Research Article

Multivalued Variational Inequalities with D_J-Pseudomonotone Mappings in Reflexive Banach Spaces

A. M. Saddeek1 and S. A. Ahmed1,2

1Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt
2Department of Mathematics, University College, Umm Al-Qura University, Saudi Arabia

Correspondence should be addressed to A. M. Saddeek; a_m_saddeek@yahoo.com

Received 28 August 2012; Accepted 31 January 2013

1. Introduction and Preliminaries

Variational inequalities give a convenient mathematical framework for discussing a large variety of interesting problems appearing in pure and applied sciences. It is well known that the theory of pseudomonotone mappings plays an important part in the study of the above-mentioned variational inequalities.

In recent years, pseudomonotone theory has become an attractive field for many mathematicians (see [1–8]).

In a very recent paper [9], by using the D_J-antiresolvent technique (where J is the duality mapping) devised by the first author, the author introduced a new concept of monotonicity, which is called the D_J-pseudomonotone type.

In the present paper, the concept of multivalued D_J-pseudomonotone mappings in reflexive Banach spaces is used to study a wide class of variational inequalities, called the multivalued D_J-pseudomonotone variational inequalities.

Moreover, the results obtained in this paper can be applied to the multivalued nonlinear D_J-complementarity problem in reflexive Banach spaces by using the D_J-antiresolvent technique. An application to the multivalued nonlinear D_J-complementarity problem is also presented. The results coincide with the corresponding results announced by many others for the gradient state.

Unless otherwise stated, V stands for a real reflexive Banach space with norm $\|\cdot\|_V$ and V^* stands for the uniformly convex dual of V with the dual norm $\|\cdot\|_{V^*}$. The duality pairing between V and V^* is denoted by $\langle \cdot, \cdot \rangle$. The set of all nonnegative integers is denoted by \mathbb{N}. The field of real (resp., positive real) numbers is denoted by \mathbb{R} (resp., \mathbb{R}^+).

Notation “\to” stands for strong convergence and “\rightharpoonup” for weak convergence.

A mapping $J : V \to V^*$ is said to be a duality mapping (see, e.g., [16]) with gauge function Φ (i.e., Φ is continuous strictly increasing real-valued function satisfying $\Phi(0) = 0$ and $\lim_{t \to +\infty} \Phi(t) = +\infty$) if for every $u \in V$, $\langle Ju, u \rangle = \|Ju\|_{V^*} \|u\|_V = \Phi(\|Ju\|_{V^*})(\|u\|_V)$. If $V = H$ is a Hilbert space, then $J = I$, the identity mapping.

Assume that V^* has a weakly sequentially continuous duality mapping J (i.e., if $\{u_n\}_{n\in\mathbb{N}}$ is a sequence in V which weakly convergent to a point u, then the sequence $\{Ju_n\}_{n\in\mathbb{N}}$ converges to Ju (see, e.g., [17])).

Let $g : V \to \mathbb{R} \cup \{+\infty\}$ be a function. The domain of g is $\text{dom } g = \{u \in V : g(u) < +\infty\}$. When $g \neq \Phi$, g is called proper (see, e.g., [18]). The interior of the domain of g is denoted by $\text{int dom } g$. The function g is said to be Gâteaux differentiable at $u \in \text{int dom } g$ (see, e.g., [18]), if

$$g'(u, \eta) = \lim_{t \to 0} \frac{g(u + t\eta) - g(u)}{t} \quad (1)$$

exists for all $\eta \in V$.
Let g be proper, convex, lower semicontinuous, and Gâteaux differentiable at $u \in \text{int dom } g$; then the gradient of g at u is the function $Vg(u)$ which is defined by $(\langle Vg(u), \eta \rangle = g'(u, \eta)$ for any $\eta \in V$. It is known (see, e.g., [19]) that the conjugate $g^* : V^* \to \mathbb{R} \cup \{\pm \infty\}$ is also proper, convex, and lower semicontinuous.

