Research Article

Differential Subordination Results for Certain Integrodifferential Operator and Its Applications

M. A. Kutbi1 and A. A. Attiya2,3

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura 35516, Egypt
3 Department of Mathematics, College of Science, University of Hail, Hail, Saudi Arabia

Correspondence should be addressed to A. A. Attiya, aattiy@mans.edu.eg

Received 8 October 2012; Accepted 27 November 2012

Academic Editor: Josip E. Pecaric

Copyright © 2012 M. A. Kutbi and A. A. Attiya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce an integrodifferential operator $J_{s,b}(f)$ which plays an important role in the Geometric Function Theory. Some theorems in differential subordination for $J_{s,b}(f)$ are used. Applications in Analytic Number Theory are also obtained which give new results for Hurwitz-Lerch Zeta function and Polylogarithmic function.

1. Introduction

Let A denote the class of functions $f(z)$ normalized by

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disc $U = \{ z \in \mathbb{C} : |z| < 1 \}$.

Also, let μ denote the class of analytic functions in the form

$$r(z) = 1 + \sum_{k=1}^{\infty} a_k z^k.$$
We begin by recalling that a general Hurwitz-Lerch Zeta function $\Phi(z, s, b)$ defined by (cf., e.g., [1, P. 121 et seq.])

$$
\Phi(z, s, b) = \sum_{k=0}^{\infty} \frac{z^k}{(k + b)^s},
$$

(1.3)

($b \in \mathbb{C} \setminus \mathbb{Z}_{0}^{\circ}, \mathbb{Z}_{0}^{\circ} = \mathbb{Z}^{-} \cup \{0\} = \{0, -1, -2, \ldots\}, s \in \mathbb{C}$ when $z \in U$, $\text{Re}(s) > 1$ when $|z| = 1$)

which contains important functions of Analytic Number Theory, as the Polylogarithmic function:

$$
Li_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s} = z\Phi(z, s, 1),
$$

(1.4)

($s \in \mathbb{C}$ when $z \in U$, $\text{Re}(s) > 1$ when $|z| = 1$).

Several properties of $\Phi(z, s, b)$ can be found in the recent papers, for example Choi et al. [2], Ferreira and López [3], Gupta et al. [4], and Luo and Srivastava [5]. See, also [6–16].

Recently, Srivastava and Attiya [8] introduced the operator $J_{s,b}(f)$ which makes a connection between Geometric Function Theory and Analytic Number Theory, defined by

$$
J_{s,b}(f)(z) = G_{s,b}(z) \ast f(z),
$$

(1.5)

($z \in U; f \in A; b \in \mathbb{C} \setminus \mathbb{Z}_{0}^{\circ}; s \in \mathbb{C}$),

where

$$
G_{s,b}(z) = (1 + b)^s[\Phi(z, s, b) - b^{-s}]
$$

(1.6)

and \ast denotes the Hadamard product (or convolution).

Furthermore, Srivastava and Attiya [8] showed that

$$
J_{s,b}(f)(z) = z + \sum_{k=2}^{\infty} \left(\frac{1 + b}{k + b}\right)^s a_k z^k.
$$

(1.7)
As special cases of $J_{s,b}(f)$, Srivastava and Attiya [8] introduced the following identities:

$$
J_{0,b}(f)(z) = f(z),
$$

$$
J_{1,0}(f)(z) = \int_0^z \frac{f(t)}{t} dt = A(f)(z),
$$

$$
J_{1,1}(f)(z) = \frac{2}{z} \int_0^z f(t) dt = \mathcal{L}(f)(z),
$$

$$
J_{1,\gamma}(f)(z) = \frac{1+\gamma}{z^\gamma} \int_0^z f(t) t^{1-\gamma} dt = \mathcal{L}_\gamma(f)(z) \quad (\gamma \text{ real; } \gamma > -1),
$$

$$
J_{0,1}(f)(z) = \frac{2\sigma}{z^\Gamma(\sigma)} \int_0^z \left(\log\left(\frac{z}{t}\right)\right)^{\sigma-1} f(t) dt = I^\sigma(f)(z) \quad (\sigma \text{ real; } \sigma > 0),
$$

(1.8)

where, the operators $A(f)$ and $\mathcal{L}(f)$ are the integral operators introduced earlier by Alexander [17] and Libera [18], respectively, $\mathcal{L}_\gamma(f)$ is the generalized Bernardi operator, $\mathcal{L}_\gamma(f)(\gamma \in \mathbb{N} = \{1, 2, \ldots\})$ introduced by Bernardi [19], and $I^\sigma(f)$ is the Jung-Kim-Srivastava integral operator introduced by Jung et al. [20].

