Research Article

On Asymptotic Behaviour of Solutions to n-Dimensional Systems of Neutral Differential Equations

H. Šamajová and E. Špániková

Department of Applied Mathematics, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia

Correspondence should be addressed to H. Šamajová, helena.samajova@fstroj.uniza.sk

Received 6 July 2011; Revised 9 September 2011; Accepted 22 September 2011

Academic Editor: Marcia Federson

Copyright © 2011 H. Šamajová and E. Špániková. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents the properties and behaviour of solutions to a class of n-dimensional functional differential systems of neutral type. Sufficient conditions for solutions to be either oscillatory, or $\lim_{t \to \infty} y_i(t)/t = 0$, or $\lim_{t \to \infty} |y_i(t)/t| = \infty$, $i = 1, 2, \ldots, n$, are established. One example is given.

1. Introduction

The authors have investigated some properties of solutions to n-dimensional functional differential systems

$$[y_1(t) - a(t)y_1(g(t))]' = p_1(t)y_2(t),$$

$$y'_i(t) = p_i(t)y_{i+1}(t), \quad i = 2, 3, \ldots, n - 1, \quad (1.1)$$

$$y'_n(t) = \sigma p_n(t)f(y_1(h(t))), \quad t \geq t_0,$$

in [1]. We studied the properties of solutions presupposing that both functions $a(t)$ and $y_1(t)$ were bounded and there were presented theorems where sufficient conditions to every solution with the first component of the solution $y_1(t)$ to be either oscillatory, or $\lim_{t \to \infty} y_i(t) = 0$ for $i = 1, 2, \ldots, n$.

The goal of this paper is to enquire about the behaviour of the solution to \(n \)-dimensional functional differential system of neutral type (1.1) under no restriction to \(a(t) \) and to the first component \(y_1(t) \) of solution \(y(t) \). Results are given in theorems where sufficient conditions are stated to every solution to have the next properties: a solution to be either oscillatory, or \(\lim_{t \to -\infty} y_i(t) = 0 \), or \(\lim_{t \to -\infty} |y_i(t)| = \infty, i = 1, 2, \ldots, n \).

The system (1.1) is investigated under the assumptions \(\sigma \in \{-1, 1\}, n \geq 3 \), and throughout this paper, the next conditions are considered:

(a) \(a : [t_0, \infty) \to (0, \infty) \) is a continuous function;

(b) \(g : [t_0, \infty) \to \mathbb{R} \) is a continuous and increasing function, \(\lim_{t \to -\infty} g(t) = \infty \);

(c) \(p_i : [t_0, \infty) \to [0, \infty), i = 1, 2, \ldots, n \), are continuous functions; \(p_n \) not identically equal to zero in any neighbourhood of infinity, \(\int_{t_0}^{\infty} p_j(t)\,dt = \infty, j = 1, 2, \ldots, n - 1 \);

(d) \(h : [t_0, \infty) \to \mathbb{R} \) is a continuous and increasing function, \(\lim_{t \to -\infty} h(t) = \infty \);

(e) \(f : \mathbb{R} \to \mathbb{R} \) is a continuous function; moreover, for \(u \neq 0, uf(u) > 0 \) and \(|f(u)| \geq K|u| \) hold, where \(K \) is a positive constant.

For a function \(y_1(t) \),

\[
z_1(t) = y_1(t) - a(t)y_1(g(t))
\]

is defined, and for \(t_1 \geq t_0 \), we introduce

\[
\tilde{t}_1 = \min\{t_1, g(t_1), h(t_1)\}.
\]

A vector function \(y = (y_1, \ldots, y_n) \) is a solution to the system (1.1) if there is a \(t_1 \geq t_0 \) such that \(y \) is continuous on \([\tilde{t}_1, \infty) \); functions \(z_1(t), y_i(t), i = 2, 3, \ldots, n \) are continuously differentiable on \([t_1, \infty) \) and \(y \) satisfies (1.1) on \([t_1, \infty) \).

\(W \) denotes the set of all solutions \(y = (y_1, \ldots, y_n) \) to the system (1.1) that exist on some interval \([T_y, \infty) \subset [t_0, \infty) \) and satisfy the condition

\[
\sup \left\{ \sum_{i=1}^{n} |y_i(t)| : t \geq T \right\} > 0 \quad \text{for any} \ T \geq T_y.
\]

A solution \(y \in W \) is considered nonoscillatory if there exists a \(T_y \geq t_0 \) such that every component is different from zero for \(t \geq T_y \). Otherwise a solution \(y \in W \) is said to be oscillatory.

