 = \mu(y)$ and $s_0 = \lambda(x), s_1 = \lambda(y)$ with $t_0 \leq t_1, s_0 \leq s_1$, then $x, y \in U(\mu; t_0)$ and $x, y \in L(\lambda; s_1)$.

Since $U(\mu; t)$ and $L(\lambda; s)$ are left Γ-hyperideals, and we have $z \in xy \subseteq U(\mu; t)$ and $z \in xy \subseteq U(\lambda; s)$, we have $\mu(z) \geq t_0$ and $\lambda(z) \leq s_1$. And so $\inf_{z \in x+y} \mu(z) = \mu(y)$ and $\sup_{z \in x+y} \lambda(z) = \lambda(y)$. Hence, $A = (\mu, \lambda)$ is a left intuitionistic fuzzy Γ-hyperideal of S.

Corollary 17. Let I be a left (res. right) Γ-hyperideal of a Γ-semihyperring S. We define fuzzy sets μ and λ as follows:

\[
\mu = \begin{cases}
\alpha_0 & \text{if } x \in I, \\
\alpha_1 & \text{if } x \in S - I,
\end{cases}
\]

\[
\lambda = \begin{cases}
b_0 & \text{if } x \in I, \\
b_1 & \text{if } x \in S - I,
\end{cases}
\]

where $0 \leq \alpha_1 < \alpha_0$, $0 \leq b_1 < b_0$ and $\alpha_i + b_i \leq 1$ for $i = 0, 1$.

Then, $A = (\mu, \lambda)$ is a left intuitionistic fuzzy Γ-hyperideal of S and $U(\mu; \alpha_0) = I = L(\lambda; b_0)$.

Now, we give the following theorem about the intuitionistic fuzzy sets $\square A$ and $\Diamond A$.

Theorem 18. If $A = (\mu, \lambda)$ is an intuitionistic fuzzy Γ-hyperideal of S, then so are $\square A$ and $\Diamond A$.

Proof. Since $A = (\mu, \lambda)$ is an intuitionistic fuzzy Γ-hyperideal of S, we have

\[
\min \{\mu(x), \mu(y), \mu(z)\} \leq \inf_{x \in x+y} \mu(z),
\]

\[
\mu(x) \leq \inf_{z \in x+y} \mu(z),
\]

for all $x, y, z \in S$. Moreover,

\[
sup_{z \in x+y} \mu(z) = \sup_{z \in x+y} \{1 - \mu(z)\}
\]

\[
= 1 - \inf_{z \in x+y} \mu(z),
\]

\[
\leq \max \{1 - \mu(x), 1 - \mu(y)\}
\]

\[
= \max \{\mu^*(x), \mu^*(y)\},
\]

\[
\sup_{z \in x+y} \mu(z) = \sup_{z \in x+y} \{1 - \mu(z)\}
\]

\[
= 1 - \inf_{z \in x+y} \mu(z),
\]

\[
\leq \max \{1 - \mu(x), 1 - \mu(y)\}
\]

\[
= \max \{\mu^*(x), \mu^*(y)\}.
\]

This shows that $\square A$ is an intuitionistic fuzzy Γ-hyperideal of S. For the other part one can use the similar way.

Note that if we have a fuzzy Γ-hyperideal A, then $\square A = A = \Diamond A$. While for a proper intuitionistic fuzzy Γ-hyperideal A, we have $\square A \subseteq A \subseteq \Diamond A$ and $\square A \neq A \neq \Diamond A$.

Theorem 19. If $A = (\mu, \lambda)$ is a left intuitionistic fuzzy Γ-hyperideal of S, then we have,

\[
\mu(x) = \sup \{t \in [0,1] \mid x \in U(\mu; t)\}, \\
\lambda(x) = \inf \{s \in [0,1] \mid x \in L(\lambda; s)\},
\]

for all $x \in S$.

Proof. The proof is straightforward.

