Positive Solutions for a Fractional Boundary Value Problem with Changing Sign Nonlinearity

Yongqing Wang,1 Lishan Liu,1,2 and Yonghong Wu2

1 School of Mathematical Sciences, Qufu Normal University, Shandong, Qufu 273165, China
2 Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845, Australia

Correspondence should be addressed to Yongqing Wang, wyqing9801@163.com

Received 14 April 2012; Accepted 25 June 2012

Academic Editor: Bashir Ahmad

We discuss the existence of positive solutions to the following fractional m-point boundary value problem with changing sign nonlinearity

\[D_0^α u(t) + λf(t, u(t)) = 0, \quad 0 < t < 1, \]
\[u(0) = 0, \quad D_0^β u(1) = \sum_{i=1}^{m-2} \eta_i D_0^α u(ξ_i), \]

where \(1 < α ≤ 2, \ λ > 0 \) is a parameter, \(0 < β < α - 1, \ 0 < ξ_1 < ⋯ < ξ_{m-2} < 1 \) with \(\sum_{i=1}^{m-2} \eta_i ξ_i^{α-β-1} < 1 \), \(D_0^α \) is the standard Riemann-Liouville derivative, \(f \) and may be singular at \(t = 0 \) and/or \(t = 1 \) and also may change sign. The work improves and generalizes some previous results.

1. Introduction

In this paper, we consider the following fractional differential equation with m-point boundary conditions:

\[D_0^α u(t) + λf(t, u(t)) = 0, \quad 0 < t < 1, \]
\[u(0) = 0, \quad D_0^β u(1) = \sum_{i=1}^{m-2} \eta_i D_0^α u(ξ_i), \]

where \(1 < α ≤ 2, \ λ > 0 \) is a parameter, \(0 < β < α - 1, \ 0 < ξ_1 < ⋯ < ξ_{m-2} < 1 \) with \(\sum_{i=1}^{m-2} \eta_i ξ_i^{α-β-1} < 1 \), \(D_0^α \) is the standard Riemann-Liouville derivative, and \(f \in C((0, 1) \times [0, +∞) \rightarrow (-∞, +∞)) \) may be singular at \(t = 0 \) and/or \(t = 1 \) and also may change sign. In this paper, by a positive solution to (1.1), we mean a function \(u \in C[0, 1] \) which is positive on \((0, 1] \) and satisfies (1.1).
In recent years, great efforts have been made worldwide to study the existence of solutions for nonlinear fractional differential equations by using nonlinear analysis methods [1–24]. Fractional-order multipoint boundary value problems (BVP) have particularly attracted a great deal of attention (see, e.g., [13–19]). In [10], the authors discussed some properties of the Green function for the Dirichlet-type BVP of nonlinear fractional differential equations

\[
D_{0+}^\alpha u(t) + f(t, u(t)) = 0, \quad 0 < t < 1, \\
u(0) = 0, \quad u(1) = 0,
\]

where \(1 < \alpha < 2, D_{0+}^\alpha\) is the standard Riemann-Liouville derivative and \(f : C([0, 1] \times [0, +\infty) \to [0, +\infty))\) is continuous. By using the Krasnosel’skii fixed-point theorem, the existence of positive solutions was obtained under some suitable conditions on \(f\).

In [14], the authors investigated the existence and multiplicity of positive solutions by using some fixed-point theorems for the fractional differential equation given by

\[
D_{0+}^\alpha u(t) + f(t, u(t)) = 0, \quad 0 < t < 1, \\
u(0) = 0, \quad D_{0+}^\beta u(1) = a D_{0+}^\beta u(\xi),
\]

where \(1 < \alpha \leq 2, 0 \leq \beta \leq 1, 0 < \xi < 1, 0 \leq \alpha \leq 1\) with \(a^\alpha \xi^{\alpha-\beta-2} < 1 - \beta, 0 \leq \alpha - \beta - 1, f\) is nonnegative.

It should be noted that in most of the works in literature the nonlinearity needs to be nonnegative in order to establish positive solutions. As far as we know, semipositone fractional nonlocal boundary value problems with \(1 < \alpha \leq 2\) have been seldom studied due to the difficulties in finding and analyzing the corresponding Green function.

In [23], the authors investigated the following fractional differential equation with three-point boundary conditions:

\[
D_{0+}^\alpha u(t) + f(t, u(t)) + e(t) = 0, \quad 0 < t < 1, \\
u(0) = 0, \quad D_{0+}^\beta u(1) = a D_{0+}^\beta u(\xi),
\]

where \(1 < \alpha \leq 2, 0 < \beta \leq 1, 0 < \xi < 1, 0 \leq \alpha \leq 1, 0 \leq \alpha - \beta - 1, e(t) \in L[0, 1],\) and \(f\) satisfies the Caratheodory conditions. The authors obtained the properties of the Green function for (1.4) as follows:

\[
\frac{\beta t^{\alpha-1}s(1-s)^{\alpha-\beta-1}}{\Gamma(\alpha)} \leq G(t, s) \leq \frac{t^{\alpha-1}(1-s)^{\alpha-\beta-1}}{\Gamma(\alpha)(1-a \xi^{\alpha-\beta-1})}.
\]