Moreover, in [8], Srivastava and Attiya defined the operator $J_{s,b}(f)$ for $b \in \mathbb{C} \setminus \mathbb{Z}^-$, by using the following relationship:

$$
J_{s,0}(f)(z) = \lim_{b \to 0} J_{s,b}(f)(z).
$$

(1.9)

Some applications of the operator $J_{s,b}(f)$ to certain classes in Geometric Function Theory can be found in [21, 22].

In our investigations we need the following definitions and lemma.

Definition 1.1. Let $f(z)$ and $F(z)$ be analytic functions. The function $f(z)$ is said to be subordinate to $F(z)$, written $f(z) \prec F(z)$, if there exists a function $w(z)$ analytic in U, with $w(0) = 0$ and $|w(z)| \leq 1$, and such that $f(z) = F(w(z))$. If $F(z)$ is univalent, then $f(z) \prec F(z)$ if and only if $f(0) = F(0)$ and $f(U) \subset F(U)$.

Definition 1.2. Let $\Psi : \mathbb{C}^2 \times U \to \mathbb{C}$ be analytic in domain \mathbb{D}, and let $h(z)$ be univalent in U. If $p(z)$ is analytic in U with $(p(z), z p'(z)) \in \mathbb{D}$ when $z \in U$, then we say that $p(z)$ satisfies a first order differential subordination if

$$
\Psi(p(z), z p'(z); z) < h(z) \quad (z \in U).
$$

(1.10)

The univalent function $q(z)$ is called dominant of the differential subordination (1.10), if $p(z) \prec q(z)$ for all $p(z)$ satisfying (1.10), if $\tilde{q}(z) \prec q(z)$ for all dominant of (1.10), then we say that $\tilde{q}(z)$ is the best dominant of (1.10).

Lemma 1.3 (see [8]). If $z \in U, f \in A, b \in \mathbb{C} \setminus \mathbb{Z}^-$ and $s \in \mathbb{C}$, then

$$
zJ_{s+1,b}^f(f)(z) = (1 + b)J_{s,b}(f)(z) - bJ_{s+1,b}(f)(z).
$$

(1.11)
The purpose of the present paper is to extend the use of $J_{s,b}(f)$ as integrodifferential operator, and some theorems in differential subordination for $J_{s,b}(f)$ are used. Applications in *Analytic Number Theory* are also obtained which give new results for Hurwitz-Lerch Zeta function and Polylogarithmic function.

2. Making Use of $J_{s,b}(f)$ as a Differential Operator

From the definition of $J_{s,b}(f)$ in (1.5) and using (1.7), we obtain the following identities.

For $z \in U, f \in A, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and $b \in \mathbb{C} \setminus \mathbb{Z}^-$, we have

\[
J^{-1,0}(f)(z) = zf'(z),
J^{-1,1}(f)(z) = \frac{1}{2} \{f(z) + zf'(z)\},
J^{-1,1/(1-\lambda)}(f)(z) = \lambda f(z) + (1 - \lambda)zf''(z) \quad (\lambda \neq 1),
J^{-n,0}(f)(z) = D^n(f)(z),
J^{-n,(1/\lambda)-1}(f)(z) = D^n_{\lambda}(f)(z) \quad (\lambda \neq 0),
J^{-n,1}(f)(z) = I^n_{\lambda}(f)(z) \quad (\lambda > -1),
J^{-n,1}(f)(z) = I_n(f)(z),
\]

where $D^n(f)$ is the Sălăgean differential operator which introduced by Sălăgean [23], $D^n_{\lambda}(f)$ is the generalized of operator, $D^n_{1}(f) (\lambda > 0; \text{ real})$ introduced by Al-Oboudi [24], $I^n_{\lambda}(f)$ was studied by Cho and Srivastava [25] and by Cho and Kim [26], and the operator $I_n(f)$ was studied by Uralegaddi and Somanatha [27].

Also, we note that

\[
J^{-n,0}(f)(z) = Li_{-n}(z) * f(z) \quad (n \in \mathbb{N}_0; f \in A),
J^{-n,1}(f)(z) = \frac{Li_{-n}(z)}{z} * f(z) \quad (n \in \mathbb{N}_0; f \in A),
\]

where $Li_n(z)$ is the Polylogarithmic function defined by (1.4).

