Research Article

Explicit Formulas Involving q-Euler Numbers and Polynomials

Serkan Araci,¹ Mehmet Acikgoz,¹ and Jong Jin Seo²

¹ Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, 27310 Gaziantep, Turkey
² Department of Applied Mathematics, Pukyong National University, Busan 608-737, Republic of Korea

Correspondence should be addressed to Jong Jin Seo, seo2011@pknu.ac.kr

Received 4 April 2012; Accepted 4 October 2012

Academic Editor: Gerd Teschke

Copyright © 2012 Serkan Araci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We deal with q-Euler numbers and q-Bernoulli numbers. We derive some interesting relations for q-Euler numbers and polynomials by using their generating function and derivative operator. Also, we derive relations between the q-Euler numbers and q-Bernoulli numbers via the p-adic q-integral in the p-adic integer ring.

1. Preliminaries

Imagine that p is a fixed odd prime number. Throughout this paper we use the following notations, where \mathbb{Z}_p denotes the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_p denotes the field of p-adic rational numbers, and \mathbb{C}_p denotes the completion of algebraic closure of \mathbb{Q}_p. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}^* = \mathbb{N} \cup \{0\}$.

The p-adic absolute value is defined by

$$ |p|_p = \frac{1}{p} $$

In this paper, we will assume that $|q - 1|_p < 1$ as an indeterminate. $[x]_q$ is a q-extension of x, which is defined by

$$ [x]_q = \frac{1 - q^x}{1 - q}. $$

We note that $\lim_{q \to 1} [x]_q = x$ (see [1–12]).
We say that f is a uniformly differentiable function at a point $a \in \mathbb{Z}_p$, if the difference quotient
\[
F_f(x, y) = \frac{f(x) - f(y)}{x - y},
\]
has a limit $f'(a)$ as $(x, y) \to (a, a)$ and denote this by $f \in \text{UD} (\mathbb{Z}_p)$. Let $\text{UD} (\mathbb{Z}_p)$ be the set of uniformly differentiable function on \mathbb{Z}_p. For $f \in \text{UD} (\mathbb{Z}_p)$, let us start with the expression
\[
\frac{1}{[pN]} \sum_{0 \leq \xi < pN} f(\xi)q^\xi = \sum_{0 \leq \xi < pN} f(\xi)\mu_q (\xi + p^N \mathbb{Z}_p),
\]
which represents p-adic q-analogue of Riemann sums for f. The integral of f on \mathbb{Z}_p will be defined as the limit $(N \to \infty)$ of these sums, when it exists. The p-adic q-integral of function $f \in \text{UD} (\mathbb{Z}_p)$ is defined by Kim
\[
I_q(f) = \int_{\mathbb{Z}_p} f(\xi) d\mu_q (\xi) = \lim_{N \to \infty} \frac{1}{[pN]} \sum_{\xi = 0}^{pN-1} f(\xi)q^\xi.
\]
The bosonic integral is considered as a bosonic limit $q \to 1$, $I_1(f) = \lim_{q \to 1} I_q(f)$. Similarly, the fermionic p-adic integral on \mathbb{Z}_p is introduced by Kim as follows:
\[
I_{-q}(f) = \lim_{q \to -1} I_q(f) = \int_{\mathbb{Z}_p} f(\xi) d\mu_{-q}(\xi)
\]
(for more details, see [9–12]).

In [6], the q-Euler polynomials with weight 0 are introduced as
\[
\tilde{E}_{n,q}(x) = \int_{\mathbb{Z}_p} (x + y)^n d\mu_{-q}(y).
\]
From (1.7), we have
\[
\tilde{E}_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} x^l \tilde{E}_{n-l,q},
\]
where $\tilde{E}_{n,q}(0) = \tilde{E}_{n,q}$ are called q-Euler numbers with weight 0. Then, q-Euler numbers are defined as
\[
q (\tilde{E}_q + 1)^n + \tilde{E}_{n,q} = \begin{cases} [2]_q & \text{if } n = 0, \\ 0, & \text{if } n \neq 0, \end{cases}
\]
where the usual convention about replacing $(\tilde{E}_q)^n$ by $\tilde{E}_{n,q}$ is used.
Similarly, the q-Bernoulli polynomials and numbers with weight 0 are defined, respectively, as

$$\tilde{B}_{n,q}(x) = \lim_{n \to \infty} \frac{1}{[p]^n} \sum_{y=0}^{p^n-1} (x+y)^n q^y = \int_{\mathbb{Z}_p} (x+y)^n d\mu_q(y), \quad (1.10)$$

$$\tilde{B}_{n,q} = \int_{\mathbb{Z}_p} y^n d\mu_q(y)$$

(for more information, see [4]).

