Research Article

Strong Convergence of an Implicit S-Iterative Process for Lipschitzian Hemicontractive Mappings

Shin Min Kang, 1 Arif Rafiq, 2 and Sunhong Lee 1

1 Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Republic of Korea
2 School of CS and Mathematics, Hajvery University, 43-52 Industrial Area, Gulberg III, Lahore 54660, Pakistan

Correspondence should be addressed to Sunhong Lee, sunhong@gnu.ac.kr

Received 22 October 2012; Accepted 15 November 2012

Academic Editor: Yongfu Su

Copyright © 2012 Shin Min Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We establish the strong convergence for the implicit S-iterative process associated with Lipschitzian hemicontractive mappings in Hilbert spaces.

1. Introduction

Let H be a Hilbert space and let $T : H \to H$ be a mapping. The mapping T is called Lipschitzian if there exists $L > 0$ such that

$$\|Tx - Ty\| \leq L\|x - y\|, \quad \forall x, y \in H. \quad (1.1)$$

If $L = 1$, then T is called nonexpansive and if $0 \leq L < 1$, then T is called contractive. The mapping T is said to be pseudocontractive ([1, 2]) if

$$\|Tx - Ty\|^2 \leq \|x - y\|^2 + \|(I - T)x - (I - T)y\|^2, \quad \forall x, y \in H, \quad (1.2)$$

and the mapping T is said to be strongly pseudocontractive if there exists $k \in (0, 1)$ such that

$$\|Tx - Ty\|^2 \leq \|x - y\|^2 + k\|(I - T)x - (I - T)y\|^2, \quad \forall x, y \in H. \quad (1.3)$$
Let $F(T) := \{ x \in H : Tx = x \}$ and the mapping T is called hemiconttractive if $F(T) \neq \emptyset$ and
\[
\|Tx - x^*\|^2 \leq \|x - x^*\|^2 + \|x - Tx\|^2, \quad \forall x \in H, x^* \in F(T).
\] (1.4)

It is easy to see the class of pseudocontractive mappings with fixed points is a subclass of the class of hemiconttractive mappings. For the importance of fixed points of pseudocontractions the reader may consult [1].

In 1974, Ishikawa [3] proved the following result.

Theorem 1.1. Let K be a compact convex subset of a Hilbert space H and let $T : K \to K$ be a Lipschitzian pseudocontractive mapping.

For arbitrary $x_1 \in K$, let $\{x_n\}$ be a sequence defined iteratively by
\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_nTy_n,
\]
\[
y_n = (1 - \beta_n)x_n + \beta_nTx_n, \quad n \geq 1,
\] (1.5)

where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences satisfying the conditions:

(i) $0 \leq \alpha_n \leq \beta_n \leq 1$,
(ii) $\lim_{n \to \infty} \beta_n = 0$,
(iii) $\sum_{n=1}^{\infty} \alpha_n \beta_n = \infty$.

Then the sequence $\{x_n\}$ converges strongly to a fixed point of T.

Another iteration scheme which has been studied extensively in connection with fixed points of pseudocontractive mappings.

Let K be a nonempty convex subset of a normed space X and let $T : K \to K$ be a mapping. Then, for arbitrary $x_1 \in K$, the S-iterative process is defined by
\[
x_{n+1} = Ty_n,
\]
\[
y_n = (1 - \beta_n)x_n + \beta_nTx_n, \quad n \geq 1,
\] (1.6)

where $\{\beta_n\}$ is a real sequence in $[0,1]$.

In this paper, we establish the strong convergence for the implicit S-iterative process associated with Lipschitzian hemiconttractive mappings in Hilbert spaces.

2. Main Results

We need the following lemma.

Lemma 2.1 (see [6]). For all $x, y \in H$ and $\lambda \in [0,1]$, the following well-known identity holds
\[
\|(1 - \lambda)x + \lambda y\|^2 = (1 - \lambda)\|x\|^2 + \lambda\|y\|^2 - \lambda(1 - \lambda)\|x - y\|^2.
\] (2.1)
Now we prove our main results.

Theorem 2.2. Let K be a compact convex subset of a real Hilbert space H and let $T : K \to K$ be a Lipschitzian hemicontractive mapping satisfying

$$
\|x - Ty\| \leq \|Tx - Ty\|, \quad \forall x, y \in K.
$$

(C)

Let $\{\beta_n\}$ be a sequence in $[0, 1]$ satisfying

(iv) $\sum_{n=1}^{\infty} \beta_n = \infty,$

(v) $\sum_{n=1}^{\infty} \beta_n^2 < \infty.$

For arbitrary $x_0 \in K$, let $\{x_n\}$ be a sequence defined iteratively by

$$
x_n = Ty_n,
$$

$$
y_n = (1 - \beta_n)x_{n-1} + \beta_n Tx_n, \quad n \geq 1.
$$

(2.2)

Then the sequence $\{x_n\}$ converges strongly to the fixed point x^* of T.