By using the Schauder fixed-point theorem, the authors obtained the existence of positive solution of (1.4) with the following assumptions:

\((A_1)\) for each \(L > 0\), there exists a function \(\phi_L > 0\) such that \(f(t, t^{s-1}x) \geq \phi_L(t)\) for a.e. \(t \in (0, 1)\), for all \(x \in (0, L)\);
Abstract and Applied Analysis

(A2) there exist \(g(x), h(x), \) and \(k(t) > 0, \) such that

\[
0 \leq f(t, x) \leq k(t) \{ g(x) + h(x) \}, \quad \forall x \in (0, \infty), \text{ a.e. } t \in (0, 1),
\]

(1.6)

here \(g : (0, \infty) \to [0, \infty) \) is continuous and nonincreasing, \(h : [0, \infty) \to [0, \infty) \) is continuous, and \(h/g \) is nondecreasing;

(A3) There exist two positive constants \(R > r > 0 \) such that

\[
R > \Phi_{R_1} + \gamma_\ast \geq r > 0,
\]

\[
\int_0^1 k(s)g(\left(r s^{\alpha-1}\right))ds < +\infty,
\]

\[
R \geq \left(1 + \frac{h(R)}{g(R)}\right) \int_0^1 \frac{(1-s)^{a-\beta-1}}{\Gamma(a)} \left(1 - a\xi_{\ast} \right)^{-1} k(s)g\left(r s^{\alpha-1}\right)ds + \gamma_\ast.
\]

Here

\[
\Phi_{R_1} = \int_0^1 \frac{\beta s (1-s)^{a-\beta-1}}{\Gamma(a)} \phi_R(s)ds.
\]

(1.7)

(1.8)

The assumptions on nonlinearity are not suitable for frequently used conditions, such as superlinear or some sublinear. For instance, \(f(t, x) = x^\mu, \mu > 0, \) obviously, \(f \) does not satisfy (A1).

Inspired by the previous work, the aim of this paper is to establish conditions for the existence of positive solutions of the more general BVP (1.1). Our work presented in this paper has the following new features. Firstly, we consider few cases of \(1 < \alpha \leq 2 \) which has been studied before, and in dealing with the difficulties related to the Green function for this case, some new properties of the Green function have been discovered. Secondly, the BVP (1.1) possesses singularity; that is, \(f \) may be singular at \(t = 0 \) and/or \(t = 1. \) Thirdly, the nonlinearity \(f \) may change sign and may be unbounded from below. Finally, we impose weaker positivity conditions on the nonlocal boundary term; that is, some of the coefficients \(\eta_i \) may be negative.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries and lemmas that are to be used to prove our main results. We also discover some new positive properties of the corresponding Green function. In Section 3, we discuss the existence of positive solutions of the semipositone BVP (1.1). In Section 4, we give an example to demonstrate the application of our theoretical results.

2. Basic Definitions and Preliminaries

For the convenience of the reader, we present here the necessary definitions from fractional calculus theory. These definitions can also be found in the recent literature.
Definition 2.1. The fractional integral of order $\alpha > 0$ of a function $u : (0, +\infty) \rightarrow \mathbb{R}$ is given by

$$I^\alpha_0 u(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} u(s) ds, \quad (2.1)$$

provided that the right-hand side is pointwisely defined on $(0, +\infty)$.

Definition 2.2. The Riemann-Liouville fractional derivative of order $\alpha > 0$ of a function $u : (0, +\infty) \rightarrow \mathbb{R}$ is given by

$$D^\alpha_0 u(t) = \frac{1}{\Gamma(n-\alpha)} \left(\frac{d}{dt} \right)^n \int_0^t (t-s)^{n-\alpha-1} u(s) ds, \quad (2.2)$$

where $n = [\alpha] + 1$ and $[\alpha]$ denotes the integer part of the number α, provided that the right-hand side is pointwisely defined on $(0, +\infty)$.

Lemma 2.3 (see [3]). Let $\alpha > 0$. Then the following equality holds for $u \in L(0,1), D^\alpha_0 u \in L(0,1)$;

$$I^\alpha_0 D^\alpha_0 u(t) = u(t) + c_1 t^{\alpha-1} + c_2 t^{\alpha-2} + \cdots + c_n t^{\alpha-n}, \quad (2.3)$$

where $c_i \in \mathbb{R}, i = 1, 2, \ldots, n, n - 1 < \alpha \leq n$.

