Research Article

Subharmonics with Minimal Periods for Convex Discrete Hamiltonian Systems

Honghua Bin

School of Science, Jimei University, Xiamen 361021, China

Correspondence should be addressed to Honghua Bin; hhbin@jmu.edu.cn

Received 19 January 2013; Accepted 24 February 2013

Academic Editor: Zhengkun Huang

Copyright © 2013 Honghua Bin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the subharmonics with minimal periods for convex discrete Hamiltonian systems. By using variational methods and dual functional, we obtain that the system has a pT-periodic solution for each positive integer p, and solution of system has minimal period pT as H subquadratic growth both at 0 and infinity.

1. Introduction

Consider Hamiltonian systems

$$J\dot{u}(t) + VH(t, u(t)) = 0, \quad u(0) = u(pT),$$

where $u(t) \in \mathbb{R}^{2N}$, $t \in \mathbb{R}$, VH stands for the gradient of H with respect to the second variable, and $J = \begin{pmatrix} 0 & -I_N \\ I_N & 0 \end{pmatrix}$ is the symplectic matrix with I_N the identity in \mathbb{R}^N. Moreover, H is T-periodic in the variable t, $p \in \mathbb{N} \setminus \{0\}$.

Classically, solutions for systems (1) are called subharmonics. The first result concerning the subharmonics problem traced back to Birkhoff and Lewis in 1933 (refer to [1]), in which there exists a sequence of subharmonics with arbitrarily large minimal period, using perturbation techniques. More results can be found in [1–5], where H is convex with subquadratic growth both at 0 and infinity. Using Z_p index theory and Clarke duality, Xu and Guo [1, 5] proved that the number of solutions for systems (1) with minimal period pT tends towards infinity as $p \to \infty$.

For periodic and subharmonic solutions for discrete Hamiltonian systems, Guo and Yu [6, 7] obtained some existence results by means of critical point theory, where they introduced the action functional

$$F(u) = \frac{1}{2} \sum_{n=1}^{pT} (J\Delta u(n-1), u(n)) - \sum_{n=1}^{pT} H(n, Lu(n)).$$

Using Clarke duality, periodic solution of convex discrete Hamiltonian systems with forcing terms has been investigated in [8]. Clarke duality was introduced in 1978 by Clarke [9], and developed by Clarke, Ekeland, and others, see [10–12]. This approach is different from the direct method of variations; some scholars applied it to consider the periodic solutions, subharmonic solutions with prescribed minimal period of Hamiltonian systems; one can refer to [3, 5, 12–14] and references therein. The dynamical behavior of differential and difference equations was studied by using various methods; see [15–19]. We refer the reader to Agarwal [20] for a broad introduction to difference equations.

Motivated by the works of Mawhin and Willem [12] and Xu and Guo [21], we use variational methods and Clarke duality to consider the subharmonics with minimal periods for discrete Hamiltonian systems

$$J\Delta u(n) + VH(n, Lu(n)) = 0, \quad u(n) = u(n + pT),$$

where $u(n) = \begin{pmatrix} u_1(n) \\ u_2(n) \end{pmatrix}$, $Lu(n) = \begin{pmatrix} u_{1,1}(n) \\ u_{2,1}(n) \end{pmatrix}$, $u_i(n) \in \mathbb{R}^N$ ($i = 1, 2$) with N a given positive integer, and $\Delta u(n) = u(n + 1) - u(n)$ is the forward difference operator. $p, T \in \mathbb{N} \setminus \{0\}$. Moreover, hamiltonian function H satisfies the following assumption:

(A1) $H : \mathbb{Z} \times \mathbb{R}^{2N} \to \mathbb{R}$ is continuous differentiable on \mathbb{R}^{2N}, $H(n, \cdot)$ convex for each $n \in \mathbb{Z}$ and $H(n + T, u) = H(n, u)$ for each $u \in \mathbb{R}^{2N}$,
(A2) there exist constants $a_1 > 0, a_2 > 0$, $1 < \theta < 2$, such that
\[
\frac{a_1}{\theta} |u|^\theta \leq H(n, u) \leq \frac{a_2}{\theta} |u|^\theta, \quad u \in \mathbb{R}^{2N},
\]
which implies H subquadratic growth both at 0 and infinity.

Theorem 1. Assume (A1) holds. $H(n, u) \to +\infty$, $H(n, u)/|u|^2 \to 0$, as $|u| \to \infty$ uniformly in $n \in \mathbb{Z}$. Then there exists a p_T-periodic solution u_p of (3), such that
\[
\|u_p\|_{\infty} \to \infty, \quad \text{where } u_p \to \infty \quad \text{as } p \to \infty.
\]

Theorem 2. Under the assumptions (A1) and (A2), if
\[
\frac{a_2}{a_1} \leq \left\{ \begin{array}{ll}
\left(\frac{1}{4} \sin \frac{\pi}{pT} \right)^{\theta/2}, & \text{when } pT \text{ is even,} \\
\left(\frac{1}{2} \sin \frac{\pi}{2pT} \right)^{\theta/2}, & \text{when } pT \text{ is odd}
\end{array} \right.
\]
for given integer $p > 1$, then the solution of (3) has minimal period pT.