Let $A = (\mu, \lambda)$ and $B = (\mu, \lambda)$ be two intuitionistic fuzzy Γ-hyperideals of S. Then, the product of A and B denoted by AB is defined as follows:

\[
(\mu_A, \lambda_A) \Gamma (\mu_B, \lambda_B) (z) = (t_1, t_2),
\]

where

\[
t_1 = \sup_{z \in x+y} \{\min \{\theta_1(x), \sigma_1(y)\} \mid x, y \in S, y \in \Gamma\},
\]

\[
t_2 = \inf_{z \in x+y} \{\max \{\theta_2(x), \sigma_2(y)\} \mid x, y \in S, y \in \Gamma\},
\]

\[
\theta_1(x) = \alpha_0 - \alpha_1, \quad \theta_2(x) = b_0 - b_1,
\]

\[
\sigma_1(y) = 1 - \alpha_0, \quad \sigma_2(y) = 1 - b_0.
\]

\[
(\mu_A, \lambda_A) \Gamma (\mu_B, \lambda_B) (z) = (t_1, t_2),
\]

where

\[
t_1 = \sup_{z \in x+y} \{\min \{\theta_1(x), \sigma_1(y)\} \mid x, y \in S, y \in \Gamma\},
\]

\[
t_2 = \inf_{z \in x+y} \{\max \{\theta_2(x), \sigma_2(y)\} \mid x, y \in S, y \in \Gamma\},
\]

where $0 \leq \alpha_1 < \alpha_0$, $0 \leq b_1 < b_0$ and $\alpha_i + b_i \leq 1$ for $i = 0, 1$.

Then, $A = (\mu_A, \lambda_A)$ is a left intuitionistic fuzzy Γ-hyperideal of S and $U(\mu; \alpha_0) = I = L(\lambda; b_0)$.

Now, we give the following theorem about the intuitionistic fuzzy sets $\square A$ and $\Diamond A$.

Theorem 18. If $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy Γ-hyperideal of S, then so are $\square A$ and $\Diamond A$.

Proof. Since $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy Γ-hyperideal of S, we have

\[
\min \{\mu_A(x), \mu_A(y), \mu_A(z)\} \leq \inf_{x \in x+y} \mu_A(z),
\]

\[
\mu_A(x) \leq \inf_{z \in x+y} \mu_A(z),
\]

for all $x, y, z \in S$. Moreover,

\[
sup_{z \in x+y} \mu_A(z) = \sup_{z \in x+y} \{1 - \mu_A(z)\}
\]

\[
= 1 - \inf_{z \in x+y} \mu_A(z),
\]

\[
\leq \max \{1 - \mu_A(x), 1 - \mu_A(y)\}
\]

\[
= \max \{\mu_A^*(x), \mu_A^*(y)\},
\]

\[
\sup_{z \in x+y} \mu_A(z) = \sup_{z \in x+y} \{1 - \mu_A(z)\}
\]

\[
= 1 - \inf_{z \in x+y} \mu_A(z),
\]

\[
\leq \max \{1 - \mu_A(x), 1 - \mu_A(y)\}
\]

\[
= \max \{\mu_A^*(x), \mu_A^*(y)\}.
\]
Theorem 20. If S is a Γ-semihyperp and A is an intuitionistic fuzzy Γ-hyperideal of S, then $X \cdot A \subseteq A$, where $X = (\chi_S, \lambda_S)$ and χ_S is the characteristic function of S.

Proof. The proof is straightforward. \hfill \Box

Proposition 21. Let S be a Γ-semihyperp, and let A be an intuitionistic fuzzy Γ-hyperideal of S. Then,

1. if w is a fixed element of S, then the set $\mu_A^w = \{ x \in S \mid \mu(x) \geq \mu(w) \}$ and $\lambda_A^w = \{ x \in S \mid \lambda(x) \leq \lambda(w) \}$ are Γ-hyperideals of S,

2. the sets $U = \{ x \in S \mid \mu_A(x) = 0 \}$ and $L = \{ x \in S \mid \lambda_A(x) = 0 \}$ are Γ-hyperideals of S.

Proof. (1) Suppose that $x, y \in \mu_A^w$. Then, we have

$$\inf_{z \in x+y} \mu_A(z) \geq \min \{ \mu_A(x), \mu_A(y) \} \geq \mu(w), \quad (36)$$

which implies that $z \in U_{\mu_A;\mu(w)}$ and so $x + y \subseteq U_{\mu_A;\mu(w)}$. Similarly, suppose that $x, y \in \lambda_A^w$. We have $\sup_{x \in y} \lambda_A(z) \leq \sup_{y \in x} \lambda_A(z) \leq \mu(w)$ which implies that $A \subseteq U_{\lambda_A;\lambda(w)}$ and so $x \cdot y \subseteq U_{\lambda_A;\lambda(w)}$.