Properties of solutions to similar differential equations and systems like system (1.1) have been studied in [1–6] and in the references cited therein. Problems of existence of solutions to neutral differential systems were analysed, for example, in [7, 8].
Abstract and Applied Analysis

It will be useful to define two types of recursion formulae. Let \(i_k \in \{1, 2, \ldots, n\}, k = 1, 2, \ldots, n \), and \(t, u \in [t_0, \infty) \). One has

\[
I_0(u, t) \equiv 1,
\]

\[
I_k(u, t; p_{i_1}, p_{i_2}, \ldots, p_{i_k}) = \int_t^u p_{i_1}(x) I_{k-1}(x; t; p_{i_2}, p_{i_3}, \ldots, p_{i_k}) \, dx,
\]

(1.5)

\[
J_0(u, t) \equiv 1,
\]

\[
J_k(u, t; p_{i_1}, p_{i_2}, \ldots, p_{i_k}) = \int_t^u p_{i_1}(x) J_{k-1}(u, x; p_{i_2}, p_{i_3}, \ldots, p_{i_k}) \, dx.
\]

(1.6)

It is easy to prove that the following identities hold:

\[
I_k(u, t; p_{i_1}, p_{i_2}, \ldots, p_{i_k}) = J_k(u, t; p_{i_1}, p_{i_2}, \ldots, p_{i_k})
\]

(1.7)

for \(k = 1, 2, \ldots, n \).

Functions \(g^{-1}(t) \), \(h^{-1}(t) \) denote the inverse functions to \(g(t), h(t) \).

2. Preliminaries

Lemma 2.1 (see [9, Lemma 1]). Let \(y \in W \) be a solution of (1.1) with \(y_1(t) \neq 0 \) on \([t_1, \infty), t_1 \geq t_0\). Then \(y \) is nonoscillatory and \(z_1(t), y_2(t), \ldots, y_n(t) \) are monotone on some ray \([T, \infty), T \geq t_1\).

Let \(y \in W \) be a non-oscillatory solution of (1.1). By (1.1) and (c), it follows that the function \(z_1(t) \) from (1.2) has to be eventually of constant sign, so that either

\[
y_1(t)z_1(t) > 0
\]

(2.1)

or

\[
y_1(t)z_1(t) < 0
\]

(2.2)

for sufficiently large \(t \).

We mention for the comfort of proofs a classification of non-oscillatory solutions of the system (1.1) which was introduced by the authors in [1].

Assume first that (2.1) holds.

By [9, Lemma 4], the statement in Lemma 2.2 follows.

Lemma 2.2. Let \(y = (y_1, y_2, \ldots, y_n) \in W \) be a non-oscillatory solution to (1.1) on \([t_1, \infty), t_1 \geq t_0\), and assume that (2.1) holds. Then there exists an integer \(l \in \{1, 2, \ldots, n\} \) such that \(\sigma \cdot (-1)^{n+l+1} = 1 \) or \(l = n \), and \(t_2 \geq t_1 \) such that for \(t \geq t_2 \)

\[
y_i(t)z_1(t) > 0, \quad i = 1, 2, \ldots, l,
\]

\[
(-1)^{i+l}y_i(t)z_1(t) > 0, \quad i = l + 1, \ldots, n.
\]

(2.3)
Denote by N^+_1 the set of non-oscillatory solutions to (1.1) satisfying (2.3). Now assume that (2.2) holds.

By the aid of Kiguradze’s lemma, it is easy to prove Lemma 2.3.

Lemma 2.3. Let $y = (y_1, y_2, \ldots, y_n) \in W$ be a non-oscillatory solution to (1.1) on $[t_1, \infty)$, and assume that (2.2) holds. Then there exists an integer $l \in \{1, 2, \ldots, n\}$ and $\sigma \cdot (-1)^{n_l} = 1$ or $l = n$, and $t_2 \geq t_1$ such that for $t \geq t_2$ either