2. Clarke Duality and Eigenvalue Problem

First we introduce a space E_{pT} with dimension $2NpT$ as follows:
\[
E_{pT} = \{ u = \{ u(n) \} \in S \mid u(n + pT) = u(n), \quad n \in \mathbb{Z} \},
\]
where
\[
S = \left\{ u = \{ u(n) \} \mid u(n) = \left(\begin{array}{c}
u_1(n) \\
u_2(n) \end{array} \right) \in \mathbb{R}^{2N}, \quad u_j(n) \in \mathbb{R}^N, \quad j = 1, 2, n \in \mathbb{Z} \right\}.
\]

Equipped with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$ in E_{pT} as
\[
\langle u, v \rangle = \sum_{n=1}^{pT} \langle u(n), v(n) \rangle, \\
\|u\| = \left(\sum_{n=1}^{pT} |u(n)|^2 \right)^{1/2}, \quad u, v \in E_{pT},
\]
where $\langle \cdot, \cdot \rangle$ and $| \cdot |$ denote the usual scalar product and corresponding norm in \mathbb{R}^{2N}, respectively. It is easy to see that $(E_{pT}, \langle \cdot, \cdot \rangle)$ is a Hilbert space with $2NpT$ dimension, which can be identified with \mathbb{R}^{2NpT}. Then for any $u \in E_{pT}$, it can be written as $u = (u(j), u(T), u(T + 1), \ldots, u(T + pT - 1))^T$, where $u(j) = (\overline{u(j)}_1, \overline{u(j)}_2, \overline{u(j)}_3)^T \in \mathbb{R}^{2N}$, $j \in Z[1, pT]$, the discrete interval $\{1, 2, \ldots, pT\}$ is denoted by $Z[1, pT]$, and T denotes the transpose of a vector or a matrix.

Denote the subspace $\overline{Y} = \{ u \in E_{pT} \mid u(1) = u(2) = \cdots = u(pT) \in \mathbb{R}^{2N} \}$. Let \mathcal{Y} be the direct orthogonal complement of E_{pT} to \overline{Y}. Thus E_{pT} can be split as $E_{pT} = Y \oplus \overline{Y}$, and for any $u \in E_{pT}$, it can be expressed in the form $u = \overline{u} + \overline{u}$, where $\overline{u}, \overline{u} \in Y, \overline{Y}$.

Next we recall Clarke duality and some lemmas.

The Legendre transform (see [12]) $H^*(t, \cdot)$ of $H(t, \cdot)$ with respect to the second variable is defined by
\[
H^*(t, v) = \sup_{u \in \mathbb{R}^{2N}} \{ (v, u) - H(t, u) \},
\]
where (\cdot, \cdot) denotes the inner product in \mathbb{R}^{2N}. It follows from (A1) and (A2) that
\[
\begin{align*}
(B1) & \quad H^*(n, \cdot) \text{ is continuous differentiable on } \mathbb{R}^{2N}, \\
(B2) & \quad \text{for } \tau = \theta/(\theta - 1), \quad v \in \mathbb{R}^{2N}, \quad n \in \mathbb{Z}, \quad \text{one has}
\end{align*}
\]
\[
\left| \left(1 - \frac{1}{\tau} \right) \frac{1}{|u|^\tau} \leq H^*(n, v) \leq \left(\frac{1}{\tau} \right) \frac{1}{|v|^\tau}.
\]

Associated with variational functional (2), the dual action functional is defined by
\[
\chi(v) = \sum_{n=1}^{pT} \frac{1}{2} \left(L \Delta \nu(n-1), v(n) \right) + \sum_{n=1}^{pT} H^*(n, \Delta \nu(n)), \quad v \in E_{pT}.
\]

Indeed, by (11), we have $\chi(v + \overline{u}) = \chi(v)$ for any $\overline{u} \in \overline{Y}$ and $v \in Y$. Therefore, χ can be restricted in subspace Y of E_{pT}. Moreover, in terms of Lemma 2.6 in [8] and the following lemma, the critical points of (11) correspond to the subharmonic solutions of (3).

Lemma 3 (see [8, Theorem 1]). Assume that
\[
\begin{align*}
(H1) & \quad H(n, \cdot) \in C^1(\mathbb{R}^{2N}, \mathbb{R}), \quad H(n, \cdot) \text{ is convex in the second variable for } n \in \mathbb{Z}, \\
(H2) & \quad \text{there exists } \beta : \mathbb{Z} \to \mathbb{R}^{2N} \text{ such that for all } (n, u) \in \mathbb{Z} \times \mathbb{R}^{2N}, \quad H(n, u) \geq (\beta(n), u), \text{ and } \beta(n + T) = \beta(n), \\
(H3) & \quad \text{there exist } \alpha \in (0, 2 \sin(\pi/pT)) \text{ and } \gamma : \mathbb{Z} \to \mathbb{R}^*, \text{ such that for any } (n, u) \in \mathbb{Z} \times \mathbb{R}^{2N}, \quad H(n, u) \leq (\alpha/2)|u|^2 + \gamma(n), \text{ and } \gamma(n + T) = \gamma(n), \\
(H4) & \quad \text{for each } u \in \mathbb{R}^{2N}, \quad \sum_{n=1}^{pT} H(n, u(n)) \to +\infty \text{ as } |u| \to \infty.
\end{align*}
\]