Proof. From Schauder’s fixed point theorem, $F(T)$ is nonempty since K is a convex compact set and T is continuous, let $x^* \in F(T)$. Using the fact that T is hemicontractive we obtain

$$
\|Tx_n - x^*\|^2 \leq \|x_n - x^*\|^2 + \|x_n - Tx_n\|^2,
$$

(2.3)

$$
\|Ty_n - x^*\|^2 \leq \|y_n - x^*\|^2 + \|y_n - Ty_n\|^2.
$$

(2.4)

Now by (v), there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$
\beta_n \leq \min \left\{ \frac{1}{3}, \frac{1}{L^2} \right\},
$$

(2.5)

which implies that

$$
\frac{2\beta_n}{1 - \beta_n} \leq 1.
$$

(2.6)
With the help of (2.2), (2.3), and Lemma 2.1, we obtain the following estimates:

\[
\|y_n - x^*\|^2 = \|(1 - \beta_n)x_{n-1} + \beta_nTx_n - x^*\|^2 \\
= \|(1 - \beta_n)(x_{n-1} - x^*) + \beta_n(Tx_n - x^*)\|^2 \\
= (1 - \beta_n)\|x_{n-1} - x^*\|^2 + \beta_n\|Tx_n - x^*\|^2 \\
- \beta_n(1 - \beta_n)\|x_{n-1} - Tx_n\|^2 \\
\leq (1 - \beta_n)\|x_{n-1} - x^*\|^2 + \beta_n\left(\|x_n - x^*\|^2 + \|x_n - Tx_n\|^2\right) \\
- \beta_n(1 - \beta_n)\|x_{n-1} - Tx_n\|^2, \\
\tag{2.7}
\]

\[
\|y_n - Ty_n\|^2 = \|(1 - \beta_n)x_{n-1} + \beta_nTx_n - Ty_n\|^2 \\
= \|(1 - \beta_n)(x_{n-1} - Ty_n) + \beta_n(Tx_n - Ty_n)\|^2 \\
= (1 - \beta_n)\|x_{n-1} - Ty_n\|^2 + \beta_n\|Tx_n - Ty_n\|^2 \\
- \beta_n(1 - \beta_n)\|x_{n-1} - Tx_n\|^2.
\]

Substituting (2.7) in (2.4) we obtain

\[
\|Ty_n - x^*\|^2 \leq (1 - \beta_n)\|x_{n-1} - x^*\|^2 + \beta_n\left(\|x_n - x^*\|^2 + \|x_n - Tx_n\|^2\right) \\
+ (1 - \beta_n)\|x_{n-1} - Ty_n\|^2 + \beta_n\|Tx_n - Ty_n\|^2 \\
- 2\beta_n(1 - \beta_n)\|x_{n-1} - Tx_n\|^2. \\
\tag{2.8}
\]

Also with the help of condition (C) and (2.8), we have

\[
\|x_{n+1} - x^*\|^2 = \|Ty_n - x^*\|^2 \\
\leq (1 - \beta_n)\|x_{n-1} - x^*\|^2 + \beta_n\left(\|x_n - x^*\|^2 + \|x_n - Tx_n\|^2\right) \\
+ (1 - \beta_n)\|x_{n-1} - Ty_n\|^2 + \beta_n\|Tx_n - Ty_n\|^2 \\
- 2\beta_n(1 - \beta_n)\|x_{n-1} - Tx_n\|^2 \\
\leq (1 - \beta_n)\|x_{n-1} - x^*\|^2 + \beta_n\|x_n - x^*\|^2 + (1 - \beta_n)\|x_{n-1} - Ty_n\|^2 \\
+ 2\beta_n\|Tx_n - Ty_n\|^2 - 2\beta_n(1 - \beta_n)\|x_{n-1} - Tx_n\|^2.
\tag{2.9}
\]
Abstract and Applied Analysis

which implies that

\[\|x_{n+1} - x^*\|^2 \leq \|x_{n-1} - x^*\|^2 + \|x_{n-1} - Ty_n\|^2 \]

\[+ \frac{2\beta_n}{1 - \beta_n} \|Tx_n - Ty_n\|^2 - 2\beta_n \|x_{n-1} - Tx_n\|^2 \]

\[\leq \|x_{n-1} - x^*\|^2 + \|x_{n-1} - Ty_n\|^2 + \|Tx_n - Ty_n\|^2 \]

\[- 2\beta_n \|x_{n-1} - Tx_n\|^2 , \]

where

\[\|x_{n-1} - Ty_n\|^2 \leq \|Tx_{n-1} - Ty_n\|^2 \]

\[\leq L^2 \|x_{n-1} - y_n\|^2 \]