$$y_1(t)z_1(t) < 0,$$

$$(-1)^{i_1}y_i(t)z_1(t) < 0, \quad i = 2, \ldots, n,$$

or

$$y_1(t)z_1(t) < 0,$$

$$y_i(t)z_1(t) > 0, \quad i = 2, 3, \ldots, l,$$

$$(-1)^{i_2}y_i(t)z_1(t) > 0, \quad i = l + 1, \ldots, n.$$

Denote by N^-_1 the set of nonoscillatory solutions to (1.1) satisfying (2.4), and by N^+_1 the set of non-oscillatory solutions to (1.1) satisfying (2.5). Denote by N the set of all non-oscillatory solutions to (1.1). Obviously by Lemmas 2.2 and 2.3, we have the classification of non-oscillatory solutions to the system (1.1):

n odd, $\sigma = 1$:

$$N = N^+_2 \cup N^+_4 \cup \cdots \cup N^+_{n-1} \cup N^+_n \cup N^-_1 \cup N^-_3 \cup \cdots \cup N^-_n,$$ \hspace{1cm} (2.6)

n odd, $\sigma = -1$:

$$N = N^+_1 \cup N^+_3 \cup \cdots \cup N^+_n \cup N^-_2 \cup N^-_4 \cup \cdots \cup N^-_{n-1} \cup N^-_n,$$ \hspace{1cm} (2.7)

n even, $\sigma = 1$:

$$N = N^+_1 \cup N^+_3 \cup \cdots \cup N^+_{n-1} \cup N^+_n \cup N^-_2 \cup N^-_4 \cup \cdots \cup N^-_{n-1} \cup N^-_n,$$ \hspace{1cm} (2.8)

n even, $\sigma = -1$:

$$N = N^+_2 \cup N^+_4 \cup \cdots \cup N^+_n \cup N^-_1 \cup N^-_3 \cup \cdots \cup N^-_{n-1} \cup N^-_n.$$ \hspace{1cm} (2.9)

The next lemma can be proved similarly as Lemma 2 in [9].
Lemma 2.4. Let \(y = (y_1, y_2, \ldots, y_n) \in W \) be a non-oscillatory solution to (1.1) on \([t_1, \infty), t_1 \geq t_0,\) and let \(\lim_{t \to \infty} |z_1(t)| = L_1, \lim_{t \to \infty} |y_k(t)| = L_k, k = 2, \ldots, n. \) Then

\[
\begin{align*}
k \geq 2, & \quad L_k > 0 \implies L_i = \infty, \quad i = 1, \ldots, k - 1, \\
1 \leq k < n, & \quad L_k < \infty \implies L_i = 0, \quad i = k + 1, \ldots, n.
\end{align*}
\] (2.10)

Remark 2.5. If \(g(t) < t, \) and \(0 < a(t) \leq \lambda^* < 1, \) \((\lambda^* \text{ is a constant}),\) then from [9], we have \(N_{\lambda^*} = \emptyset, \) \(k \in \{2, 3, \ldots, n\}.\)

Lemma 2.6 (see [10, Lemma 2.2]). In addition to conditions (a) and (b) suppose that

\[
1 \leq a(t), \quad t \geq t_0.
\] (2.11)

Let \(y_1(t) \) be a continuous non-oscillatory solution to the functional inequality

\[
y_1(t) \left[y_1(t) - a(t)y_1(g(t)) \right] > 0
\] (2.12)

defined in a neighbourhood of infinity. Suppose that \(g(t) > t \) for \(t \geq t_0. \) Then \(y_1(t) \) is bounded. If, moreover,

\[
1 < \lambda^* \leq a(t), \quad t \geq t_0
\] (2.13)

for some positive constant \(\lambda^*, \) then \(\lim_{t \to \infty} y_1(t) = 0. \)

3. Main Results

Theorem 3.1. Suppose that

\[
0 < a(t) \leq \lambda^* < 1, \quad \text{for some constant } \lambda^*, \quad t \geq t_0,
\] (3.1)

\[
g(t) < h(t) < t \quad \text{for } t \geq t_0,
\] (3.2)

\[
\alpha : [t_0, \infty) \to \mathbb{R} \text{ is a continuous function, } \alpha(t) < t, \quad \lim_{t \to \infty} \alpha(t) = \infty,
\] (3.3)

\[
\int_{x_1}^{\infty} p_1(x_1) \int_{x_2}^{\infty} p_2(x_2) \int_{x_3}^{\infty} p_3(x_3) \cdots \int_{x_{n-1}}^{\infty} p_{n-1}(x_{n-1}) \int_{x_n}^{\infty} p_n(x_n) dx_n \cdots dx_1 = \infty,
\] (3.4)