Then system (3) has at least one periodic solution u, such that $v = -J[u - (1/pT) \sum_{n=1}^{pT} u(n)]$ minimizes the dual action
\[
\chi(v) = \sum_{n=1}^{pT} \left(1/2 \right) \left(L \Delta \nu(n-1), v(n) \right) + \sum_{n=1}^{pT} H^*(n, \Delta \nu(n)).
\]

The following lemmas will be useful in our proofs, where Lemma 4 can be proved by means of Euler formula $e^{i\theta} = \cos \theta + i \sin \theta$, and Lemma 5 is a Hölder inequality.

Lemma 4. For any $k \in \mathbb{Z}$, $\sum_{n=1}^{pT} \sin((2k\pi/pT)n) = \sum_{n=1}^{pT} \cos((2k\pi/pT)n) = 0$.

Lemma 5. For any $a_j > 0, \gamma_j > 0, k \in \mathbb{Z}$, one has
\[
\sum_{j=1}^{k} u_j \gamma_j \leq \left(\sum_{j=1}^{k} u_j^p \right)^{1/p} \left(\sum_{j=1}^{k} \gamma_j^{1/q} \right)^{1/q}, \quad \text{where } p > 1, q > 1 \text{ and } 1/p + 1/q = 1.
Lemma 6 (see [12, proposition 2.2]). Let $H : \mathbb{R}^m \rightarrow \mathbb{R}$ be of C^1 and convex functional, $-\beta \leq H(u) \leq \alpha q^{-1}|u|^{q} + \gamma$, where $u \in \mathbb{R}^m$, $\alpha > 0$, $q > 1$, $\beta > 0$, $\gamma > 0$. Then $\alpha^{-p/q}p^{-1} |\nabla H(u)|^p \leq (\nabla H(u), u) + \beta + \gamma$, where $1/p + 1/q = 1$.

In order to know the form of $u \in E_{pT}$, we consider eigenvalue problem

$$LJu(n-1) = \lambda u(n), \quad u(n+pT) = u(n), \quad (12)$$

where $u(n) = (u_{i(n)}), Lu(n-1) = (u_{i(n-1)}) \in \mathbb{R}^{2N}, n \in \mathbb{Z}, \lambda \in \mathbb{R}$. We can rewrite (12) as the following form:

$$u_1(n+1) = (1-\lambda^2)u_1(n) + \lambda u_2(n),$$
$$u_2(n+1) = -\lambda u_1(n) + u_2(n),$$

$$u_1(n+pT) = u_1(n), \quad u_2(n+pT) = u_2(n). \quad (13)$$

Denoting

$$M(\lambda) = \begin{pmatrix} (1-\lambda^2)I_N & \lambda I_N \\ -\lambda I_N & I_N \end{pmatrix}, \quad (14)$$

then problem (12) is equivalent to

$$u(n+1) = M(\lambda)u(n), \quad u(n+pT) = u(n). \quad (15)$$

Letting $u(n) = \mu^n c$ be the solution of (15), for some $c \in \mathbb{C}^{2N}$, we have $\mu c = M(\lambda)c$ and $\mu^{pT} = 1$. Consider the polynomial $|M(\lambda) - \mu I_{2N}| = 0$ and condition $\mu^{pT} = 1$; it follows that

$$\mu = e^{2k\pi i/pT}, \quad \lambda = 2\sin\frac{k\pi}{pT}, \quad k \in \mathbb{Z}[-pT+1, pT-1]. \quad (16)$$

In the following we denote by $\mu_k = e^{2k\pi i/pT}, \lambda_k = 2\sin(k\pi/pT), k \in \mathbb{Z}[-pT+1, pT-1]$, and $\rho \in \mathbb{R}^N$. By $(M(\lambda) - \mu I_{2N})c = 0$, it follows that

$$\xi_k(n) = \left(ie^{(-k\pi/pT)} \rho \right). \quad (17)$$

Thus

$$u_k(n) = \mu_k^n \xi_k = e^{2k\pi i/n} \left(ie^{(-k\pi i/pT)} \rho \right)$$

$$= \begin{pmatrix} \cos\left(\frac{2k\pi}{pT}n\right) \rho \\ -\sin\left(\frac{2k\pi}{pT}(n-\frac{1}{2})\right) \rho \end{pmatrix}$$

$$+ i \begin{pmatrix} \sin\left(\frac{2k\pi}{pT}n\right) \rho \\ \cos\left(\frac{2k\pi}{pT}(n-\frac{1}{2})\right) \rho \end{pmatrix}. \quad (18)$$