We, by using the Kim et al. method in [2], will investigate some interesting identities on the q-Euler numbers and polynomials arising from their generating function and derivative operator. Consequently, we derive some properties on the q-Euler numbers and polynomials and q-Bernoulli numbers and polynomials by using q-Volkenborn integral and fermionic p-adic q-integral on \mathbb{Z}_p.

2. On the q-Euler Numbers and Polynomials

Let us consider Kim’s q-Euler polynomials as follows:

$$F^q_x(t) = F^q_x(t) = \frac{[2]_q}{qe^t + 1} e^{xt} = \sum_{n=0}^{\infty} \tilde{E}_{n,q}(x) \frac{t^n}{n!}. \quad (2.1)$$

Here x is a fixed parameter. Thus, by expression of (2.1), we can readily see the following:

$$qe^t F^q_x + F^q_x = [2]_q e^{xt}. \quad (2.2)$$

Last from equality, taking derivative operator D as $D = d/dt$ on the both sides of (2.2). Then, we easily see that

$$qe^t (D + I)^k F^q_x + D^k F^q_x = [2]_q x^k e^{xt}, \quad (2.3)$$

where $k \in \mathbb{N}^*$ and I is identity operator. By multiplying e^{-t} on both sides of (2.3), we get

$$q(D + I)^k F^q_x + e^{-t}D^k F^q_x = [2]_q x^k e^{(x-1)t}. \quad (2.4)$$

Let us take derivative operator $D^m (m \in \mathbb{N})$ on both sides of (2.4). Then we get

$$qe^t D^m (D + I)^k F^q_x + D^m (D - I)^m F^q_x = [2]_q x^k (x-1)^m e^{xt}. \quad (2.5)$$
Let $G[0]$ (not $G(0)$) be the constant term in a Laurent series of $G(t)$. Then, from (2.5), we get

$$\sum_{j=0}^{k-j}(\textstyle k \choose j) (q e^{t} D^{k+m-j} F_{x}^{q}(t)) [0] + \sum_{j=0}^{m-j} (\textstyle m \choose j) (-1)^j (D^{k+m-j} F_{x}^{q}(t)) [0] = \text{[2]}_q x^k (x-1)^m. \tag{2.6}$$

By (2.1), we see

$$\left(D^N F_{x}^{q}(t) \right) [0] = \tilde{E}_{N,q}(x), \quad \left(e^t D^N F_{x}^{q}(t) \right) [0] = \tilde{E}_{N,q}(x). \tag{2.7}$$

By expressions of (2.6) and (2.7), we see that

$$\sum_{j=0}^\max\{k,m\} \left[q \left(\textstyle k \choose j \right) + (-1)^j \left(\textstyle m \choose j \right) \right] \tilde{E}_{k+m-j,q}(x) = \text{[2]}_q x^k (x-1)^m. \tag{2.8}$$

From (2.1), we note that

$$\frac{d}{dx} \left(\tilde{E}_{n,q}(x) \right) = n \sum_{l=0}^{n-1} \left(\frac{n-1}{l} \right) \tilde{E}_{l,q} x^{n-l} = n \tilde{E}_{n-1,q}(x). \tag{2.9}$$

By (2.9), we easily see

$$\int_{0}^{1} \tilde{E}_{n,q}(x) dx = \frac{\tilde{E}_{n+1,q}(1) - \tilde{E}_{n+1,q}}{n+1} = -\frac{\text{[2]}_q (-1)^{n+1}}{n+1} \tilde{E}_{n+1,q}. \tag{2.10}$$