\[
\limsup_{l \to \infty} K_l^{-2} (t, \alpha(t); p_1, p_2, \ldots, p_{l-2}(*), p_{l-1}(*), \alpha(t); p_{n-1}, p_{n-2}, \ldots, p_l) + \int_{h^{-1}(t)}^{\infty} p_n(x_n) dx_n > 1
\] (3.5)

for \(l = 3, 5, \ldots, n - 2, \)

\[
\limsup_{l \to \infty} K_l^{-1} (t, \alpha(t); p_1, p_2, \ldots, p_{n-1}) \int_{h^{-1}(t)}^{\infty} p_n(x_n) dx_n > 1.
\] (3.6)
If \(n \) is odd and \(\sigma = -1 \), then every solution \(y \in W \) to (1.1) is oscillatory or \(\lim_{t \to \infty} y_i(t) = 0 \), \(i = 1, 2, \ldots, n \).

Proof. Let \(y \in W \) be a non-oscillatory solution to (1.1). The Expression (2.7) holds. Taking into account Remark 2.5, one may write

\[
N = N_1^+ \cup N_3^+ \cup \cdots \cup N_n^+.
\]

(7)

Without loss of generality we may suppose that \(y_1(t) \) is positive for \(t \geq t_2 \).

(i) Let \(y \in N_1^+ \) on \([t_2, \infty) \). In this case, we can write for \(t \geq t_2 \)

\[
y_1(t) > 0, z_1(t) > 0, y_2(t) < 0, y_3(t) > 0, \ldots, y_n(t) > 0,
\]

(8)

and \(\lim_{t \to \infty} z_1(t) = L_1 \geq 0 \). We claim that \(L_1 = 0 \). Otherwise \(L_1 > 0 \). Then

\[
L_1 \leq z_1(h(t)) \leq y_1(h(t)) \quad \text{for} \quad t \geq t_3,
\]

(9)

where \(t_3 \geq t_2 \) is sufficiently large.

Integrating the last equation of (1.1) from \(x_{n-1} \) to \(x_{n-1}^* \), we get for \(x_{n-1} \geq t_3 \)

\[
y_n(x_{n-1}) - y_n(x_{n-1}^*) = \int_{x_{n-1}}^{x_{n-1}^*} p_n(x_n)f(y_1(h(x_n)))dx_n.
\]

(10)

From (10) with regard to (e), (8), and (9), we have for \(x_{n-1}^* \to \infty \)

\[
y_n(x_{n-1}) \geq KL_1 \int_{x_{n-1}}^{x_{n-1}^*} p_n(x_n)dx_n, \quad x_{n-1} \geq t_3.
\]

(11)

Multiplying (11) by \(p_{n-1}(x_{n-1}) \) and then using the \((n - 1) \)th equation of the system (1.1), we get for \(x_{n-1} \geq t_3 \)

\[
y_{n-1}(x_{n-1}) \geq KL_1 p_{n-1}(x_{n-1}) \int_{x_{n-1}}^{x_{n-1}^*} p_n(x_n)dx_n.
\]

(12)

Integrating (12) from \(x_{n-2} \) to \(x_{n-2}^* \to \infty \), and then using (8), we get for \(x_{n-2} \geq t_3 \)

\[
-y_{n-1}(x_{n-2}) \geq KL_1 \int_{x_{n-2}}^{x_{n-2}^*} p_{n-1}(x_{n-1}) \int_{x_{n-1}}^{x_{n-1}^*} p_n(x_n)dx_n dx_{n-1}.
\]

(13)

Multiplying (13) by \(p_{n-2}(x_{n-2}) \) and then using the \((n - 2) \)th equation of the system (1.1), and the new inequality we integrate from \(x_{n-3} \) to \(x_{n-3}^* \to \infty \) we employ (8) and for \(x_{n-3} \geq t_3 \)

\[
y_{n-2}(x_{n-3}) \geq KL_1 \int_{x_{n-3}}^{x_{n-3}^*} p_{n-2}(x_{n-2}) \int_{x_{n-2}}^{x_{n-2}^*} p_{n-1}(x_{n-1}) \int_{x_{n-1}}^{x_{n-1}^*} p_n(x_n)dx_n dx_{n-1} dx_{n-2}.
\]