Let

$$\xi_k(n) = \begin{pmatrix} \cos\left(\frac{2k\pi}{pT}n\right) \rho \\ -\sin\left(\frac{2k\pi}{pT}(n-\frac{1}{2})\right) \rho \end{pmatrix},$$

$$\eta_k = \begin{pmatrix} \sin\left(\frac{2k\pi}{pT}n\right) \rho \\ \cos\left(\frac{2k\pi}{pT}(n-\frac{1}{2})\right) \rho \end{pmatrix}. \quad (19)$$

Obviously, $\xi_k(n)$ and $\eta_k(n)$ satisfy (15). Moreover $LJ\Delta \xi_k(n-1) = \lambda_k \xi_k(n), LJ\Delta \eta_k(n-1) = \lambda_k \eta_k(n), \xi_{2pT+k}(n) = \xi_k(n), \eta_{2pT+k}(n) = \eta_k(n)$, $\xi_{pT-k}(n) = \xi_k(n), \eta_{pT-k}(n) = -\eta_k(n)$.

For $k \neq pT/2$, subspace Y_k is defined by

$$Y_{pT/2} = \text{span} \left\{\xi_{pT/2}(n), n \in \mathbb{Z}\right\},$$
$$Y_{-pT/2} = \text{span} \left\{\xi_{-pT/2}(n), n \in \mathbb{Z}\right\}. \quad (20)$$

Therefore,

$$Y = \oplus Y_k, \quad k \in \mathbb{Z}[-pT/2, pT/2] \setminus \{0\}, \text{ if } pT \text{ is even},$$

$$Y = \oplus Y_k, \quad k \in \mathbb{Z}[-pT/2, pT/2] \setminus \{0\}, \text{ if } pT \text{ is odd}. \quad (22)$$

Moreover, for any $u = \{u(n)\} \in E_{pT}$, we may express $u(n)$ as

$$u(n) = \sum_{k=-pT+1}^{pT-1} \begin{pmatrix} \cos\left(\frac{2k\pi}{pT}n\right) a_k \\ -\sin\left(\frac{2k\pi}{pT}(n-\frac{1}{2})\right) a_k \end{pmatrix}$$

$$+ \begin{pmatrix} \sin\left(\frac{2k\pi}{pT}n\right) b_k \\ \cos\left(\frac{2k\pi}{pT}(n-\frac{1}{2})\right) b_k \end{pmatrix}, \quad (23)$$

where $a_k, b_k \in \mathbb{R}^N$.

Since $(\Delta u(n), \Delta u(n)) = - (\Delta^2 u(n-1), u(n))$, we consider eigenvalue problem

$$-\Delta^2 u(n-1) = \lambda u(n), \quad u(n+pT) = u(n), \quad u(n) \in \mathbb{R}^N, \quad (24)$$
where \(\Delta^2 u(n-1) = \Delta u(n) - \Delta u(n-1) = u(n+1) - 2u(n) + u(n-1) \). The second order difference equation (24) has complexity solution \(u(n) = e^{\theta n} c \) for \(c \in \mathbb{C} \), where \(\theta = 2k\pi/pT \). Moreover, \(\lambda = 2 - e^{i\theta} - e^{i\theta} = 2(1 - \cos \theta) = 4\sin^2(\theta/2) \); that is, \(\lambda = 4\sin^2(k\pi/pT), k \in \mathbb{Z}_{[0, pT-1]} \).

By the previous, it follows Lemma 7.

Lemma 7. For any \(u \in E_{pT} \), one has \(-\lambda_{\max} \|u\|^2 \leq \sum_{n=1}^{pT} (LJ \Delta u(n-1), u(n)) \leq \lambda_{\max} \|u\|^2 \), and \(0 \leq \sum_{n=1}^{pT} |\Delta u(n)|^2 \leq \lambda_{\max}^2 \|u\|^2 \), where

\[
\lambda_{\max} = \max_{k \in [0, pT-1]} \left\{ \frac{2 \sin \frac{k\pi}{pT}}{2} \right\}
\]

(25)

Moreover, if \(u \in Y \), then \(4\sin^2(\pi/pT) \|u\|^2 \leq \sum_{n=1}^{pT} |\Delta u(n)|^2 \leq \lambda_{\max}^2 \|u\|^2 \).

3. Proofs of Main Results

Lemma 8. Consider

\[
\sum_{n=1}^{pT} (LJ \Delta u(n-1), u(n)) \geq -\left(2 \sin \frac{\pi}{pT}\right)^{-1} \sum_{n=1}^{pT} |\Delta u(n)|^2, \quad \forall u \in E_{pT}.
\]

(26)