The convex function g is said to be of Legendre type (see, e.g., [20]) if the following conditions hold:

\begin{enumerate}[(L_1)] \item int dom(g) $\neq \emptyset$, g is Gâteaux differentiable on int dom(g) and dom Vg = int dom g; \item int dom(g^*) $\neq \emptyset$, g^* is Gâteaux differentiable on int dom(g^*) and dom Vg^* = int dom(g^*). \end{enumerate}

It is well known (see, e.g., [21]) that if g is a proper, convex, lower semicontinuous, and Legendre type, then $\nabla g^* = (\nabla g)^{-1}$ and range $Vg^* = \text{dom } g$. Throughout this paper, the function $g : V \to \mathbb{R} \cup \{\pm \infty\}$ is proper, convex, and lower semicontinuous which is also Legendre on int dom(g).

The Bregman distance (see, e.g., [22]) is the function $D_g : V \times \text{int dom } (g) \to \mathbb{R} \cup \{\pm \infty\}$ defined by

$$D_g(v, u) = g(v) - g(u) - \langle Vg(u), v - u \rangle,$$

with $\text{dom } D_g = (\text{dom } g) \times \text{int dom } g$. (3)

It should be pointed out that if $V = H$ is a Hilbert space and $g = (1/2)\|u\|^2_H$, then $\nabla g = I$ (the identity mapping) and $D_g(v, u) = (1/2)\|v - u\|^2_H$.

For a multivalued mapping $T : V \to 2^{V^*}$, the associated D_f-antirosolvent (where $f : V \to V^*$ is the duality mapping) of $J - T$ (see [9]) is the mapping $T^f : V \to 2^{V^*}$, defined by

$$T^f = \nabla g^* (J - T).$$

Such a mapping is known as (see [23]) a D_g-antirosolvent mapping of T when $J = \nabla g$ (in this case, the mapping T^f is denoted by T^g).

In light of the above-mentioned discussion, we note that if $J - T = \nabla g$, then T^f is the identity mapping I.

Following [9], the mapping $J - T : V \to 2^{V^*}$ is said to be D_f-pseudomonotone, if for every $u, \eta \in \text{dom } J \cap \text{dom } T, \nu \in (J - T)(u), \nu \in (J - T)(\eta)$, and every sequence $\{u_n\}_{n \in \mathbb{N}} \subset \text{dom } J \cap \text{dom } T$ and $\nu_n \in (J - T)(u_n)$ the conditions

$$\langle \nu_n, \nu - \nu_n \rangle \geq 0,$$

implies that

$$\lim_{n \to \infty} \langle \nu_n, \nabla g^* (\nu_n) - \nabla g^* (\nu) \rangle \leq 0\ (5)$$

As remarked in [9], the D_f-pseudomonotonicity of the mapping $J - T$ coincides with the pseudomonotonicity (or the D_g-pseudomonotonicity in the sense of Bregman distance D_g) of the mapping ∇g, if $J - T = \nabla g$.

The multivalued variational inequality defined by the D_f-mapping (or multivalued D_f-complementarity problem) $J - T : V \to 2^{V^*}$ and the set $K \subset V$ is to find $u \in K$ such that

$$\langle y - f, \nabla g^* (\omega) - \nabla g^* (\nu) \rangle \geq 0, \ \forall \eta \in K,$$

where $f \in 2^{V^*}$.

The multivalued nonlinear complementarity problem defined by the D_f-mapping (or multivalued nonlinear D_f-complementarity problem) $J - T : V \to 2^{V^*}$ and the set $K \subset V$ is to find $u \in K$ such that

$$\langle y - f, \nabla g^* (\omega) - \nabla g^* (\nu) \rangle = 0,$$

where $f \in 2^{V^*}$, $\nu \in (I - T)(u)$, and $\omega \in (I - T)(\eta)$.

The multivalued D_f-variational inequality and multivalued nonlinear D_f-complementarity problem are very general in the sense that they include, as special cases, multivalued variational inequality and multivalued nonlinear complementarity problem.

The following definition and results will be used in the sequel.

Definition 1 (see, e.g., [15, p. 84]). The mapping $A : V \to 2^{V^*}$ is continuous on finite dimensional subspaces if for any finite dimensional subspace $V_0 \subset V$, the restriction of A to $V_0 \cap \text{dom}(A)$ is weakly continuous.