Now, let us consider definition of integral from 0 to 1 in (2.8), then we have

$$\left[\text{[2]}_q (-1)^{n+1} \sum_{j=0}^\max\{k,m\} \left[q \left(\textstyle k \choose j \right) + (-1)^j \left(\textstyle m \choose j \right) \right] \tilde{E}_{k+m-j+1,q} \right]$$

$$= \left[\text{[2]}_q (-1)^{m} B(k+1, m+1) \right]$$

$$= \left[\text{[2]}_q (-1)^{m} \frac{\Gamma(k+1) \Gamma(m+1)}{\Gamma(k+m+2)} \right], \tag{2.11}$$

where $B(m, n)$ is beta function which is defined by

$$B(m, n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}, \quad m > 0, \ n > 0. \tag{2.12}$$

As a result, we obtain the following theorem.
Theorem 2.1. For \(n \in \mathbb{N} \), one has

\[
\sum_{j=1}^{\max\{k,m\}} \left[q \begin{pmatrix} k \\ j \end{pmatrix} + (-1)^j \begin{pmatrix} m \\ j \end{pmatrix} \right] \frac{\tilde{E}_{k+m-j+1,q}}{k + m - j + 1} = q \frac{(-1)^{m+1}}{(k + m + 1)(k^{m+1})} - [2]_q \frac{\tilde{E}_{k+m+1,q}}{k + m + 1}.
\]

Substituting \(m = k + 1 \) into Theorem 2.1, we readily get

\[
\sum_{j=1}^{k+1} \left[q \begin{pmatrix} k \\ j \end{pmatrix} + (-1)^j \begin{pmatrix} k + 1 \\ j \end{pmatrix} \right] \frac{\tilde{E}_{2k+2-j,q}}{2k + 2 - j} = q \frac{(-1)^k}{(2k + 2)(2^{k+1})} - [2]_q \frac{\tilde{E}_{2k+2,q}}{2k + 2}.
\]

By (2.1), it follows that

\[
\sum_{j=0}^{\max\{k,m\}} (k + m - j) \left[q \begin{pmatrix} k \\ j \end{pmatrix} + (-1)^j \begin{pmatrix} m \\ j \end{pmatrix} \right] \tilde{E}_{k+m-j-1,q}(x) = [2]_q x^{k-1}(x - 1)^{m-1}((k + m)x - k).
\]

Let \(m = k \) in (2.1), we see that

\[
\sum_{j=0}^{k} \left[q \begin{pmatrix} k \\ j \end{pmatrix} + (-1)^j \begin{pmatrix} k \\ j \end{pmatrix} \right] \tilde{E}_{2k-j,q}(x) = [2]_q x^k(x - 1)^k.
\]

Last from equality, we discover the following:

\[
[2]_q \sum_{j=0}^{[k/2]} \binom{k}{2j} \tilde{E}_{2k-2j,q}(x) + (q - 1) \sum_{j=0}^{[k/2]} \binom{k}{2j+1} \tilde{E}_{2k-2j-1,q}(x) = [2]_q x^k(x - 1)^k.
\]

Here \([\cdot]\) is Gauss’ symbol. Then, taking integral from 0 to 1 in both sides of last equality, we get

\[
- [2]_q \sum_{j=0}^{[k/2]} \binom{k}{2j} \frac{\tilde{E}_{2k-2j+1,q}}{2k - 2j + 1} + [2]_q (1 - q) \sum_{j=0}^{[k/2]} \binom{k}{2j+1} \frac{\tilde{E}_{2k-2j,q}}{2k - 2j} = [2]_q (-1)^k B(k + 1, k + 1)
\]

\[
= [2]_q (-1)^k \frac{B(k + 1, k + 1)}{(2k + 1)(\frac{2k}{k})}.
\]

Consequently, we derive the following theorem.
Theorem 2.2. The following identity

\[
[2]_q \sum_{j=0}^{[k/2]} \binom{k}{2j} \bar{E}_{2k-2j+1,q} + (q-1) \sum_{j=0}^{[k/2]} \binom{k}{2j+1} \bar{E}_{2k-2j,q} = \frac{q(-1)^{k+1}}{(2k+1) \binom{2k}{k}}
\]

(2.19) is true.