(14)
Similarly for $x_1 \geq t_3$, we have

$$-z_1'(t) \geq KL_1 p_1(x_1) \int_{x_1}^{\infty} p_2(x_2) \int_{x_2}^{\infty} p_3(x_3) \cdots p_{n-1}(x_{n-1})$$

$$\times \int_{x_{n-1}}^{\infty} p_n(x_n) dx_n dx_{n-1} \cdots dx_2. \tag{3.15}$$

Integrating (3.15) from T to $T^* \to \infty$ and then using (3.8), we get for $T \geq t_3$

$$z_1(T) \geq KL_1 \int_{T}^{\infty} p_1(x_1) \int_{x_1}^{\infty} p_2(x_2) \cdots p_{n-1}(x_{n-1}) \int_{x_{n-1}}^{\infty} p_n(x_n) dx_n dx_{n-1} \cdots dx_1, \tag{3.16}$$

which is a contradiction to (3.4). Hence $\lim_{t \to \infty} z_1(t) = 0$.

Then $z_1(t) \leq 1$, $t \geq t_4$, where $t_4 \geq t_3$ is sufficiently large and

$$y_1(t) \leq a(t) y_1(g(t)) + 1 \leq \lambda^* y_1(g(t)) + 1, \quad t \geq t_4. \tag{3.17}$$

We prove that $y_1(t)$ is bounded indirectly. Let $y_1(t)$ be unbounded. Then there exists a sequence $\{\tilde{t}_n\}_{n=1}^{\infty}$, $\tilde{t}_n \geq t_4$, where $n = 1, 2, \ldots$, $\tilde{t}_n \to \infty$ as $n \to \infty$,

$$\lim_{n \to \infty} y_1(\tilde{t}_n) = \infty, \quad y_1(\tilde{t}_n) = \max_{t_4 \leq s \leq \tilde{t}_n} y_1(s). \tag{3.18}$$

It follows from (3.1), (3.2), and (3.17),

$$y_1(\tilde{t}_n) \leq \lambda^* y_1(g(\tilde{t}_n)) + 1 \leq \lambda^* y_1(\tilde{t}_n) + 1, \tag{3.19}$$

$$y_1(\tilde{t}_n) \leq \frac{1}{1 - \lambda^*}, \quad n = 1, 2, \ldots.$$

That is a contradiction to $\lim_{n \to \infty} y_1(\tilde{t}_n) = \infty$, and the function $y_1(t)$ is bounded.

We claim that $\lim_{t \to \infty} y_1(t) = 0$ and prove it indirectly. Let $\lim\sup_{t \to \infty} y_1(t) = s > 0$. Let $\{t_n\}_{n=1}^{\infty}$, $t_n \geq t_4$, $n = 1, 2, \ldots$, be such a kind of sequence, that $t_n \to \infty$ as $n \to \infty$, and $\lim\sup_{n \to \infty} y_1(t_n) = s$. Then $\lim\sup_{n \to \infty} y_1(g(t_n)) \leq s$. From (1.2) and (3.1),

$$z_1(t_n^*) \geq y_1(t_n^*) - \lambda^* y_1(g(t_n^*)), \quad n = 1, 2, \ldots, \tag{3.20}$$

$$y_1(g(t_n^*)) \geq \frac{y_1(t_n^*) - z_1(t_n^*)}{\lambda^*}, \quad n = 1, 2, \ldots$$

follow.

From the last inequality, we have

$$s \geq \frac{s}{\lambda^*}, \quad \lambda^* \geq 1. \tag{3.21}$$
That is a contradiction to condition (3.1) and $\lim_{t \to \infty} y_1(t) = 0 = \lim_{t \to \infty} y_i(t)$. Since $\lim_{t \to \infty} z_1(t) = L_1 = 0$ and from Lemma 2.4, imply $\lim_{t \to \infty} y_i(t) = 0$, $i = 2, 3, \ldots, n$.