Corollary 2 (see [24]). Let $j : V_0 \subset V \to V$ be the injection mapping. Let $f^* : V^* \to V_0^*$ be its dual mapping. Then, $j^* Aj : \text{dom}(A) \cap jV_0 \to 2^{V_0^*}$ is continuous.

Corollary 3 (see [25]). Let K be a nonempty compact convex set of \mathbb{R}^n and let $S : K \to 2^K$ be continuous. Then S admits a fixed point.

2. Main Results

Theorem 4. Let K be a closed convex set in H and let $T : K \to 2^H$ be a multivalued mapping. Then the following are equivalent:

1. $\nabla g^* (\nu') \in Pr_K (x)$
2. $\nabla g^* (\nu') = \arg \min \{D_f (\nabla g^* (\omega'), x)\}$

As remarked in [9], the D_f-pseudomonotonicity of the mapping $J - T$ coincides with the pseudomonotonicity (or the D_g-pseudomonotonicity in the sense of Bregman distance D_g) of the mapping ∇g, if $J - T = \nabla g$.
the multivalued projection for K;

\begin{align}
(2) \quad \nabla g^*(\lambda') \in K : & \langle \nabla g^*(\lambda') - x, \nabla g^*(\omega) \rangle \\
& - \nabla g^*(\lambda') \geq 0 \\
& \forall \nabla g^*(\omega) \in K,
\end{align}

where $\omega' \in (I-T)(\eta), \lambda' \in (I-T)(\eta), \eta \in K$.

Proof. Assume that (1) holds. Let $x \in 2^I$ and $\nabla g^*(\lambda') \in Pr_K(x) \subset K$. For every $\nabla g^*(\omega) \in K$ and $t \in (0,1]$, we have

$$D_1(x, \nabla g^*(\lambda')) \leq D_1(x, (1-t) \nabla g^*(\lambda') + t \nabla g^*(\omega'))$$

$$= D_1(x, \nabla g^*(\lambda'))$$

$$- t \langle x - \nabla g^*(\lambda'), \nabla g^*(\omega') - \nabla g^*(\lambda') \rangle$$

$$+ t^2 D_1(\nabla g^*(\omega'), \nabla g^*(\lambda')).$$

This implies

$$\langle x - \nabla g^*(\lambda'), \nabla g^*(\omega') - \nabla g^*(\lambda') \rangle$$

$$\leq t D_1(\nabla g^*(\omega'), \nabla g^*(\lambda')).$$

Hence, $t \to 0^+$ implies (2).

On the other hand, assume that (2) holds. For every $\nabla g^*(\omega) \in K$, we have

$$D_1(\nabla g^*(\omega), x)$$

$$= D_1(\nabla g^*(\omega), \nabla g^*(\lambda'))$$

$$+ \langle \nabla g^*(\lambda') - x, \nabla g^*(\omega') - \nabla g^*(\lambda') \rangle$$

$$+ D_1(\nabla g^*(\omega'), x) \geq D_1(\nabla g^*(\lambda'), x).$$

This implies (1). \qed

Remark 5. In the particular situation when $I - T = Vg$ Theorem 4 coincides in (gradient setting) with Theorem 2.3 in [15] and also with Proposition 2.1 (1) and (2) in [2].

Theorem 6. In addition to conditions on V, V^*, g^*, and J, one assumes that V is separable, $K \subset V$ is nonempty closed and convex, $T : K \to 2^{V^*}$, ∇g^* are weakly continuous mappings, and either T or ∇g^* is continuous. Moreover, assume that the mapping $J - T : K \to 2^{V^*} is a bounded D_I-pseudomonotone mapping and that, for each $\eta \in K$, there exist $\eta_0 \in K, \omega_0 \in (I-T)(\eta_0), \omega \in (I-T)(\eta), \text{ and } r > 0$ such that

$$\langle \omega, \nabla g^*(\omega) - \nabla g^*(\omega_0) \rangle \geq \langle f, \nabla g^*(\omega) - \nabla g^*(\omega_0) \rangle,$$

$$f \in 2^{V^*}, \|\nabla g^*(\omega)\|_V \geq r.$$
Since $K_N \subset K_m$, we have
\[
\lim_{m \to \infty} \sup_{v} \langle v, \nabla g^*(v) \rangle = \lim_{m \to \infty} \sup_{v} \left[\langle v, g^*(v) \rangle - \langle v, g^*(\overline{v}) \rangle \right] + \langle v, g^*(\overline{v}) \rangle \leq (\|f\|_{V^*} + M) \epsilon.
\]
Since ϵ is arbitrary, this shows the desired inequality.