In view of (2.1) and (2.17), we discover the following applications:

\[
\begin{align*}
= & \sum_{j=0}^{k+1} \left[q \binom{k}{j} + (-1)^j \binom{k+1}{j} \right] \bar{E}_{2k+1-j,q}(x) \\
= & [2]_q \bar{E}_{2k+1,q}(x) + \sum_{j=1}^{\lfloor (k+1)/2 \rfloor} \left[q \binom{k}{2j} + \binom{k}{2j+1} - \binom{k}{2j} \right] \bar{E}_{2k-2j,q}(x) \\
& + \sum_{j=0}^{\lfloor (k+1)/2 \rfloor} \binom{k}{2j} \bar{E}_{2k-2j,q}(x) + \frac{q-1}{1+q} \sum_{j=0}^{\lfloor k/2 \rfloor} \binom{k}{2j+1} \bar{E}_{2k-2j+1}(x) \\
= & \sum_{j=0}^{\lfloor k/2 \rfloor} \binom{k}{2j} \bar{E}_{2k-2j,q}(x) + \frac{q-1}{1+q} \sum_{j=0}^{\lfloor k/2 \rfloor} \binom{k}{2j+1} \bar{E}_{2k-2j+1}(x).
\end{align*}
\]

(2.20)

By expressions (2.17) and (2.20), we have the following theorem.

Theorem 2.3. For \(k \in \mathbb{N} \), one has

\[
[2]_q \sum_{j=0}^{[k/2]} \binom{k}{2j} \bar{E}_{2k+1-2j,q}(x) + \sum_{j=1}^{[k/2]} \binom{k}{2j-1} \bar{E}_{2k+1-2j,q}(x) \\
+ (q-1) \sum_{j=0}^{[k/2]} \binom{k}{2j+1} \left[\bar{E}_{2k-2j,q}(x) + \frac{1}{1+q} \bar{E}_{2k-2j+1}(x) \right] = x^k(x-1)^k ([2]_q x - q).
\]

(2.21)
3. *p*-adic Integral on \mathbb{Z}_p Associated with Kim’s q-Euler Polynomials

In this section, we consider Kim’s q-Euler polynomials by means of p-adic q-integral on \mathbb{Z}_p.

Now we start with the following assertion.

Let $m, k \in \mathbb{N}$. Then by (2.8),

$$I_1 = [2]_q \int_{\mathbb{Z}_p} x^k(x-1)^m \, d\mu_q(x)$$

$$= [2]_q \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} \int_{\mathbb{Z}_p} x^{l+k} \, d\mu_q(x)$$ \hspace{1cm} (3.1)

$$= [2]_q \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} \tilde{E}_{l+k,q}.$$

On the other hand, in right hand side of (2.8),

$$I_2 = \sum_{j=0}^{\max\{k,m\}} \left[q \binom{k}{j} + (-1)^j \binom{m}{j} \right] \sum_{l=0}^{k+m-j} \binom{k+m-j}{l} \tilde{E}_{k+m-j-l,q} \int_{\mathbb{Z}_p} x^l \, d\mu_q(x)$$

$$= \sum_{j=0}^{\max\{k,m\}} \left[q \binom{k}{j} + (-1)^j \binom{m}{j} \right] \sum_{l=0}^{k+m-j} \binom{k+m-j}{l} \tilde{E}_{k+m-j-l,q} \tilde{E}_{l,q}.$$ \hspace{1cm} (3.2)

Equating I_1 and I_2, we get the following theorem.

Theorem 3.1. For $m, k \in \mathbb{N}$, one has

$$\sum_{j=0}^{\max\{k,m\}} \left[q \binom{k}{j} + (-1)^j \binom{m}{j} \right] \sum_{l=0}^{k+m-j} \binom{k+m-j}{l} \tilde{E}_{k+m-j-l,q} \tilde{E}_{l,q}$$

$$= [2]_q \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} \tilde{E}_{l+k,q}.$$ \hspace{1cm} (3.3)