(2) One can easily prove the second part. \hfill \Box

Definition 22. Let S be a Γ-semihyperp, and let S' be a Γ-semihyperp. If there exists a map $\varphi : S \to S'$ and a bijection $f : \Gamma \to \Gamma$, such that

$$\varphi(x + y) = \varphi(x) + \varphi(y),$$

$$\varphi(xy) = \varphi(x) f(y) \varphi(y), \quad (37)$$

for all $x, y \in S$ and $\gamma \in \Gamma$, then we say (φ, f) is a homomorphism from S to S'. Also, if φ is a bijection, then (φ, f) is called an isomorphism, and S and S' are isomorphic.

Definition 23. Let $A = (\mu_A, \lambda_A)$ and $B = (\mu_B, \lambda_B)$ be two non-empty intuitionistic fuzzy subsets of S and S', respectively, and let $\varphi : S \to S'$ be a map. Then,

1. the inverse image of B under φ is defined by

$$\varphi^{-1}(B) = (\varphi^{-1}(\mu_B), \varphi^{-1}(\lambda_B)), \quad (38)$$

where

$$\varphi^{-1}(\mu_B) = \mu_B \circ \varphi, \quad \varphi^{-1}(\lambda_B) = \lambda_B \circ \varphi, \quad (39)$$

2. the image of A under φ, denoted by $\varphi(A)$, is the intuitionistic fuzzy set in S' defined by $\varphi(A) = (\varphi(\mu_A), \varphi(\lambda_A))$, where for each $y \in S'$

$$\varphi(\mu_A)(y) = \begin{cases} \sup_{x \in \varphi^{-1}(y)} \mu_A(x) & \text{if } \varphi^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise}, \end{cases} \quad (40)$$

Now, the next theorem is about image and preimage of intuitionistic fuzzy sets.

Theorem 24. Let S be a Γ-semihyperp, let S' be a Γ-semihyperp, and let (φ, f) be a homomorphism from S to S'.

1. if $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy Γ-hyperideal of S, then $\varphi(A)$ is an intuitionistic fuzzy Γ-hyperideal of S'.

2. if $B = (\mu_B, \lambda_B)$ is an intuitionistic fuzzy Γ-hyperideal of S', then $\varphi^{-1}(B)$ is an intuitionistic fuzzy Γ-hyperideal of S.

Proof. The proof is straightforward. \hfill \Box

4. Artinian and Noetherian Γ-Semihypergroups

In this section, we give some characterizations of Artinian and Noetherian Γ-semihypergroups.

Definition 25. Let S be a Γ-semihyperp. Then, S is called Noetherian (Artinian resp.) if S satisfies the ascending (descending) chain condition on Γ-hyperideals. That is, for any Γ-hyperideals of S, such that

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq I_i \cdots, \quad (41)$$

there exists $n \in \mathbb{N}$, such that $I_i = I_{i+1}$, for all $i \geq n$.

Proposition 26 (see [28]). Let S be a Γ-semihyperp. Then, the following conditions are equivalent:

1. S is Noetherian.

2. S satisfies the maximum condition for Γ-hyperideals.

3. Every Γ-hyperideal of S is finitely generated.

Theorem 27. If every intuitionistic fuzzy Γ-hyperideal of Γ-semihyperp has finite number of values, then S is Artinian.
Proof. Suppose that every intuitionistic fuzzy Γ-hyperideal of S is not Artinian. So, there exists a strictly descending chain

$$S = I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$$ \hspace{1cm} (42)$$

of Γ-hyperideals of S. We define the intuitionistic fuzzy set A by

$$\mu_A(x) = \begin{cases} \frac{n}{n+1} & \text{if } x \in I_n - I_{n+1}, \\ 1 & \text{if } x \in \bigcap_{n=0}^{\infty} I_n, \\ 0 & \text{if } x \in \bigcap_{n=0}^{\infty} I_n. \end{cases}$$ \hspace{1cm} (43)$$

$$\lambda_A(x) = \begin{cases} \frac{1}{n+1} & \text{if } x \in I_n - I_{n+1}, \\ 1 & \text{if } x \in \bigcap_{n=0}^{\infty} I_n, \\ 0 & \text{if } x \in \bigcap_{n=0}^{\infty} I_n. \end{cases}$$

It is easy to see that A is an intuitionistic fuzzy Γ-hyperideal of S. We have contradiction because of the definition of A, which depends on $I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$ infinitely descending chain of Γ-hyperideals of S. \hfill \Box

Theorem 28. Let S be a Γ-semihypering. Then the following statements are equivalent:

1. S is Noetherian.
2. The set of values of any intuitionistic fuzzy Γ-hyperideal of S is a well-ordered subset of $[0, 1]$.