By the D_1-pseudomonotonicity of $J - T$, it follows that
\[
\lim_{m \to \infty} \inf_{v} \langle v, \nabla g^*(v) \rangle \geq \langle v, \nabla g^*(v) - g^*(\overline{v}) \rangle.
\]
for all $v \in \text{dom } J \cap \text{dom } T$ and $\omega \in (J - T)(\eta)$.
If $\eta \in K_n$, $m \geq n$, we have
\[
\langle v, \nabla g^*(v) - \nabla g^*(\overline{v}) \rangle \leq \langle f, \nabla g^*(v) - g^*(\overline{v}) \rangle.
\]
Hence
\[
\langle v, \nabla g^*(\overline{v}) - g^*(\overline{v}) \rangle \leq \langle f, \nabla g^*(v) - g^*(\overline{v}) \rangle
\]
for every η in K_n, $n \in \mathbb{N}$, $\omega \in (J - T)(\eta)$.
Since $\cup \eta K_n$ is dense in K_n, so we have that u is a solution to (7).

Now, to complete the proof, we consider the case when K is unbounded.
In this case we consider the set $K_p = \{ \eta \in K : \|g^*(\omega)|_{V^*} \leq \rho \}$, where $\rho = \max\|g^*(\omega)|_{V^*} r$.
Since K_p is bounded, there exists at least one $u_p \in K_p$:
\[
\langle v, \nabla g^*(\overline{v}) - g^*(\overline{v}) \rangle \leq \langle f, \nabla g^*(v) - g^*(\overline{v}) \rangle
\]
for $v \in (J - T)(u_p)$ and $\eta \in K_p$.
Since $\eta_0 \in K_p$, we have
\[
\langle v - f, \nabla g^*(v) - g^*(\omega_0) \rangle \leq 0 \quad \text{for } \omega_0 \in (J - T)(\eta_0).
\]
This, together with (14), implies that $\|\nabla g^*(v_0)|_{V^*} < \rho$.
To clarify that u_0 is also a solution to an original problem on K, for any $\eta \in K$, set $\nabla g^*(\omega_t) = (1 - t) \nabla g^*(u_p) + t \nabla g^*(\omega)$ for $t > 0$ is sufficiently small, where $\omega_t \in (J - T)(\eta_t)$ and $\eta_t \in K_p$. Consequently
\[
\langle v, \nabla g^*(v) - g^*(\omega_t) \rangle \leq 0 \quad \text{for } \eta_t \in K_p,
\]
This completes the proof.

Remark 7. In the particular situation when $J - T = \nabla g$, Theorem 6 coincides with the Brezis Theorem (see, e.g., [13, 14]) for the case of gradient mapping.

We are now in a position to state and prove the following theorem.

Theorem 8. Let all assumptions of Theorem 6 hold, except for condition (14) let it be replaced by the D_1-coercive condition: for $\omega \in (J - T)(\eta)$,
\[
\lim_{\|v\|_{V^*} \to \infty} \left[\frac{\langle \omega, \nabla g^*(\omega) - \nabla g^*(\omega_0) \rangle}{\|\nabla g^*(\omega)|_{V^*}} \right] = +\infty,
\]
for $\omega \in (J - T)(\eta_0), \eta, \eta_0 \in K$.

Suppose that K has the following property (W): $a \nabla g^*(\omega) \in K$ for all $\nabla g^*(\omega) \in K$ and $\alpha > 0$.
Then for every $f \in 2V^*$ there exist $u \in K$, $v \in (J - T)(u)$ such that
\[
\langle v - f, \nabla g^*(\omega) \rangle = 0, \quad \langle v - f, \nabla g^*(\omega) \rangle \geq 0
\]
for all $\eta \in K, \omega \in (J - T)(\eta)$.