Now, we prove the following lemma.

Lemma 2.1. If $z \in U, f \in A, n \in \mathbb{N}_0$ and $b \in \mathbb{C} \setminus \mathbb{Z}^-$, then

\[
J^{-n,b}(f)(z) = \frac{1}{(1 + b)^n} (zd + b)^n f(z) \left(D := \frac{d}{dz} \right),
\]
Abstract and Applied Analysis

where \((zD + b)^n = (zD + b) \circ (zD + b) \circ \cdots \circ (zD + b)\) to \(n\)-times, and \(\circ\) denotes the composition \((I \circ f)(z) = I(J(f(z)))\).

Proof. Putting \(s = -n\) \((n \in \mathbb{N}_0)\) in (1.11), we have

\[
(1 + b)(J_{-n,b})(f)(z) = \left[z \frac{d}{dz} J_{-n+1,b}(f)(z) + b J_{-n+1,b}(f)(z) \right] = (zD + b) J_{-n+1,b}(f)(z) \quad \left(D := \frac{d}{dz} \right),
\]

therefore,

\[
J_{-n,b}(f)(z) = \frac{1}{(1 + b)} (zD + b) J_{-n+1,b}(f)(z). \tag{2.5}
\]

Noting that the relation (2.5) is a recurrence relation, by using mathematical induction, we get (2.3), which completes the proof of the lemma.

Putting \(f(z) = f_0(z) = z/(1 - z)\) in Lemma 2.1, we obtain the following properties for both Hurwitz-Lerch Zeta function \(\Phi(z,s,b)\) and Polylogarithmic function \(\text{Li}_s(z)\).

Corollary 2.2. Let \(\Phi(z,s,b)\) and \(\text{Li}_s(z)\) be the Hurwitz-Lerch Zeta function and Polylogarithmic function defined by (1.3) and (1.4), respectively, then we have

\[
\Phi(z,-n,b) = b^n + \left(z \frac{d}{dz} + b \right)^n \left(\frac{z}{1 - z} \right) \quad (|z| < 1),
\]

\[
\text{Li}_{-n}(z) = z \left\{ 1 + \left(z \frac{d}{dz} + 1 \right)^n \left(\frac{z}{1 - z} \right) \right\} \quad (|z| < 1),
\]

where \(b \in \mathbb{C} \setminus \mathbb{Z}_0^-\) and \(n \in \mathbb{N}_0\).

Example 2.3. Using Corollary 2.2, we have the following well known results for \(z(z \in \mathbb{C}; |z| < 1)\).

(i) \(\Phi(z,0,b) = 1/(1 - z)\).

(ii) \(\Phi(z,-1,b) = b + ((1 + b)z - bz^2)/(1 - z)^2\).

(iii) \(\Phi(z,-2,b) = b^2 + ((1 + b)^2z + (1 - 2b - 2bz^2)z^2 + b^2z^3)/(1 - z)^3\).

(iv) \(\text{Li}_0(z) = z/(1 - z)\).

(v) \(\text{Li}_{-1}(z) = z/(1 - z)^2\).

(vi) \(\text{Li}_{-2}(z) = z(1 + z)/(1 - z)^3\).

3. **Applications of Differential Subordination for** \(J_{s,b}(f)\)

To prove our results, we need the following lemmas due to Hallenbeck and Ruscheweyh [28] and Miller and Mocanu [29], respectively, see also Miller and Mocanu [30].
Lemma 3.1. Let \(h(z) \) be convex univalent in \(U \), with \(h(0) = 1, \gamma \neq 0 \) and \(\text{Re}(\gamma) \geq 0 \). If \(q(z) \in \mu \) and
\[
q(z) - \frac{zq'(z)}{\gamma} < h(z),
\]
then
\[
q(z) < S(z) < h(z),
\]
where
\[
S(z) = \frac{\gamma}{2\gamma} \int_{0}^{z} h(t) t^{\gamma - 1} dt.
\]
The function \(S(z) \) is convex univalent and is the best dominant.