Set

$$G_0(t,s) = \frac{1}{\Gamma(\alpha)} \begin{cases} t^{\alpha-1}(1-s)^{\alpha-1}, & 0 \leq t \leq s \leq 1, \\ t^{\alpha-1}(1-s)^{\alpha-1} - (t-s)^{\alpha-1}, & 0 \leq s \leq t \leq 1, \end{cases}$$

$$p(s) = 1 - \sum_{s \leq \xi_i} \eta_i \left(\frac{\xi_i - s}{1 - s} \right)^{\alpha-1}, \quad (2.4)$$

$$G(t,s) = G_0(t,s) + q(s)t^{\alpha-1}, \quad (2.5)$$

where

$$q(s) = \frac{p(s) - p(0)}{\Gamma(\alpha)p(0)}(1-s)^{\alpha-1}, \quad p(0) = 1 - \sum_{i=1}^{m-2} \eta_i b_i^{\alpha-1}. \quad (2.6)$$

For convenience in presentation, we here list the assumption to be used throughout the paper.

(H$_1$) $p(0) > 0, q(s) \geq 0$ on $[0,1]$.

Remark 2.4. If $\eta_i = 0$ ($i = 1, \ldots, m-2$), we have $p(0) = 1$ and $q(s) \equiv 0$. If $\eta_i \geq 0$ ($i = 1, \ldots, m-2$) and $\sum_{i=1}^{m-2} \eta_i b_i^{\alpha-1} < 1$, we have $q(s) \geq 0$ on $[0,1]$.
Lemma 2.5 (see [14]). Assume that $g(t) \in L[0,1]$ and $\alpha > \beta > 0$. Then

$$D_{0^+}^{\beta} \int_0^t (t-s)^{\alpha-1} g(s) ds = \frac{\Gamma(\alpha)}{\Gamma(\alpha-\beta)} \int_0^t (t-s)^{\alpha-\beta-1} g(s) ds. \quad (2.8)$$

Lemma 2.6. Assume (H_1) holds, and $y(t) \in L[0,1]$. Then the unique solution of the problem

$$D_{0^+}^{\alpha} u(t) + y(t) = 0, \quad 0 < t < 1,$$

$$u(0) = 0, \quad D_{0^+}^{\beta} u(1) = \sum_{i=1}^{m-2} \eta_i D_{0^+}^{\beta} u(\xi_i) \quad (2.9)$$

is

$$u(t) = \int_0^t G(t,s)y(s) ds, \quad (2.10)$$

where $G(t,s)$ is the Green function of the boundary value problem (2.9).

Proof. From Lemma 2.3, the solution of (2.9) is

$$u(t) = -I_{0^+}^{\alpha} y(t) + c_1 t^{\alpha-1} + c_2 t^{\alpha-2}. \quad (2.11)$$

Consequently,

$$u(t) = -\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} y(s) ds + c_1 t^{\alpha-1} + c_2 t^{\alpha-2}. \quad (2.12)$$

From $u(0) = 0$, we have $c_2 = 0$.

By Lemma 2.5, we have

$$D_{0^+}^{\beta} u(t) = -\frac{1}{\Gamma(\alpha-\beta)} \int_0^t (t-s)^{\alpha-\beta-1} y(s) ds + \frac{c_1 \Gamma(\alpha)}{\Gamma(\alpha-\beta)} t^{\alpha-\beta-1}. \quad (2.13)$$

Therefore,

$$D_{0^+}^{\beta} u(1) = -\frac{1}{\Gamma(\alpha-\beta)} \int_0^1 (1-s)^{\alpha-\beta-1} y(s) ds + \frac{c_1 \Gamma(\alpha)}{\Gamma(\alpha-\beta)} t^{\alpha-\beta-1},$$

$$D_{0^+}^{\beta} u(\xi_i) = -\frac{1}{\Gamma(\alpha-\beta)} \int_0^{\xi_i} (\xi_i-s)^{\alpha-\beta-1} y(s) ds + \frac{c_1 \Gamma(\alpha)}{\Gamma(\alpha-\beta)} s^{\alpha-\beta-1}. \quad (2.14)$$
By $D_0^\beta u(1) = \sum_{i=1}^{m-2} \eta_i D_0^\beta u(t_i)$, we have
\[
c_1 = \frac{\int_0^1 (1-s)^{\alpha-1} y(s)ds - \sum_{i=1}^{m-2} \eta_i \int_0^1 (t_i - s)^{\alpha-\beta-1} y(s)ds}{\Gamma(\alpha)p(0)}
\]
\[
= \frac{\int_0^1 (1-s)^{\alpha-\beta-1} p(s)y(s)ds}{\Gamma(\alpha)p(0)} \quad (2.15)
\]
Therefore, the solution of (2.9) is
\[
u(t) = c_1 t^{\alpha-1} - \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} y(s)ds
\]
\[
= \int_0^1 G(t,s)y(s)ds. \quad (2.16)
\]

Lemma 2.7. The function $G_0(t,s)$ has the following properties:

1. $G_0(t,s) > 0$, for $t, s \in (0, 1)$;
2. $\Gamma(\alpha)G_0(t,s) \leq t^{\alpha-1}$, for $t, s \in [0, 1]$;
3. $\beta t^{\alpha-1} h(s) \leq \Gamma(\alpha)G_0(t,s) \leq h(s)t^{\alpha-2}$, for $t, s \in (0, 1),$

where
\[
h(s) = s(1-s)^{\alpha-\beta-1}. \quad (2.17)
\]

Proof. (1) When $0 < t \leq s < 1$, it is clear that
\[
G_0(t,s) = \frac{1}{\Gamma(\alpha)} t^{\alpha-1}(1-s)^{\alpha-\beta-1} > 0. \quad (2.18)
\]

When $0 < s \leq t < 1$, we have
\[
t^{\alpha-1}(1-s)^{\alpha-\beta-1} - (t-s)^{\alpha-1} \geq t^{\alpha-1}(1-s)^{\alpha-\beta-1} - t^{\alpha-1}(1-s)^{\alpha-1}
\]
\[
= t^{\alpha-1}(1-s)^{\alpha-\beta-1}[1 - (1-s)^\beta] > 0. \quad (2.19)
\]

(2) By (2.4), for any $t, s \in [0, 1]$, we have
\[
\Gamma(\alpha)G_0(t,s) \leq t^{\alpha-1}(1-s)^{\alpha-\beta-1} \leq t^{\alpha-1}. \quad (2.20)
\]

In the following, we will prove (3).
Abstract and Applied Analysis

(i) When $0 < s \leq t < 1$, noticing that $0 < \beta < \alpha - 1 \leq 1$, we have

$$
\frac{\partial}{\partial \beta} \left\{ t^{\alpha-2} s (1-s)^{\alpha-\beta-1} - t^{\alpha-1} (1-s)^{\alpha-\beta-1} \right\} = t^{\alpha-2} (1-s)^{\alpha-\beta-1} (t-s) \ln(1-s) \leq 0. \tag{2.21}
$$

Therefore,

$$
t^{\alpha-2} (1-s)^{\alpha-\beta-1} - \left(t^{\alpha-1} (1-s)^{\alpha-\beta-1} - (t-s)^{\alpha-1} \right) \geq t^{\alpha-2} s - t^{\alpha-1} + (t-s)^{\alpha-1} \tag{2.22}
$$

$$
= - t^{\alpha-2} (t-s) + (t-s)^{\alpha-1} \geq 0,
$$

which implies

$$
\Gamma(\alpha) G_0(t,s) \leq h(s) t^{\alpha-2}. \tag{2.23}
$$

On the other hand, we have

$$
\frac{d}{ds} \left\{ \beta s + (1-s)^{\beta} \right\} \leq 0, \quad s \in [0,1). \tag{2.24}
$$

Therefore, $\beta s + (1-s)^{\beta} \leq 1$, which implies

$$
\left[1 - (1-s)^{\beta} \right] \geq \beta s. \tag{2.25}
$$

Then

$$
\Gamma(\alpha) G_0(t,s) = t^{\alpha-1} (1-s)^{\alpha-\beta-1} - (t-s)^{\alpha-1}
$$

$$
\geq t^{\alpha-1} (1-s)^{\alpha-\beta-1} - (t-s)^{\beta} (t-ts)^{\alpha-\beta-1}
$$

$$
= \left[1 - \left(\frac{s}{t} \right)^{\beta} \right] t^{\alpha-1} (1-s)^{\alpha-\beta-1}
$$

$$
\geq \left[1 - (1-s)^{\beta} \right] t^{\alpha-1} (1-s)^{\alpha-\beta-1}
$$

$$
\geq \beta t^{\alpha-1} h(s). \tag{2.26}
$$

(ii) When $0 < t \leq s < 1$, we have

$$
\Gamma(\alpha) G_0(t,s) = t^{\alpha-1} (1-s)^{\alpha-\beta-1} = t^{\alpha-2} t (1-s)^{\alpha-\beta-1}
$$

$$
\leq t^{\alpha-2} s (1-s)^{\alpha-\beta-1} = h(s) t^{\alpha-2}, \tag{2.27}
$$
On the other hand, clearly we have
\[
\Gamma(\alpha) G_0(t, s) = t^{\alpha-1}(1 - s)^{\alpha-\beta-1} \geq \beta t^{\alpha-1} h(s).
\] (2.28)

The inequalities (2.23)–(2.28) imply that (3) holds. □

By Lemma 2.7, we have the following results.