Proof. Let $f \in 2V^*$ satisfy $\|f\|_{V^*} < M$ and
\[
\|\nabla g^*(\omega_0)|_{V^*} \| < 2M - \|f\|_{V^*} \rho.
\]
The D_1-coercivity of $J - T$ implies that there exists $\rho > 0$ such that
\[
\langle \omega, \nabla g^*(\omega) \rangle \geq 2M \|\nabla g^*(\omega)|_{V^*}
\]
for $\omega \in (J - T)(\eta), \eta \in K$ with $\|\nabla g^*(\omega)|_{V^*} \geq \rho$.
So we conclude
\[
\langle \omega - f, \nabla g^*(\omega) \rangle \nabla g^*(\omega)|_{V^*} \geq 2M \|\nabla g^*(\omega)|_{V^*} \geq \rho.
\]
This, together with (14), implies that $\|\nabla g^*(v_0)|_{V^*} < \rho$.

The second part of (28) thus follows from Theorem 6.
To prove the first part of (28), observe that we can choose a point $\eta \in K$ and $\omega \in (J - T)(\eta)$ and assume that $\nabla g^*(\omega) = 0$.

Therefore, from Theorem 6, we have
\[
\langle v - f, \nabla g^*(\omega) \rangle \leq 0
\]
for all $v \in (J - T)(u), u \in K$.
On the other hand, setting $\nabla g^*(\omega) = \alpha \nabla g^*(v)$, where $\alpha > 1$, we get
\[
0 \leq \langle v - f, \nabla g^*(\omega) \rangle \nabla g^*(\omega) \rangle = (\alpha - 1) \langle v - f, \nabla g^*(\omega) \rangle.
\]
This implies
\[
\langle v - f, \nabla g^*(\omega) \rangle \geq 0.
\]
So,
\[
\langle v - f, \nabla g^*(\omega) \rangle = 0.
\]
This completes the proof of (28).
The following proposition gives a characterization of the sum of two D_I-pseudomonotone mappings.

Proposition 9. Let V, V^*, and J be as above and let $T_i : V \to 2^{V^*}$, $i = 1, 2$, and $V g^*$ be weakly continuous mappings. If $J - T_i : V \to 2^{V^*}$, $i = 1, 2$, are D_I-pseudomonotone mappings such that $\text{dom} J \cap \text{dom} T_i \neq \emptyset$, $i = 1, 2$, then $\sum_{i=1}^2 (J - T_i)$ is D_I-pseudomonotone.

Proof. Let $\tilde{y}_n \in \sum_{i=1}^2 (J - T_i)(\eta_n)$, $\tilde{y}_n \in \sum_{i=1}^2 (J - T_i)(\eta)$. $\eta_n \in \text{dom} J \cap \text{dom} T_i$, $i = 1, 2$, with $V g^*(\tilde{y}_n) - V g^*(\tilde{y})$ and

$$\limsup_{n \to \infty} \langle \tilde{y}_n, V g^*(\tilde{y}_n) - V g^*(\tilde{y}) \rangle \leq 0.$$

(36)

Now, we prove for $y_0 \in (J - T_i)(\eta_n)$, $y_0 \in (J - T_i)(\eta)$, $i = 1, 2$, that

$$\limsup_{n \to \infty} \langle y_0, V g^*(y_0) - V g^*(y) \rangle \leq 0,$$

(37)

and

$$\limsup_{n \to \infty} \langle y_0, V g^*(y_0) - V g^*(y) \rangle \leq 0.$$

If

$$\limsup_{n \to \infty} \langle y_0, V g^*(y_0) - V g^*(y) \rangle = \varepsilon > 0,$$

(38)

(note that otherwise, by symmetry), then there exists a subsequence $\{y_{n_k}\}_{k \in \mathbb{N}} \in \{y_0\}_{n \in \mathbb{N}}$ such that

$$\limsup_{k \to \infty} \langle y_{n_k}, V g^*(y_{n_k}) - V g^*(y) \rangle = \varepsilon.$$

(39)