Proof. Letting \(\bar{u}(n) = u(n) - (1/pT) \sum_{n=1}^{pT} u(n) \), then \(\bar{u} \in Y \). By Lemmas 5 and 7, we have

\[
\sum_{n=1}^{pT} (LJ \Delta u(n-1), u(n)) = \sum_{n=1}^{pT} (LJ \Delta u(n-1), \bar{u}(n))
\]

\[
\geq -\left(\sum_{n=1}^{pT} |LJ \Delta u(n-1)|^2\right)^{1/2} \cdot \left(\sum_{n=1}^{pT} |\bar{u}(n)|^2\right)^{1/2}
\]

\[
\geq -\left(\sum_{n=1}^{pT} |\Delta u(n)|^2\right)^{1/2} \cdot \left(2 \sin \frac{\pi}{pT}\right)^{-1} \left(\sum_{n=1}^{pT} |\Delta \bar{u}(n)|^2\right)^{1/2}
\]

\[
= -\left(2 \sin \frac{\pi}{pT}\right)^{-1} \sum_{n=1}^{pT} |\Delta u(n)|^2.
\]

(27)

Lemma 9. If there exist \(\alpha \in (0, \sin(\pi/pT)), \beta \geq 0 \) and \(\delta > 0 \), such that

\[
\delta |u| - \beta \leq H(n, u) \leq \frac{\alpha}{2} |u|^2 + \gamma
\]

(28)

for all \(n \in [1, pT] \) and \(u \in \mathbb{R}^{2N} \), then each solution of (3) satisfies the inequalities

\[
\sum_{n=1}^{pT} |\Delta u(n)|^2 \leq \frac{2\alpha(\beta + \gamma) pT \sin(\pi/pT)}{\sin(\pi/pT) - \alpha},
\]

\[
\sum_{n=1}^{pT} |L u(n)| \leq \frac{(\beta + \gamma) pT \sin(\pi/pT)}{\delta(\sin(\pi/pT) - \alpha)}.
\]

(29)

Proof. Let \(u \) be the solution of (3). By Lemma 6, we have

\[
\frac{1}{2\alpha} |\nabla H(n, L u(n))|^2 \leq \langle \nabla H(n, L u(n)), L u(n) \rangle + \beta + \gamma
\]

\[
= -\langle J \Delta u(n), L u(n) \rangle + \beta + \gamma.
\]

(30)

Obviously, \(|J \Delta u(n)|^2 = -\langle \nabla H(n, L u(n)), J \Delta u(n) \rangle = |\nabla H(n, L u(n))|^2 \) by (3), and it follows that \((1/2\alpha) \sum_{n=1}^{pT} |\Delta u(n)|^2 + \sum_{n=1}^{pT} (J \Delta u(n), L u(n)) \leq (\beta + \gamma) pT \); that is,

\[
\frac{1}{2\alpha} \sum_{n=1}^{pT} |\Delta u(n)|^2 + \sum_{n=1}^{pT} (L J \Delta u(n-1), u(n)) \leq (\beta + \gamma) pT.
\]

(31)

By means of Lemma 8, we have

\[
\left[\frac{1}{2\alpha} - \left(2 \sin \frac{\pi}{pT}\right)^{-1}\right] \sum_{n=1}^{pT} |\Delta u(n)|^2 \leq (\beta + \gamma) pT,
\]

(32)

which gives first conclusion.

Now, \(H(n, 0) \leq \gamma \) in view of (28); therefore by convex and Lemma 8, we have

\[
\delta \sum_{n=1}^{pT} |L u(n)| - \beta pT \leq \sum_{n=1}^{pT} H(n, L u(n)) \leq \sum_{n=1}^{pT} [H(n, 0) + \langle \nabla H(n, L u(n)), L u(n) \rangle].
\]
which gives the second conclusion. The proof is completed.

3

Proof of Theorem 1. Let \(c_1 = \max_{n \in \mathbb{Z}} |H(n, 0)| \). By assumption in Theorem 1, there exists \(R > 0 \), such that \(H(n, u) \geq 1 + c_1 \), for \(n \in \mathbb{Z} \) and \(|u| \geq R \). Moreover, there exist \(\alpha \in (0, 2 \sin(\pi/pT)) \), \(\gamma > 0 \) such that

\[
H(n, u) \geq \frac{\alpha}{2} |u|^2 + \gamma, \quad \forall (n, u) \in \mathbb{Z} \times \mathbb{R}^{2N}.
\]

Thus, by convex of \(H \), for all \((n, u) \in \mathbb{Z} \times \mathbb{R}^{2N} \) with \(|u| \geq R \), we have

\[
1 + c_1 \leq H \left(n, \frac{R}{|u|} u \right) \leq H(n, 0) + \frac{R}{|u|} (H(n, u) - H(n, 0)) \leq \frac{R}{|u|} H(n, u) + c_1.
\]

Therefore there exist \(\beta > 0 \) and \(\delta > 0 \), such that

\[
H(n, u) \geq \delta |u| - \beta, \quad \forall (n, u) \in \mathbb{Z} \times \mathbb{R}^{2N}.
\]

Combining the previous argument, by Lemma 3, the system (3) has a \(pT \)-periodic solution \(u_p \) such that \(v_p = -f[u_p = (1/pT) \sum_{n=1}^{pT} u_p(n)] \in Y \) minimizes the dual action

\[
J_p \left(v_p \right) = \sum_{n=1}^{pT} \left(\frac{1}{2} \left(|J \Delta v_p(n-1), v_p(n) \right) + \sum_{n=1}^{pT} H^* \left(n, \Delta v_p(n) \right) \right) \quad \text{on} \quad E_{pT}.
\]

It follows that \(\Delta u_{p_k}(n) = J \Delta v_p(n) \) and \(J v_p(n) = u_p(n) - (1/pT) \sum_{n=1}^{pT} u_p(n) \).