Lemma 2.8. Assume (H_1) holds, then the Green function defined by (2.6) satisfies

1. \(G(t, s) > 0 \), for all \(t, s \in (0, 1) \);
2. \(G(t, s) \leq t^{\alpha-1}((1/\Gamma(\alpha))) + q(s) \), for all \(t, s \in [0, 1] \);
3. \(\beta t^{\alpha-1} \Phi(s) \leq G(t, s) \leq t^{\alpha-2} \Phi(s) \), for all \(t, s \in (0, 1) \),

where
\[
\Phi(s) = \left(\frac{h(s)}{\Gamma(\alpha)} + q(s) \right).
\] (2.29)

Lemma 2.9. Assume (H_1) holds, then the function \(G^*(t, s) = t^{\alpha-2} G(t, s) \) satisfies

1. \(G^*(t, s) > 0 \), for all \(t, s \in (0, 1) \);
2. \(G^*(t, s) \leq t((1/\Gamma(\alpha))) + q(s) \), for all \(t, s \in [0, 1] \);
3. \(\beta t^{\alpha-1} \Phi(s) \leq G^*(t, s) \leq \Phi(s) \), for all \(t, s \in [0, 1] \).

For convenience, we list here four more assumptions to be used later:

(H_2) \(f \in C((0, 1) \times [0, +\infty), (-\infty, +\infty)) \) satisfies
\[
f(t, x) \geq -r(t), \quad f(t, t^{\alpha-2} x) \leq z(t) g(x), \quad t \in (0, 1), \quad x \in [0, +\infty),
\] (2.30)

where \(r, z \in C((0, 1), [0, +\infty)), g \in C([0, +\infty), [0, +\infty)) \).

(H_3) \(\int_0^1 r(s) ds < +\infty, 0 < \int_0^1 z(s) ds < +\infty. \)

(H_4) There exists \([a, b] \subset (0, 1) \) such that
\[
\liminf_{x \to +\infty} \min_{t \in [a, b]} \frac{f(t, x)}{x} = +\infty.
\] (2.31)

(H_5) There exists \([c, d] \subset (0, 1) \) such that
\[
\liminf_{x \to +\infty} f(t, x) = +\infty,
\]
\[
\lim_{x \to +\infty} \frac{g(x)}{x} = 0.
\] (2.32)
Lemma 2.11. Assume the second limit of \((H_5)\) implies
\[
\lim_{u \to +\infty} \frac{g^*(u)}{u} = 0, \tag{2.33}
\]
where
\[
g^*(u) = \max_{x \in [0,u]} g(x). \tag{2.34}
\]

Proof. By \(\lim_{u \to +\infty} (g(u)/u) = 0\), for any \(\epsilon > 0\), there exists \(N_1 > 0\), such that for any \(u > N_1\) we have
\[
0 \leq g(u) < \epsilon u. \tag{2.35}
\]
Let \(N = \max\{N_1, ((g^*(N_1))/\epsilon)\}\), for any \(u > N\) we have
\[
0 \leq g^*(u) < \epsilon u + g^*(N_1) < 2\epsilon u. \tag{2.36}
\]
Therefore, \(\lim_{u \to +\infty} ((g^*(u))/u) = 0\).

Lemma 2.11. Assume \((H_1)\) holds and \(r(t) \in C(0,1) \cap L[0,1]\) is nonnegative, then the BVP
\[
D_{0+}^\alpha u(t) + r(t) = 0, \quad 0 < t < 1,
\]
\[
u(0) = 0, \quad D_{0+}^\beta u(1) = \sum_{i=1}^{m-2} \eta_i D_{0+}^\beta u(\xi_i) \tag{2.37}
\]
has a unique solution \(\omega(t) = \int_0^1 G(t, s)r(s)ds\) with \(\omega(t) \leq kt^{\alpha-1}\), where
\[
k = \int_0^1 \left(\frac{1}{\Gamma(\alpha)} + q(s)\right) r(s)ds, \quad t \in [0,1]. \tag{2.38}
\]

Proof. By Lemma 2.6, \(\omega(t) = \int_0^1 G(t, s)r(s)ds\) is the unique solution of (2.37). By (2) of Lemma 2.8, we have
\[
\omega(t) = \int_0^1 G(t, s)r(s)ds \leq t^{\alpha-1} \int_0^1 \left(\frac{1}{\Gamma(\alpha)} + q(s)\right) r(s)ds. \tag{2.39}
\]

Let \(E = C[0,1]\) be endowed with the maximum norm \(\|u\| = \max_{0 \leq t \leq 1} |u(t)|\) and define a cone \(P\) by
\[
P = \{u(t) \in E : \text{there exists } l_u > 0 \text{ such that } \beta t \|u\| \leq u(t) \leq l_u t\}, \tag{2.40}
\]
and then set \(B_r = \{u(t) \in E : \|u\| < r\}, P_r = P \cap B_r, \partial P_r = P \cap \partial B_r\).
Next we consider the following singular nonlinear BVP:

\[
D_0^\alpha u(t) + \lambda \left[f\left(t, [u(t) - \lambda \omega(t)]^+\right) + r(t) \right] = 0, \quad 0 < t < 1,
\]

\[
u(0) = 0, \quad D_0^\beta u(1) = \sum_{i=1}^{m-2} \eta_i D_0^\beta u(\xi_i),
\]

where \(\lambda > 0, [v(t)]^+ = \max\{v(t), 0\}, \omega(t) \) is defined in Lemma 2.11.