Let us take fermionic *p*-adic q-integral on \mathbb{Z}_p in left hand side of (2.21), we get

$$I_3 = \int_{\mathbb{Z}_p} x^k(x-1)^k [2]_q x - q \, d\mu_q(x)$$

$$= [2]_q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \int_{\mathbb{Z}_p} x^{k+l+1} \, d\mu_q(x) - q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \int_{\mathbb{Z}_p} x^{k+l} \, d\mu_q(x)$$ \hspace{1cm} (3.4)

$$= [2]_q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \tilde{E}_{k+l,q} - q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \tilde{E}_{k+l,q}.$$
In other words, we consider right hand side of (2.21) as follows:

\[
I_4 = \left[2 \right]_q \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \cr 2j \end{array} \right) \sum_{l=0}^{2k-2j+1} \left(\begin{array}{c} 2k-2j+1 \cr l \end{array} \right) \bar{E}_{2k+1-2j-1|q} \int_{\mathbb{Z}_p} x^l d\mu_q(x) \\
+ \sum_{j=1}^{[k/2]} \left(\begin{array}{c} k \cr 2j-1 \end{array} \right) \sum_{l=0}^{2k-2j+1} \left(\begin{array}{c} 2k-2j+1 \cr l \end{array} \right) \bar{E}_{2k+1-2j-1|q} \int_{\mathbb{Z}_p} x^l d\mu_q(x) \\
+ \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \cr 2j + 1 \end{array} \right) \left(q-1 \right) \sum_{l=0}^{2k-2j} \left(\begin{array}{c} 2k-2j \cr l \end{array} \right) \bar{E}_{2k-2j-1|q} \int_{\mathbb{Z}_p} x^l d\mu_q(x) \\
+ \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \cr 2j + 1 \end{array} \right) \left(q-1 \right) \sum_{l=0}^{2k-2j+1} \left(\begin{array}{c} 2k-2j+1 \cr l \end{array} \right) \bar{E}_{2k-2j-1|q} \int_{\mathbb{Z}_p} x^l d\mu_q(x)
\right]
\]

(3.5)

Equating \(I_3 \) and \(I_4 \), we get the following theorem.

Theorem 3.2. For \(k \in \mathbb{N} \), one has

\[
\sum_{j=0}^{k} \left(\begin{array}{c} k \cr j \end{array} \right) (-1)^{k-j} \left[2 \right]_q \bar{E}_{k+1|l,q} - q \bar{E}_{k|l,q}
\]

\[
= \left[2 \right]_q \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \cr 2j \end{array} \right) \sum_{l=0}^{2k-2j+1} \left(\begin{array}{c} 2k-2j+1 \cr l \end{array} \right) \bar{E}_{2k+1-2j-1|q} \bar{E}_{l,q} \\
+ \sum_{j=1}^{[k/2]} \left(\begin{array}{c} k \cr 2j-1 \end{array} \right) \sum_{l=0}^{2k-2j+1} \left(\begin{array}{c} 2k-2j+1 \cr l \end{array} \right) \bar{E}_{2k+1-2j-1|q} \bar{E}_{l,q} \\
+ \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \cr 2j + 1 \end{array} \right) \left(q-1 \right) \sum_{l=0}^{2k-2j} \left(\begin{array}{c} 2k-2j \cr l \end{array} \right) \bar{E}_{2k-2j-1|q} \bar{E}_{l,q} \\
+ \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \cr 2j + 1 \end{array} \right) \left(q-1 \right) \sum_{l=0}^{2k-2j+1} \left(\begin{array}{c} 2k-2j+1 \cr l \end{array} \right) \bar{E}_{2k-2j-1|q} \bar{E}_{l,q}
\right]
\]

(3.6)
Now, we consider (2.8) and (2.1) by means of \(q \)-Volkenborn integral. Then, by (2.8), we see

\[
[2]_q \int_{\mathbb{Z}_p} x^k(x - 1)^m d\mu_q(x) = [2]_q \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} \int_{\mathbb{Z}_p} x^l d\mu_q(x)
\]

(3.7)

On the other hand,

\[
\sum_{j=0}^{\max\{k,m\}} \left[q \binom{k}{j} + (-1)^j \binom{m}{j} \right] \sum_{l=0}^{k+m-j} \binom{k + m - j}{l} \bar{E}_{k+m-j-l,q} \int_{\mathbb{Z}_p} x^l d\mu_q(x)
\]

(3.8)

Therefore, we get the following theorem.