We next prove that \(\|u_{p_k}\|_{\infty} \to \infty \) as \(p_k \to \infty \).

Suppose not, there exist \(c_2 > 0 \) and a subsequence \(\{p_k\} \) such that

\[
p_k \to \infty, \quad \|u_{p_k}\|_{\infty} \leq c_2 \quad \text{as} \quad k \to \infty.
\]

In terms of (3), it follows that \(\|\Delta u_{p_k}\|_{\infty} \leq c_3 \) for some \(c_3 > 0 \), and \(\|v_{p_k}\|_{\infty} \leq 2c_3, \|\Delta v_{p_k}\|_{\infty} \leq c_3 \). Consequently, by \(H^* (n, v) \geq -H(n, 0) \geq -c_1 \), we have

\[
c_{p_k} = \mathcal{H}_p \left(v_{p_k} \right) = \sum_{n=1}^{pT} \left(\frac{1}{2} \left(\frac{1}{pT} \sum_{n=1}^{pT} \left(|J \Delta v_{p_k}(n-1), v_{p_k}(n) \right) + \sum_{n=1}^{pT} H^* \left(n, \Delta v_{p_k}(n) \right) \right) \right) \leq 2c_3, \|\Delta v_{p_k}\|_{\infty} \leq c_3.\]

where \(n \in \mathbb{Z} \) and

\[
\left| J \Delta v_{p_k}(n-1) \right| = \left(\left| \Delta v_{p_k}(n-1) \right|^2 + \left| \Delta v_{p_k}(n-1) \right|^2 \right)^{1/2} \leq \sqrt{5} \|\Delta v_{p_k}\|_{\infty} \leq \sqrt{5} c_3.
\]

By (36), if \(|v| \leq \delta \), we have \(H(n, u) \leq (v, u) - \delta |u| + \beta \leq \beta \), and \(H^* (n, v) \leq \beta \). Letting \(\rho \in \mathbb{R}^N \) and \(|\rho| = 1 \), in terms of (12), \(h_p \) associated with \(\lambda_{-1} = -2 \sin(\pi/pT) \) is given by

\[
h_p(n) = \frac{\delta}{4 \sin(\pi/pT)} \left(\cos \frac{\pi}{pT} n - \sin \frac{\pi}{pT} n \right) \rho \left(\sin \frac{\pi}{pT} \left(n - \frac{1}{2} \right) + \cos \frac{\pi}{pT} \left(n - \frac{1}{2} \right) \right) \rho \quad \text{on} \quad E_{pT}.
\]

which belongs to \(E_{pT} \), and

\[
|\Delta h_p(n)|^2 \leq \left(\frac{\delta}{4 \sin(\pi/pT)} \right)^2 \left(2 \sin \frac{\pi}{pT} \left(n + \frac{1}{2} \right) - \cos \frac{\pi}{pT} \left(n + \frac{1}{2} \right) \right) \rho \left(\cos \frac{2\pi}{pT} n - \sin \frac{2\pi}{pT} n \right) \rho \quad \text{on} \quad E_{pT}.
\]

\[
= \frac{1}{4} \left[2 \sin \frac{2\pi}{pT} (2n+1) - \sin \frac{2\pi}{pT} (2n) \right] \cdot |\rho|^2 \delta^2 \leq \delta^2.
\]
Moreover, by Lemma 4 we have

\[
\sum_{n=1}^{pT} |h_p(n)|^2 = \sum_{n=1}^{pT} \left(\frac{\delta}{4 \sin(\pi/pT)} \right)^2 \cdot \left(2 + \sin \frac{2\pi}{pT} (2n - 1) - \sin \frac{2\pi}{pT} (2n) \right) |p|^2 = \left(\frac{\delta}{4 \sin(\pi/pT)} \right)^2 2|p|^2 pT = \frac{\delta^2 pT}{8 \sin^2 (\pi/pT)}.
\]

By Lemma 7 and (45), it follows that

\[
\|\bar u_{p_k}\|^2 = \sum_{n=1}^{T_{p_k}} |\bar u_{p_k}(n)|^2 \leq \left(\frac{2 \sin \pi}{T_{p_k}} \right)^{-1} \sum_{n=1}^{T_{p_k}} |\Delta u_{p_k}(n)|^2 \leq \frac{(\beta + \gamma) T}{\sin (\pi/T) - \alpha},
\]

which implies that \(\|\bar u_{p_k}\|_\infty\) is bounded, therefore \(\|u_{p_k}\|_\infty\) is bounded; a contradiction with the second claim \(\lim_{p \to \infty} u_p\|_\infty = \infty\). This completes the proof. \(\square\)