Lemma 3.2. Let \(\lambda > 0 \), and let \(\beta = \beta_{0}(\lambda) \) be the root of the equation as follows:
\[
\beta \pi = \frac{3\pi}{2} - \tan^{-1}(\lambda \beta).
\]
In addition, let \(\alpha = \alpha(\beta, \lambda) = \beta + (2/\pi)\tan^{-1}(\lambda \pi) \), for \(0 < \beta \leq \beta_{0} \).
If \(p(z) \in \mu \) and
\[
p(z) + \lambda z p'(z) < \left[\frac{1 + z}{1 - z} \right]^{\alpha},
\]
then
\[
p(z) < \left[\frac{1 + z}{1 - z} \right]^{\beta}.
\]

Now, we define the function \(L(f)(z) := L_{(s,b,\lambda)}(f)(z) \) as the following:
\[
L(f)(z) = (1 - \lambda - \lambda b) J_{s,b}(f)(z) + \lambda (1 + b) J_{s-1,b}(f)(z) \quad (z \in U),
\]
(3.7)
(\(z \in U; f \in A; b \in \mathbb{C} \setminus \mathbb{Z}^{\times}; \{ s, \lambda \in \mathbb{C}; \lambda \neq 0; \text{Re}(\lambda) \geq 0 \} \)).

Theorem 3.3. Let the function \(L(f)(z) \) defined by (3.7) and for some \(\alpha(0 \leq \alpha < 1) \). If
\[
\text{Re}\left\{ \frac{L(f)(z)}{z} \right\} > \alpha,
\]
(3.8)
then
\[
\text{Re} \left\{ \frac{J_{s,b}(f)(z)}{z} \right\} > (2\alpha - 1) + 2(1 - \alpha) \, _2F_1 \left(1, \frac{1}{\lambda}; \frac{1}{\lambda} + 1, -1 \right). \quad (3.9)
\]

The constant \((2\alpha - 1) + 2(1 - \alpha) \, _2F_1(1, 1/\lambda; (1/\lambda) + 1, -1)\) is the best estimate.

Proof. Defining the function \(q(z) = J_{s,b}(f)(z)/z\), then we have \(q(z) \in \mu\).

If we take \(\gamma = 1/\lambda\), and the convex univalent function \(h(z)\) defined by
\[
h(z) = \frac{1 + (2\alpha - 1)z}{1 + z}, \quad 0 \leq \alpha < 1,
\]
then, we have
\[
q(z) + \frac{zq'(z)}{\gamma} = (1 - \lambda) \frac{J_{s,b}(f)(z)}{z} + \lambda J_{s,b}^\prime(f)(z). \quad (3.11)
\]

Using Lemma 1.3 and (3.7), therefore (3.11) can be written as
\[
q(z) + \frac{zq'(z)}{\gamma} = \frac{L(f)(z)}{z},
\]
then,
\[
q(z) + \frac{zq'(z)}{\gamma} < h(z),
\]
where \(h(z)\) is defined by (3.10) satisfying \(h(0) = 1\).

Applying Lemma 3.1, we obtain that \(J_{s,b}(f)(z)/z < S(z)\), where the convex univalent function \(S(z)\) defined by
\[
S(z) = \frac{1}{\lambda z^{1/\lambda}} \int_0^z \frac{1 + (2\alpha - 1)t}{1 + t} t^{(1/\lambda) - 1} dt. \quad (3.14)
\]

Since \(\text{Re}\{h(z)\} > 0\) and \(S(z) < h(z)\), we have \(\text{Re}\{S(z)\} > 0\).

This implies that
\[
\inf_{z \in U} \text{Re}\{S(z)\} = S(1) = (2\alpha - 1) + \frac{2}{\lambda}(1 - \alpha) \int_0^1 \frac{u^{(1/\lambda) - 1}}{1 + u} du
\]
\[
= (2\alpha - 1) + 2(1 - \alpha) \int_0^1 \frac{dt}{1 + t^\lambda}
\]
\[
= (2\alpha - 1) + 2(1 - \alpha) \, _2F_1 \left(1, \frac{1}{\lambda}; \frac{1}{\lambda} + 1, -1 \right). \quad (3.15)
\]
Hence, the constant \((2\alpha - 1) + 2(1 - \alpha)\) cannot be replace by any larger one.

This completes the proof of Theorem 3.3.