Let

\[
Tu(t) = \lambda \int_0^1 G^*(t, s) \left[f\left(s, [s^{\alpha-2}u(s) - \lambda \omega(s)]^+\right) + r(s) \right] ds.
\]

Clearly, if \(u(t) \in P \) is a fixed point of \(T \), then \(y(t) = t^{\alpha-2}u(t) \) is a positive solution of (2.41).

Lemma 2.12. Suppose that (H₁)–(H₃) hold. Then \(T : P \to P \) is a completely continuous operator.

Proof. It is clear that \(T \) is well defined on \(P \). For any \(u \in P, \) Lemma 2.9 implies

\[
Tu(t) \geq \beta t \lambda \int_0^1 \Phi(s) \left[f\left(s, [s^{\alpha-2}u(s) - \lambda \omega(s)]^+\right) + r(s) \right] ds.
\]

On the other hand,

\[
Tu(t) \leq \lambda \int_0^1 \Phi(s) \left[f\left(s, [s^{\alpha-2}u(s) - \lambda \omega(s)]^+\right) + r(s) \right] ds.
\]

Therefore, \(Tu(t) \geq \beta t \|Tu\| \). Noticing that

\[
Tu(t) \leq \lambda t \int_0^1 \left(\frac{1}{\Gamma(\alpha)} + q(s) \right) \left[f\left(s, [s^{\alpha-2}u(s) - \lambda \omega(s)]^+\right) + r(s) \right] ds,
\]

we have \(T : P \to P \).

Using the Ascoli-Arzela theorem, we can then get that \(T : P \to P \) is a completely continuous operator.

Lemma 2.13 (see [25]). Let \(E \) be a real Banach space and let \(P \subset E \) be a cone. Assume that \(\Omega_1 \) and \(\Omega_2 \) are two-bounded open subsets of \(E \) with \(\emptyset \in \Omega_1, \overline{\Omega_1} \subset \Omega_2, T : P \cap (\overline{\Omega_2} \setminus \Omega_1) \to P \) a completely continuous operator such that either

1. \(\|Tu\| \leq \|u\|, u \in P \cap \partial \Omega_1 \) and \(\|Tu\| \geq \|u\|, u \in P \cap \partial \Omega_2 \), or
2. \(\|Tu\| \geq \|u\|, u \in P \cap \partial \Omega_1 \) and \(\|Tu\| \leq \|u\|, u \in P \cap \partial \Omega_2 \).

Then \(T \) has a fixed point in \(P \cap (\overline{\Omega_2} \setminus \Omega_1) \).
3. Existence of Positive Solutions

Theorem 3.1. Suppose that \((H_1)-(H_4)\) hold. Then there exists \(\lambda^* > 0\) such that the BVP (1.1) has at least one positive solution for any \(\lambda \in (0, \lambda^*)\).

Proof. Choose \(r_1 > k\beta^{-1}\). Let

\[
\lambda^* = \min \left\{ 1, \frac{r_1}{(g^*(r_1) + 1) \int_0^1 \Phi(s)(z(s) + r(s))ds} \right\},
\]

where

\[
g^*(r) = \max_{x \in [0,r]} g(x).
\]

In the following of the proof, we suppose \(\lambda \in (0, \lambda^*)\).

For any \(u \in \partial P_{r_1}\), noticing \(u(t) \geq \beta r_1 \) and Lemma 2.11, we have

\[
t^{\alpha-2}u(t) - \lambda \omega(t) \geq (\beta r_1 - \lambda k)t^{\alpha-1} \geq (\beta r_1 - k)t^{\alpha-1} \geq 0,
\]

\[
r_1 \geq u(t) - \lambda t^{\alpha-\alpha} \omega(t) \geq (\beta r_1 - k)t \geq 0.
\]

Therefore,

\[
Tu(t) = \lambda \int_0^1 G^*(t,s) \left(f \left(s, \left[s^{\alpha-2}u(s) - \lambda \omega(s) \right]^{+} \right) + r(s) \right) ds
\]

\[
\leq \lambda \int_0^1 \Phi(s) \left(\left[u(s) - \lambda s^{\alpha-\alpha} \omega(s) \right]^{+} + r(s) \right) ds
\]

\[
\leq \lambda (g^*(r_1) + 1) \int_0^1 \Phi(s)(z(s) + r(s))ds
\]

\[
< \lambda^*(g^*(r_1) + 1) \int_0^1 \Phi(s)(z(s) + r(s))ds \leq r_1.
\]

Thus,

\[
\|Tu\| \leq \|u\|, \quad \forall u \in \partial P_{r_1}.
\]

Now choose a real number

\[
L > \frac{2}{\lambda \beta^2 \int_a^b \Phi(s)s^{\alpha-1}ds}.
\]
By (H_4), there exists a constant $N > 0$ such that

\[f(t, x) > Lx, \quad \text{for any } t \in [a, b], \quad x \geq N. \quad (3.8) \]