Proof of Theorem 2. Under the assumptions (A1) and (A2), all conditions in Theorem 1 are satisfied. Then, for each integer \(p > 1\), there exists a \(pT\)-periodic solution \(u\) of (3) such that \(v = -J[u-(1/pT)\sum_{n=1}^{pT} u(n)] \in Y\) minimizes the dual action

\[
\chi(v) = \frac{1}{2} \sum_{n=1}^{pT} (LJ\Delta v(n-1), v(n)) + \sum_{n=1}^{pT} H^*(n, \Delta v(n)) \quad \text{on } E_{pT}.
\]

If the critical point \(v\) of dual action functional \(\chi\) has minimal period \(pT/l \in \mathbb{N} \setminus \{0\}\), where \(l \in \mathbb{N} \setminus \{0\}\), then by Lemma 7 with \(pT\) replaced by \(pT/l\), we have the following estimate:

\[
4 \sin^2 \frac{\pi}{pT} \sum_{n=1}^{pT} |v(n)|^2 \leq \sum_{n=1}^{pT} |\Delta v(n)|^2.
\]

By Lemma 5 and the previous inequality, we have

\[
\sum_{n=1}^{pT} (LJ\Delta v(n-1), v(n)) \geq -\left(\sum_{n=1}^{pT} |LJ\Delta v(n-1)|^2 \right)^{1/2} \cdot \left(\sum_{n=1}^{pT} |v(n)|^2 \right)^{1/2} \geq -\left(\sum_{n=1}^{pT} |\Delta v(n)|^2 \right)^{1/2},
\]
\[
\begin{align*}
\cdot & \left(2 \sin \frac{l \pi}{p T}\right)^{-1} \left(\sum_{n=1}^{p T} |\Delta V(n)|^2 \right)^{1/2} \\
& = - \left(2 \sin \frac{l \pi}{p T}\right)^{-1} \frac{\sum_{n=1}^{p T} |\Delta V(n)|^2}{(p T)^{1-2/\tau} \left(\sum_{n=1}^{p T} |\Delta V(n)|^\tau \right)^{2/\tau}}, \\
& \geq - \left(2 \sin \frac{l \pi}{p T}\right)^{-1} \frac{\sum_{n=1}^{p T} |\Delta V(n)|^2}{ \left(\sum_{n=1}^{p T} |\Delta V(n)|^\tau \right)^{2/\tau}},
\end{align*}
\]

(51)

where \(\tau = \theta/(\theta - 1) > 2 \) for \(1 < \theta < 2 \). It follows from assumption (B2) that

\[
H^* (n, \Delta V(n)) \geq \frac{1}{\tau} \left(\frac{1}{a_2}\right)^{\tau-1} |\Delta V(n)|^\tau,
\]

(52)

thus

\[
\chi(v) \geq - \left(2 \sin \frac{l \pi}{p T}\right)^{-1} (p T)^{1-2/\tau} \left(\sum_{n=1}^{p T} |\Delta V(n)|^\tau \right)^{2/\tau} \\
+ \frac{1}{\tau} \left(\frac{1}{a_2}\right)^{\tau-1} \sum_{n=1}^{p T} |\Delta V(n)|^\tau \\
\geq \frac{(1/\tau - 1/2) p T^{(\tau-1)/(\tau-2)}}{ \left(\sin (l \pi/p T)^{\tau/2}) \right)^{2/\tau}}.
\]

(53)

(54)

One can obtain the previous inequality by minimizing in (53) with respect to \(\sum_{n=1}^{p T} |\Delta V(n)|^\tau \), and the minimum is attained at \((p T)^{1/\tau} (a_2)^{(\tau-1)/(\tau-2)}/(\sin (l \pi/p T))^{1/(\tau-2)}. \)

On the other hand, let

\[
v(n) = \frac{1}{\sqrt{p T}} \left(\cos \frac{2k \pi}{p T} n \cdot a_k - \sin \frac{2k \pi}{p T} \left(n - \frac{1}{2}\right) \cdot a_k \right),
\]

(55)

where \(a_k \in \mathbb{R}^N, k \in \mathbb{Z}[[-p T/2], [p T/2]] \setminus \{0\} \). Then \(v \in Y_k \), and

\[
\Delta V(n) = -2 \sin \frac{k \pi}{p T} \frac{1}{\sqrt{p T}} \left(\sin \frac{2k \pi}{p T} \left(n + \frac{1}{2}\right) \cdot a_k \right).
\]

(56)