This implies that

$$\limsup_{k \to \infty} \langle y_{n_k}, V g^*(y_{n_k}) - V g^*(y) \rangle = \limsup_{k \to \infty} \left[\langle \tilde{y}_{n_k}, V g^*(\tilde{y}_{n_k}) - V g^*(\tilde{y}) \rangle - \langle y_{n_k}, V g^*(y_{n_k}) - V g^*(y) \rangle \right] \leq 0 - \varepsilon.$$

(40)

From the D_I-pseudomonotonicity of $J - T_i$, we get for all $y' \in (J - T_i)(\eta_n')$, $\eta_n' \in \text{dom} J \cap \text{dom} T_i$

$$\langle y^{(1)}, V g^*(y^{(1)}) - V g^*(y') \rangle \leq \liminf_{k \to \infty} \langle y_{n_k}, V g^*(y_{n_k}) - V g^*(y) \rangle.$$

(41)

Letting $y' = y^{(1)}$, we obtain

$$0 \leq \liminf_{k \to \infty} \langle y_{n_k}, V g^*(y_{n_k}) - V g^*(y) \rangle \leq 0 - \varepsilon,$$

(42)

a contradiction.

Hence,

$$\limsup_{k \to \infty} \langle y_{n_k}, V g^*(y_{n_k}) - V g^*(y) \rangle \leq 0,$$

(43)

and

$$\limsup_{k \to \infty} \langle y_{n_k}, V g^*(y_{n_k}) - V g^*(y) \rangle \leq 0.$$

This holds for any subsequence, so (37) holds and the proof follows immediately by the superadditivity of the limit inf. □

3. Application to Multivalued Nonlinear D_I-Complementarity Problem

As applications of Theorem 8 we consider the multivalued nonlinear D_I-complementarity problem (8) with $T = \lambda T_1 + T_2 - \lambda J$, where T_i, $i = 1, 2$ are two nonlinear multivalued mappings from K to 2^{V^*}, and $\lambda \in (0, \infty)$.

Theorem 10. Let V, V^*, g^*, J, and K be the same as in Theorem 6, and suppose that K has the property (W). Let the mappings $V g^*$ and T_i, $i = 1, 2$ be weakly continuous and let either $V g^*$ or both T_i, $i = 1, 2$ be continuous. Let $J - T_i : K \to 2^{V^*}$, $i = 1, 2$ be two bounded D_I-pseudomonotone mappings.

Let

$$\frac{1}{\rho_1} = \inf_{\eta \in K} \left(\frac{\langle w_1, V g^*(\lambda w_1 + w_2) - \langle \lambda \omega_0 + w_2 \rangle \times (\| V g^*(\lambda w_1 + w_2) \|_{V^*}^2 - 1 \rangle, a = \liminf_{n \to \infty} \langle w_2, V g^*(\lambda w_1 + w_2) \rangle - \langle \lambda \omega_0 + w_2 \rangle \right) \times (\| V g^*(\lambda w_1 + w_2) \|_{V^*}^2 - 1 \rangle, b = \liminf_{t \to \infty} \Phi(t) \right)$$

Be such that $a < b$, where $w_1 \in (J - T_i)(\eta), w_0 \in (J - T_i)(\eta_0)$, $i = 1, 2$, $\eta, \eta_0 \in K$, $\rho_1 > 0$ and Φ is the gauge function. Then for every $\lambda > \rho_1(b - a)$ problem (8) with $T = \lambda T_1 + T_2 - \lambda J$ has a solution in K.

Proof. By Proposition 9, $J - T = \lambda(J - T_1) + (J - T_2)$ is D_I-pseudomonotone for every $\lambda \geq 0$. Set $\lambda > \rho_1(b - a)$. Then

$$\liminf_{\eta \in K} \langle \lambda \omega_1 + w_2, V g^*(\lambda w_1 + w_2) - \langle \lambda \omega_0 + w_2 \rangle \times (\| V g^*(\lambda w_1 + w_2) \|_{V^*}^2 - 1 \rangle \rangle \geq \frac{\lambda}{\rho_1} + a > b > 0.$$

(45)

This implies that the mapping $J - T = \lambda(J - T_1) + (J - T_2)$ is D_I-coercive. □

The conclusion follows from Theorem 8.
References

Submit your manuscripts at http://www.hindawi.com