Proof. (1) \Rightarrow (2) Let A be an intuitionistic fuzzy Γ-hyperideal of S-semihypering. Assume that the set of values of A is not a well-ordered subset of $[0, 1]$. Then, there exists a strictly infinite decreasing sequence $\{t_n\}$, such that $\mu_A(x) = t_n$ and $\lambda_A(x) = 1 - t_n$. Let $I_n = \{ x \in S \mid \mu(x) \geq t_n \}$ and $J_n = \{ x \in S \mid \lambda(x) \leq 1 - t_n \}$. Then, $I_1 \subseteq I_2 \subseteq \cdots$ and $J_1 \subseteq J_2 \subseteq \cdots$ are strictly infinite descending chains of Γ-hyperideals of S. This contradicts our hypothesis with (2).

(2) \Rightarrow (1) Suppose that $I_1 \subseteq I_2 \subseteq \cdots$ is a strictly infinite ascending chain Γ-hyperideals of S. Let $I = \bigcup_{n \in \mathbb{N}} I_n$. It is easy to see that I is a Γ-hyperideal of S. Now, we define

$$\mu_A(x) = \begin{cases} 0 & \text{if } x \notin I, \\ \frac{1}{k} & \text{where } k = \min \{ n \in \mathbb{N} \mid x \in I_n \}, \end{cases}$$ \hspace{1cm} (44)$$

$$\lambda_A(x) = \begin{cases} 1 & \text{if } x \notin I, \\ \frac{k-1}{k+1} & \text{where } k = \max \{ n \in \mathbb{N} \mid x \in I_n \}. \end{cases}$$

Clearly, A is an intuitionistic fuzzy Γ-hyperideal of S. Since the chain is not finite, A has strictly infinite ascending sequence of values. This contradicts that the set of values of fuzzy Γ-hyperideal is not well ordered. \hfill \Box}

Theorem 29. If a Γ-semihyperring S both Artinian and Noetherian, then every intuitionistic fuzzy Γ-hyperideal of S is finite valued.

Proof. Suppose that A is an intuitionistic fuzzy Γ-hyperideal of S, $\text{Im}(\mu_A)$ and $\text{Im}(\lambda_A)$ are not finite. According the previous theorem, we consider the following two cases.

Case 1. Suppose that $t_1 < t_2 < t_3 < \cdots$ is strictly increasing sequence in $\text{Im}(\mu_A)$ and $s_1 > s_2 > s_3 \cdots$ is strictly decreasing sequence in $\text{Im}(\lambda_A)$. Now, we obtain

$$U(\mu_A; t_1) \supset U(\mu_A; t_2) \supset U(\mu_A; t_3) > \cdots,$$

$$L(\lambda_A; s_1) \supset L(\lambda_A; s_2) \supset L(\lambda_A; s_3) > \cdots$$

are strictly descending and ascending chains of Γ-hyperideals, respectively. Since S is both Artinian and Noetherian there exists a natural number i, such that $U(\mu_A; t_i) = U(\mu_A; t_{i+n})$ and $L(\lambda_A; s_i) = L(\lambda_A; s_{i+n})$ for $n \geq 1$. This means that $t_i = t_{i+n}$ and $s_i = s_{i+n}$. This is a contradiction.

Case 2. Assume that $t_1 > t_2 > t_3 > \cdots$, $s_1 < s_2 < s_3 \cdots$ are strictly decreasing and increasing sequence in $\text{Im}(\mu_A)$ and $\text{Im}(\lambda_A)$, respectively. From these equalities we conclude that

$$U(\mu_A; t_1) \subset U(\mu_A; t_2) \subset U(\mu_A; t_3) \subset \cdots,$$

$$L(\lambda_A; s_1) \subset L(\lambda_A; s_2) \subset L(\lambda_A; s_3) \subset \cdots$$

are strictly descending and ascending chains of Γ-hyperideals, respectively. Because of the hypothesis there exists a natural number j, such that $U(\mu_A; t_j) = U(\mu_A; t_{j+n})$ and $L(\lambda_A; s_j) = L(\lambda_A; s_{j+n})$ for $n \geq 1$. This implies that $t_j = t_{j+n}$ and $s_j = s_{j+n}$ which is a contradiction. \hfill \Box

Acknowledgments

This research is supported by TUBITAK-BIDEB. The paper was essentially prepared during the second author’s stay at the Department of Mathematics, Yildiz Technical University in 2011. The second author is greatly indebted to Dr. B. A. Ersoy for his hospitality.

References

Submit your manuscripts at
http://www.hindawi.com