Taking \(a_k = (d, 0, \ldots, 0)^T \in \mathbb{R}^N \), where \(d \in \mathbb{R} \), by Lemma 4, it follows that

\[
\sum_{n=1}^{p T} \left((- L J \Delta V(n-1), v(n)) \right) \\
= \sum_{n=1}^{p T} \left[-\Delta V_2(n) v_1(n) + \Delta V_1(n-1) v_2(n) \right] \\
= \sum_{n=1}^{p T} \frac{1}{p T} \cdot 2 \sin \frac{k \pi}{p T} \cdot \left(\cos \frac{2k \pi}{p T} n \cdot |d| + \sin \frac{2k \pi}{p T} \left(n - \frac{1}{2}\right) \cdot |d| \right) \\
\leq \lambda_k |d|^2,
\]

where \(\lambda_k = 2 \sin(k \pi/p T) \) and

\[
\sum_{n=1}^{p T} |\Delta V(n)|^\tau \\
= \sum_{n=1}^{p T} |\lambda_k|^\tau (p T)^{-\tau/2} \\
\cdot \left(\sin \frac{2k \pi}{p T} \left(n + \frac{1}{2}\right) \right) \cdot \left(\cos \frac{2k \pi}{p T} \left(n - \frac{1}{2}\right) \right) \cdot |d|^\tau \\
\leq \lambda_{\max} \cdot (p T)^{1-(\tau/2)} \cdot 2^{\tau/2} |d|^\tau.
\]

(57)

(58)

Therefore, taking \(k = [-p T/2] \), by eigenvalue problem (24) and (B2), it follows that

\[
\chi(v) = \frac{1}{2} \sum_{n=1}^{p T} \left((- L J \Delta V(n-1), v(n)) \right) \\
+ \sum_{n=1}^{p T} H^* (n, \Delta V(n)) \\
\leq - \frac{1}{2} \lambda_{\max} |d|^2 \\
+ \frac{1}{\tau} \left(\frac{1}{a_1}\right)^{\tau-1} \sum_{n=1}^{p T} |\Delta V(n)|^\tau \\
\leq - \frac{1}{2} \lambda_{\max} |d|^2 + \frac{1}{\tau} \left(\frac{1}{a_1}\right)^{\tau-1} \lambda_{\max}^\tau \\
\cdot (p T)^{1-(\tau/2)} \cdot 2^{\tau/2} |d|^\tau.
\]

(59)

Let \(f(\rho) \) equal the right-hand side of (59) where \(\rho = |d| \). It is easy to see that the absolute minimum of \(f \) is attained at \(\rho_{\min} = (a_1)^{(\tau-1)/(\tau-2)}/(\lambda_{\max}^\tau \cdot 2^{\tau/2}) \) and given
by $f_{\min} = (1/\tau - 1/2)pT(a_2^{l-1/\tau}(r_2^{-1/\tau}))/\tau$. Hence, by (19), let
\[\xi(n) = \xi_{\lfloor pT/2 \rfloor}(n) = \begin{pmatrix} \cos \frac{2k\pi n}{pT} \cdot \rho \\ -\sin \frac{2k\pi}{2}(n - \frac{1}{2}) \cdot \rho \end{pmatrix}, \tag{60}\]
where $\rho \in \mathbb{R}^N$, $k = \lfloor pT/2 \rfloor$.

If pT is even, then $\xi(n) = (1, 1)^T \cdot (-1)^k \rho$. Set
\[Y_{\rho_{\min}} = \{ v \in Y_{\lfloor pT/2 \rfloor} : v(n) = \xi(n), \rho = (d, 0, \ldots, 0)^T \in \mathbb{R}^N, d \in \mathbb{R} \}, \tag{61}\]
for $v \in Y_{\rho_{\min}},$ we have
\[\chi(v) \leq f_{\min}. \tag{62}\]
Combining (54), (59), and (62), we have
\[(1/\tau - 1/2) \frac{pT\left(\frac{2l}{\tau}\right)^{(r_2-1)/\tau}}{(\sin(\pi/pT))^{2/(r_2-1)}} \leq \frac{(1/\tau - 1/2) pT\left(\frac{2l}{\tau}\right)^{(r_2-1)/\tau}}{(2\lambda_{\max})^{2/(r_2-1)}}. \tag{63}\]
By $\tau > 2$, and $\theta = \tau/(\tau - 1)$, it follows that
\[
\sin(\pi/pT) \leq \frac{(\pi/2)^{2/\tau}}{(2\lambda_{\max})^{2/\tau}}. \tag{64}\]

For integer $p > 1, T \geq 1, l \in \mathbb{N} \setminus \{0\}, pT/l \in \mathbb{N} \setminus \{0\}$, we have $0 < \ln(pT) \leq \pi$, $0 < \pi/pT \leq \pi/2$.

If pT is even, then $\lambda_{\max} = 2$. By assumption $a_2/a_1 \leq ((1/2)^{2/\tau}) \leq \sin(\pi/pT)$, which implies that $l = 1$ or $l = pT - 1$. If $pT > 2$, then $pT/l \notin \mathbb{N}$. So we have $l = 1$.

If pT is odd, then $\lambda_{\max} = 2 \cos(\pi/pT)$. By assumption $a_2/a_1 \leq ((1/2)^{2/\tau}) \leq \sin(\pi/pT)$, we have $\sin(\pi/pT) \leq \sin(\pi/pT)$, so $l = 1$. This completes the proof. \square

Acknowledgments

This research is supported by the National Natural Science Foundation of China under Grants (11101187, NCFETJ (A111144), the Excellent Youth Foundation of Fujian Province (2012)J06001), and the Foundation of Education of Fujian Province (JA09152).

References

Submit your manuscripts at http://www.hindawi.com