Theorem 3.4. Let the function \(L(f)(z)\) with \(\lambda > 0\) real, defined by (3.7), and let \(\beta_0\) satisfy the following equation:

\[
\beta_0 \pi + \tan^{-1}\left(\frac{\beta_0}{2}\right) = \frac{3\pi}{2},
\]

(3.16)

If

\[
\frac{L(f)(z)}{z} < \left[\frac{1 + z}{1 - z}\right]^{\beta + (2/\pi)\tan^{-1}(\lambda\beta)},
\]

(3.17)

then

\[
\frac{J_{s,b}(f)(z)}{z} < \left[\frac{1 + z}{1 - z}\right]^\beta \quad (0 < \beta \leq \beta_0).
\]

(3.18)

Proof. Defining the function \(p(z) = J_{s,b}(f)(z)/z \in \mu\), then we have

\[
p(z) + \lambda z p'(z) = (1 - \lambda) \frac{J_{s,b}(f)(z)}{z} + \lambda J'_{s,b}(f)(z).
\]

(3.19)

Using Lemma 1.3 and (3.7), therefore (3.11) can be written as

\[
p(z) + \lambda z p'(z) = \frac{L(f)(z)}{z}.
\]

(3.20)

This completes the proof of Theorem 3.4 after applying Lemma 3.2.

4. Applications in Analytic Number Theory

Putting \(f(z) = f_0(z) = z/(1 - z)\) in Theorem 3.3, then we have the following property of Hurwitz-Lerch Zeta function.

Corollary 4.1. Let the function \(G_{s,b}(z)\) defined by (1.6). If

\[
\text{Re}\left\{\frac{(1 - \lambda - \lambda b)G_{s,b}(z) + \lambda (1 + b)G_{s-1,b}(z)}{z}\right\} > \alpha,
\]

(4.1)

then

\[
\text{Re}\left\{\frac{G_{s,b}(z)}{z}\right\} > (2\alpha - 1) + 2(1 - \alpha)\ _2\!F_1\left(1, \frac{1}{\lambda}; \frac{1}{\lambda} + 1, -1\right),
\]

(4.2)

where \(z \in \mathbb{U}, 0 < \alpha < 1, b \in \mathbb{C} \setminus \mathbb{Z}^- \) and \(s, \lambda \in \mathbb{C}; \lambda \neq 0; \text{Re} \lambda \geq 0\).
The constant $(2\alpha - 1) + 2(1 - \alpha) \ {}^2F_1(1, 1/\lambda; (1/\lambda) + 1, -1)$ is the best estimate.

Putting $f(z) = f_0(z) = z/(1 - \bar{z})$ in Theorem 3.4, then we have another property of Hurwitz-Lerch Zeta function.

Corollary 4.2. Let the function $G_{s,b}(z)$ defined by (1.6), and let β_0 satisfy the following equation:

$$\beta_0 \pi + \tan^{-1}(\beta_0) = \frac{3\pi}{2}. \quad (4.3)$$

If

$$\frac{(1 - \lambda - \lambda b)G_{s,b}(z) + \lambda(1 + b)G_{s-1,b}(z)}{z} < \frac{1 + z}{1 - z}^{\beta + (2/\pi)\tan^{-1}(\beta)}, \quad (4.4)$$

then

$$\frac{G_{s,b}(z)}{z} < \left[\frac{1 + z}{1 - z}\right]^\beta \quad (0 < \beta < \beta_0), \quad (4.5)$$

where $z \in \mathbb{U}$, $b \in \mathbb{C} \setminus \mathbb{Z}^-$, $s \in \mathbb{C}$ and $\lambda > 0$; real.

Putting $f(z) = f_0(z) = z/(1 - z)$ and $b = 1$ in Theorem 3.3, then we have the following property of Polylogarithmic function.

Corollary 4.3. Let the function $H_s(z)$ defined by

$$H_s(z) = 2^s \left[\frac{Li_s(z)}{z} - 1\right]. \quad (4.6)$$

If

$$\text{Re}\left\{\frac{(1 - 2\lambda)H_s(z) + 2\lambda H_{s-1}(z)}{z}\right\} > \alpha, \quad (4.7)$$

then

$$\text{Re}\left\{\frac{H_s(z)}{z}\right\} > (2\alpha - 1) + 2(1 - \alpha) \ {}^2F_1\left(1, \frac{1}{\lambda}; \frac{1}{\lambda} + 1, -1\right), \quad (4.8)$$

where $z \in \mathbb{U}$, $0 \leq \alpha < 1$ and \{s, $\lambda \in \mathbb{C}$; $\lambda \neq 0$; $\text{Re} \lambda \geq 0$\}.

The constant $(2\alpha - 1) + 2(1 - \alpha) \ {}^2F_1(1, 1/\lambda; (1/\lambda) + 1, -1)$ is the best estimate.