Let

\[r_2 = r_1 + \frac{2k}{\beta} + \frac{2N}{\beta a^{n-1}}. \quad (3.9) \]

Then for any $u \in \partial P_{r_2}$, we have

\[t^{n-2}u(t) - \lambda \omega(t) \geq (\beta r_2 - k)t^{n-1} \geq \frac{\beta r_2}{2}t^{n-1}, \quad \forall t \in (0, 1]. \quad (3.10) \]

Thus, for any $t \in [a, b]$, we have $t^{n-2}u(t) - \lambda \omega(t) > N$. Hence, we get

\[
\|Tu\| = \max_{t \in [0,1]} \int_0^1 G^*(t, s) \left[f \left(s, \left[2s^{n-2}u(s) - \lambda \omega(s) \right]^+ \right) + r(s) \right] ds \\
\geq \max_{t \in [0,1]} \int_a^b G^*(t, s) f \left(s, \left[2s^{n-2}u(s) - \lambda \omega(s) \right] \right) ds \\
\geq \max_{t \in [0,1]} \left(\int_a^b G^*(t, s) \left[2s^{n-2}u(s) - \lambda \omega(s) \right] ds \right) \\
\geq \max_{t \in [0,1]} \left(\int_a^b G^*(t, s) \frac{\beta r_2}{2} s^{n-1} ds \right) \\
\geq \max_{t \in [0,1]} \left(\int_a^b \Phi(s) s^{n-1} ds \right) \\
= \frac{\lambda L \beta r_2}{2} \int_a^b \Phi(s) s^{n-1} ds \geq r_2.
\]

Therefore,

\[\|Tu\| \geq \|u\|, \quad \forall u \in \partial P_{r_2}. \quad (3.12) \]

By Lemma 2.13, T has a fixed point $u \in P$ such that $r_1 \leq \|u\| \leq r_2$. Let $\overline{u}(t) = t^{n-2}u(t) - \lambda \omega(t)$. Since $\|u\| \geq r_1$, by (3.3) we have $\overline{u}(t) \geq 0$ on $(0, 1]$ and $\lim_{t \to 0^+} t^{n-2}u(t) = 0$. Notice that $\omega(t)$ is the solution of (2.37) and $t^{n-2}u(t)$ is the solution of (2.41). Thus, $\overline{u}(t)$ is a positive solution of the BVP (1.1). \(\Box\)

Theorem 3.2. Suppose that (H_1)–(H_5) and (H_5) hold. Then there exists $\lambda^* > 0$ such that the BVP (1.1) has at least one positive solution for any $\lambda \in (\lambda^*, +\infty)$.
Proof. By the first limit of (H5), there exists $N > 0$ such that

$$f(t, x) \geq \frac{2k}{\beta^2 \int_c^d \Phi(s) ds} \quad \text{for any } t \in [c, d], \ x \geq N. \quad (3.13)$$

Let

$$\lambda^* = \frac{N}{kc^{a-1}}. \quad (3.14)$$

In the following part of the proof, we suppose $\lambda > \lambda^*$. Let

$$R_1 = \frac{2k \beta}{\lambda}. \quad (3.15)$$

Then for any $u \in \partial P_{R_1}$, we have

$$t^{a-2}u(t) - \lambda \omega(t) \geq (\beta R_1 - \lambda k)t^{a-1} = \lambda kt^{a-1} \geq \lambda^* kt^{a-1}, \ \forall t \in (0, 1]. \quad (3.16)$$

Therefore, $t^{a-2}u(t) - \lambda \omega(t) \geq N$, for any $t \in [c, d]$ and $u \in \partial P_{R_1}$. Then

$$Tu(t) = \lambda \int_0^1 G^*(t, s) \left[f(s, [s^{a-2}u(s) - \lambda \omega(s)]^+) + r(s) \right] ds$`

$$\geq \lambda \int_c^d G^*(t, s) f(s, [s^{a-2}u(s) - \lambda \omega(s)]^+) ds$$

$$\geq \frac{2\lambda k}{\beta^2 \int_c^d \Phi(s) ds} \int_c^d G^*(t, s) ds$$

$$\geq \frac{2\lambda kt}{\beta \int_c^d \Phi(s) ds} \int_c^d \Phi(s) ds = R_1 t. \quad (3.17)$$

This implies

$$\|Tu\| \geq \|u\|, \ \forall u \in \partial P_{R_1}. \quad (3.18)$$

On the other hand, $g(x)$ is continuous on $[0, +\infty)$, and thus from the second limit of (H3), we have

$$\lim_{x \to +\infty} \frac{g^*(x)}{x} = 0. \quad (3.19)$$
where \(g^*(x) \) is defined by (3.2). For

\[
\epsilon = \left(2\lambda \int_0^1 \Phi(s)z(s)ds \right)^{-1},
\]

(3.20)

there exists \(X_0 > 0 \) such that \(g(u) \leq \epsilon x \) for any \(x \geq X_0 \) and \(u \in [0, x] \).