\[= L^2 \beta_n^2 \|x_{n-1} - Tx_n\|^2 , \]

\[\|Tx_n - Ty_n\|^2 \leq L^2 \|x_n - y_n\|^2 \]

\[\leq L^2 (\|x_n - x_{n-1}\| + \|x_{n-1} - y_n\|)^2 \]

\[\leq L^2 (\|x_n - x_{n-1}\| + \beta_n \|x_{n-1} - Tx_n\|)^2 \]

\[\leq L^2 (\|x_n - x_{n-1}\| + \beta_n M)^2 , \]

\[\|x_n - x_{n-1}\| = \|x_{n-1} - Ty_n\| \]

\[\leq \|Tx_{n-1} - Ty_n\| \]

\[\leq L \|x_{n-1} - y_n\| \]

\[= L \beta_n \|x_{n-1} - Tx_n\| \]

\[\leq L \beta_n M \]

and consequently from (2.12), we obtain

\[\|Tx_n - Ty_n\|^2 \leq L^2 (1 + L)^2 M^2 \beta_n^2 , \]

(2.13)
Hence by (2.5), (2.10), (2.11), and (2.13), we have
\[
\|x_n - x^*\|^2 \leq \|x_{n-1} - x^*\|^2 + L^2 \beta_n^2 \|x_{n-1} - Tx_n\|^2 \\
+ L^2 (1 + L)^2 M^2 \beta_n^2 - 2 \beta_n \|x_{n-1} - Tx_n\|^2 \\
= \|x_{n-1} - x^*\|^2 + L^2 (1 + L)^2 M^2 \beta_n^2 \\
- \beta_n \left(2 - L^2 \beta_n\right) \|x_{n-1} - Tx_n\|^2 \\
\leq \|x_{n-1} - x^*\|^2 + L^2 (1 + L)^2 M^2 \beta_n^2 - \beta_n \|x_{n-1} - Tx_n\|^2,
\] (2.14)
which implies that
\[
\beta_n \|x_{n-1} - Tx_n\|^2 \leq \|x_{n-1} - x^*\|^2 - \|x_{n-1} - x^*\|^2 + L^2 (1 + L)^2 M^2 \beta_n^2,
\] (2.15)
so that
\[
\frac{1}{2} \sum_{j=N}^{n} \beta_j \|x_j - Tx_j\|^2 \leq \|x_N - x^*\|^2 - \|x_n - x^*\|^2 + L^2 (1 + L)^2 M^2 \sum_{j=N}^{n} \beta_j^2.
\] (2.16)
Hence by conditions (iv) and (v), we get
\[
\sum_{j=0}^{\infty} \|x_{j-1} - Tx_j\|^2 < \infty.
\] (2.17)
It implies that
\[
\lim_{n \to \infty} \|x_{n-1} - Tx_n\| = 0.
\] (2.18)
Consider
\[
\|x_n - Tx_n\| \leq \|x_n - x_{n-1}\| + \|x_{n-1} - Tx_n\|,
\] (2.19)
which implies that
\[
\lim_{n \to \infty} \|x_n - Tx_n\| = 0.
\] (2.20)

The rest of the argument follows exactly as in the proof of Theorem of [3]. This completes the proof. \(\square\)

Theorem 2.3. Let \(K\) be a compact convex subset of a real Hilbert space \(H\) and let \(T : K \to K\) be a Lipschitzian hemicontractive mapping satisfying the condition (C). Let \(\{\beta_n\}\) be a sequence in \([0, 1]\) satisfying the conditions (iv) and (v).
Assume that $P_K : H \to K$ be the projection operator of H onto K. Let $\{x_n\}$ be a sequence defined iteratively by

$$
x_n = P_K(Ty_n),
$$

$$
y_n = P_K((1 - \beta_n)x_{n-1} + \beta_nTx_n), \quad n \geq 1.
$$

Then the sequence $\{x_n\}$ converges strongly to a fixed point of T.

Proof. The operator P_K is nonexpansive (see, e.g., [2]). K is a Chebyshev subset of H so that, P_K is a single-valued mapping. Hence, we have the following estimate:

$$
\|x_n - x^*\|^2 = \|P_K(Ty_n) - P_Kx^*\|^2
\leq \|Ty_n - x^*\|^2
\leq \|x_{n-1} - x^*\|^2 + L^2(1 + L)^2M^2\beta_n^2 - \beta_n\|x_{n-1} - Tx_n\|^2.
$$

The set $K = K \cup T(K)$ is compact and so the sequence $\{\|x_n - Tx_n\|\}$ is bounded. The rest of the argument follows exactly as in the proof of Theorem 2.2. This completes the proof.

Remark 2.4. In main results, the condition (C) is not new and it is due to Liu et al. [7].

Acknowledgment

The authors would like to thank the referees for their useful comments and suggestions.

References