Putting $f(z) = f_0(z) = z/(1 - z)$ and $b = 1$ in Theorem 3.4, then we have the following property of Polylogarithmic function.
Corollary 4.4. Let the functions $G_{s,b}(z)$ and $H_s(z)$ defined by (1.6) and (4.6), respectively, and let β_0 satisfy the following:

$$\beta_0 \pi + \tan^{-1}(\lambda \beta_0) = \frac{3\pi}{2}. \quad (4.9)$$

If

$$\frac{(1 - 2\lambda)H_s(z) + 2\lambda H_{s-1}(z)}{z} < \left[\frac{1 + z}{1 - z} \right]^{\frac{\beta + (2/\pi) \tan^{-1}(\lambda \beta)}{2}}, \quad (4.10)$$

then

$$\frac{G_{s,b}(z)}{z} < \left[\frac{1 + z}{1 - z} \right]^\beta \quad (0 < \beta \leq \beta_0), \quad (4.11)$$

where $z \in \mathbb{U}$, $s \in \mathbb{C}$ and $\lambda > 0$; real.

Setting $f(z) = f_0(z) = z/(1 - z)$, $b = 1$ and $\lambda = 1/2$ in Theorem 3.3, then we have the following property of Polylogarithmic function.

Corollary 4.5. Let the function $H_s(z)$ defined by (4.6).

If

$$\operatorname{Re}\left\{ \frac{H_{s-1}(z)}{z} \right\} > \alpha, \quad (4.12)$$

then

$$\operatorname{Re}\left\{ \frac{H_s(z)}{z} \right\} > 2(2\ln 2 - 1)\alpha + (3 - 4\ln 2), \quad (4.13)$$

where $z \in \mathbb{U}$, $0 \leq \alpha < 1$ and $s \in \mathbb{C}$.

The constant $2(2\ln 2 - 1)\alpha + (3 - 4\ln 2)$ is the best estimate.

Taking $f(z) = f_0(z) = z/(1 - z)$, $b = 1$ and $\lambda = 1/2$ in Theorem 3.4, then we have the following property of polylogarithmic function.

Corollary 4.6. Let the function $H_s(z)$ defined by (4.6).

If

$$\frac{H_{s-1}(z)}{z} < \left[\frac{1 + z}{1 - z} \right]^{\beta + (2/\pi) \tan^{-1}(\beta)}, \quad (4.14)$$

then

$$\frac{H_s(z)}{z} < \left[\frac{1 + z}{1 - z} \right]^\beta \quad (0 < \beta \leq 1.3148754023\ldots), \quad (4.15)$$

where $z \in \mathbb{U}$ and $s \in \mathbb{C}$.
Corollary 4.7. Let the function $H_s(z)$ defined by (4.6) as follows:

If

$$\frac{H_{s-1}(z)}{z} < \left[\frac{1 + z}{1 - z} \right]^{3/2},$$

then

$$\text{Re}\left\{ \frac{H_s(z)}{z} \right\} > 1 - (4 \ln 2 - 2)^n \quad (n \in \mathbb{N}_0),$$

where $z \in U$ and $s \in \mathbb{C}$.

Proof. Let $H_{s-1}(z)$ satisfy the condition (4.16). Also, putting $f(z) = f_0(z) = z/(1 - z)$, $b = 1$, $\lambda = 1/2$ and $\beta = 1$ in Theorem 3.4.

Using (4.16), then we have

$$\frac{H_s(z)}{z} < \left[\frac{1 + z}{1 - z} \right],$$

therefore

$$\text{Re}\left\{ \frac{H_s(z)}{z} \right\} > 0.$$

Corollary 4.5, gives

$$\text{Re}\left\{ \frac{H_{s+1}(z)}{z} \right\} > 3 - 4 \ln 2.$$

Applied (4.11) again and to n-times, which gives (4.17). This completes the proof of Corollary 4.7. \qed

Finally, we can put Corollary 4.7 in the following form.

Corollary 4.8. Let the function $H_s(z)$ defined by (4.6).

If

$$\left| \text{Arg} \left(\frac{H_{s-1}(z)}{z} \right) \right| < \frac{3\pi}{4},$$

then

$$\text{Re}\left\{ \frac{H_{s+n}(z)}{z} \right\} > 1 - (4 \ln 2 - 2)^n \quad (n \in \mathbb{N}_0),$$

where $z \in U$ and $s \in \mathbb{C}$.

Acknowledgments

This research was funded by the Deanship of Scientific Research (DSR), King Abdul-Aziz University, Jeddah, Saudi Arabia, under Grant no. 103-130-D1432. The authors, therefore, acknowledge with thanks DSR technical and financial support.

References

Abstract and Applied Analysis