Theorem 3.3. For \(m, k \in \mathbb{N} \), one has

\[
[2]_q \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} \bar{B}_{l+k,q} = \sum_{j=0}^{\max\{k,m\}} \left[q \binom{k}{j} + (-1)^j \binom{m}{j} \right] \sum_{l=0}^{k+m-j} \binom{k + m - j}{l} \bar{E}_{k+m-j-l,q} \bar{B}_{l,q}.
\]

(3.9)

By using fermionic \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) in left hand side of (2.21), we get

\[
I_5 = [2]_q \int_{\mathbb{Z}_p} x^k(x - 1)^k ([2] x - q) d\mu_q(x)
\]

(3.10)

\[
= [2]_q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \int_{\mathbb{Z}_p} x^{k+l} d\mu_q(x) - q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \int_{\mathbb{Z}_p} x^{k+l} d\mu_q(x) - q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \bar{B}_{k+l,q}.
\]
Also, we consider right hand side of (2.21) as follows:

\[
I_6 = [2]_q \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \\ 2j \end{array} \right) \sum_{l=0}^{2k-2j+1} \left(\begin{array}{c} 2k-2j+1 \\ l \end{array} \right) \bar{E}_{2k+1-2j-l,q} \int_{Z_p} x^l d\mu_q(x) + \sum_{j=1}^{[k/2]} \left(\begin{array}{c} k \\ 2j-1 \end{array} \right) \sum_{l=0}^{2k-2j+1} \left(\begin{array}{c} 2k-2j+1 \\ l \end{array} \right) \bar{E}_{2k+1-2j-l,q} \int_{Z_p} x^l d\mu_q(x) + \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \\ 2j+1 \end{array} \right) \left[(q-1) \sum_{j=0}^{2k-2j} \left(\begin{array}{c} 2k-2j \\ l \end{array} \right) \bar{E}_{2k-2j-l,q} \int_{Z_p} x^l d\mu_q(x) \right] + \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \\ 2j+1 \end{array} \right) \left[\sum_{j=0}^{2k-2j} \left(\begin{array}{c} 2k-2j \\ l \end{array} \right) \bar{E}_{2k-2j-l+1,q} \int_{Z_p} x^l d\mu_q(x) \right]
\]

(3.11)

Equating \(I_5 \) and \(I_6 \), we get the following corollary.

Corollary 3.4. For \(k \in \mathbb{N} \), one gets

\[
\sum_{l=0}^{k} \left(\begin{array}{c} k \\ l \end{array} \right) (-1)^{k-l} \left\{ [2]_q \bar{B}_{k+l+1,q} - q\bar{B}_{k+1,q} \right\} = [2]_q \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \\ 2j \end{array} \right) \sum_{l=0}^{2k-2j+1} \left(\begin{array}{c} 2k-2j+1 \\ l \end{array} \right) \bar{E}_{2k+1-2j-l,q} \bar{B}_{l,q} + \sum_{j=1}^{[k/2]} \left(\begin{array}{c} k \\ 2j-1 \end{array} \right) \sum_{l=0}^{2k-2j+1} \left(\begin{array}{c} 2k-2j+1 \\ l \end{array} \right) \bar{E}_{2k+1-2j-l,q} \bar{B}_{l,q} + \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \\ 2j+1 \end{array} \right) \left\{ (q-1) \sum_{j=0}^{2k-2j} \left(\begin{array}{c} 2k-2j \\ l \end{array} \right) \bar{E}_{2k-2j-l,q} \bar{B}_{l,q} \right\} + \sum_{j=0}^{[k/2]} \left(\begin{array}{c} k \\ 2j+1 \end{array} \right) \left\{ \sum_{j=0}^{2k-2j} \left(\begin{array}{c} 2k-2j \\ l \end{array} \right) \bar{E}_{2k-2j-l+1,q} \bar{B}_{l,q} \right\}
\]

(3.12)
Acknowledgment

The authors would like to thank the referee for his/her valuable comments on this work.

References