Let

\[
R_2 = X_0 + R_1 + 2\lambda \int_0^1 \Phi(s)r(s)ds.
\]

(3.21)

For any \(u \in \partial P_{R_1} \), by (3.16) we can get \(R_2 \geq u(t) - \lambda t^{2-\alpha} \omega(t) \geq 0 \), for all \(t \in [0, 1] \). Therefore,

\[
\|Tu\| \leq \lambda \int_0^1 \Phi(s)\left[z(s)g\left(\left[u(s) - \lambda s^{2-\alpha} \omega(s) \right]^+ \right) + r(s) \right] ds
\]
\[
\leq \lambda \epsilon R_2 \int_0^1 \Phi(s)z(s)ds + \lambda \int_0^1 \Phi(s)r(s)ds
\]
\[
\leq \frac{R_2}{2} + \frac{R_2}{2} = R_2.
\]

(3.22)

Thus,

\[
\|Tu\| \leq \|u\|, \quad \forall u \in \partial P_{R_2}.
\]

(3.23)

By Lemma 2.13, \(T \) has a fixed point \(u \in P \) such that \(R_1 \leq u \leq R_2 \). Let \(\tilde{u}(t) = t^{\alpha-2}u(t) - \lambda \omega(t) \).

Since \(\|u\| \geq R_1 \), by (3.16) we have \(\tilde{u}(t) \geq 0 \) on \((0, 1] \) and \(\lim_{t \to 0^+} t^{\alpha-2}u(t) = 0 \). Notice that \(\omega(t) \) is a solution of (2.37) and \(t^{\alpha-2}u(t) \) is a solution of (2.41). Thus, \(\tilde{u}(t) \) is a positive solution of the BVP (1.1). \(\square \)

By the proof of Theorem 3.2, we have the following corollary.

Corollary 3.3. The conclusion of Theorem 3.2 is valid if \((H_5) \) is replaced by \((H_5') \). There exist \([c, d] \subset (0, 1) \) and \(N > 0 \) such that for any \(t \in [c, d] \) and \(x \geq N \),

\[
f(t, x) \geq \frac{2k}{\beta^2} \int_0^\infty \Phi(s)ds,
\]

(3.24)

\[
\lim_{x \to +\infty} \frac{g(x)}{x} = 0.
\]
4. Example

Example 4.1 (a 4-point BVP with coefficients of both signs). Consider the following problem:

\[
\begin{align*}
D^{7/4}_{0^+} u(t) + \lambda f(t, u(t)) &= 0, \quad t \in (0, 1), \quad u(0) = 0, \\
D^{1/4}_{0^+} u(1) &= D^{1/4}_{0^+} u \left(\frac{1}{4} \right) - \frac{1}{2} D^{1/4}_{0^+} u \left(\frac{4}{9} \right),
\end{align*}
\]

where

\[
f(t, x) = x^2 + \ln t.
\]

We have

\[
G_0(t, s) = \frac{1}{1(7/4)} \begin{cases}
\frac{3}{4}(1 - s)^{1/2}, & 0 \leq t \leq s \leq 1, \\
\frac{3}{4}(1 - s)^{1/2} - (t - s)^{3/4}, & 0 \leq s \leq t \leq 1,
\end{cases}
\]

\[
p(s) = \begin{cases}
1 - \left(\frac{1/4 - s}{1 - s} \right)^{1/2} - \frac{1}{2} \left(\frac{4/9 - s}{1 - s} \right)^{1/2}, & 0 \leq s \leq \frac{1}{4}, \\
1 - \frac{1}{2} \left(\frac{4/9 - s}{1 - s} \right)^{1/2}, & \frac{1}{4} < s \leq \frac{4}{9}, \\
1, & \frac{4}{9} < s \leq 1.
\end{cases}
\]

By direct calculations, we have \(p(0) = (1/6) \) and \(q(s) \geq 0 \), which implies that \((H_1) \) holds.

Let \(r(t) = -\ln t, \ z(t) = t^{1/2}, \ g(x) = x^2 \). It is easy to see that \((H_2) \) and \((H_3) \) hold. Moreover,

\[
\lim \inf_{x \to +\infty} \min_{t \in [(1/4), (3/4)]} \frac{f(t, x)}{x} = +\infty.
\]

Therefore, the assumptions of Theorem 3.1 are satisfied. Thus, Theorem 3.1 ensures that there exists \(\lambda^* > 0 \) such that the BVP (4.1) has at least one positive solution for any \(\lambda \in (0, \lambda^*) \).

Remark 4.2. Noticing that \(\lambda x^2 \) does not satisfy \((A_1) \), therefore, the work in the present paper improves and generalizes the main results of [23].

Acknowledgments

The first and second authors were supported financially by the National Natural Science Foundation of China (11071141, 11101237) and the Natural Science Foundation of Shandong Province of China (ZR2011AQ008, ZR2011AL018). The third author was supported financially by the Australia Research Council through an ARC Discovery Project Grant.
References