(II) Let $y \in N_1^+$, for some $l = 3, 5, \ldots, n - 2$, on $[t_2, \infty)$. In this case, one can consider for $t \geq t_2$

$$y_1(t) > 0, z_1(t) > 0, y_2(t) > 0, \ldots, y_l(t) > 0, y_{l+1}(t) < 0, \ldots, y_n(t) > 0. \quad (3.22)$$

Integrating the first equation of the system (1.1) from $\alpha(t)$ to t and using (3.22) above, we get

$$z_1(t) \geq \int_{\alpha(t)}^{t} p_1(x_1) y_2(x_1) \, dx, \quad t \geq t_3, \quad (3.23)$$

where $t_3 \geq t_2$ is sufficiently large. Integrating step by step 2nd, 3rd, $\ldots, (l - 1)$th equations of the system (1.1) and subsequently substituting into (3.23) for $t \geq t_3$, we obtain

$$z_1(t) \geq \int_{\alpha(t)}^{t} p_1(x_1) \int_{x_l}^{x_2} p_2(x_2) \cdots \int_{x_3}^{x_l} p_{l-1}(x_{l-1}) y_l(x_{l-1}) \, dx_{l-1} \, dx_{l-2} \cdots \, dx_1. \quad (3.24)$$

Integrating lth, $(l+1)$th, $\ldots, (n-1)$th equation of the system (1.1) and using (3.22), we have

$$y_l(x_{l-1}) \geq -\int_{x_{l-1}}^{x_l} p_{l-1}(x_{l-1}) y_{l+1}(x_{l-1}) \, dx_{l-1},$$

$$-y_{l+1}(x_l) \geq \int_{x_l}^{x_{l+1}} p_{l+1}(x_{l+1}) y_{l+2}(x_{l+1}) \, dx_{l+1},$$

$$y_{l+2}(x_{l+1}) \geq -\int_{x_{l+1}}^{x_{l+2}} p_{l+2}(x_{l+2}) y_{l+3}(x_{l+2}) \, dx_{l+2}, \quad (3.25)$$

$$\vdots$$

$$-y_{n-1}(x_{n-2}) \geq \int_{x_{n-2}}^{x_{n-1}} p_{n-1}(x_{n-1}) y_n(x_{n-1}) \, dx_{n-1}.$$

Combining expressions (3.24) and (3.25) and using (3.22), we get for $t \geq t_3$

$$z_1(t) \geq y_n(t) \int_{\alpha(t)}^{t} p_1(x_1) \int_{x_1}^{x_2} p_2(x_2) \cdots \int_{x_3}^{x_l} p_{l-1}(x_{l-1}) \int_{x_{l-1}}^{x_l} p_l(x_l)$$

$$\times \int_{x_1}^{x_{l+1}} p_{l+1}(x_{l+1}) \cdots \int_{x_{n-2}}^{x_{n-1}} p_{n-1}(x_{n-1}) \, dx_{n-1} \, dx_{n-2} \cdots \, dx_1. \quad (3.26)$$

The formula above may be rewritten by (1.5) and (1.6) for $t \geq t_3$ to

$$z_1(t) \geq y_n(t) I_{l-2}(t, \alpha(t); p_1, p_2, \ldots, p_{l-2}(*)) \times J_{n-l+1}((*), \alpha(t); p_{n-1}, p_{n-2}, \ldots, p_{l-1}), \quad (3.27)$$
Abstract and Applied Analysis

Integrating the last equation of (1.1) from \(t \to t^* \to \infty \) and using (e), (1.2), and (3.22), we obtain for \(t \geq t_4 \) where \(t_4 \geq t_3 \) is sufficiently large,

\[
y_n(t) \geq K \int_t^{\infty} p_n(x_n)z_1(h(x_n))\,dx_n. \tag{3.28}
\]

From (3.2), (3.27), and (3.28) and the monotonicity of \(z_1(h) \), we have

\[
z_1(t) \geq K I_{n-2}(t, \alpha(t); p_1, p_2, \ldots, p_{l-2}(\ast) \times \int_n^{\infty} ([\ast], \alpha(t); p_{n-1}, p_{n-2}, \ldots, p_{l-1}))
\]

\[
\times \int_t^{\infty} p_n(x_n)z_1(h(x_n))\,dx_n
\]

\[
\geq z_1(t) K I_{n-2}(t, \alpha(t); p_1, p_2, \ldots, p_{l-2}(\ast) \times \int_n^{\infty} ([\ast], \alpha(t); p_{n-1}, p_{n-2}, \ldots, p_{l-1}))
\]

\[
\times \int_h^{-1}(t) p_n(x_n)\,dx_n, \tag{3.29}
\]

\[
1 \geq K I_{n-2}(t, \alpha(t); p_1, p_2, \ldots, p_{l-2}(\ast) \times \int_n^{\infty} ([\ast], \alpha(t); p_{n-1}, p_{n-2}, \ldots, p_{l-1}))
\]

\[
\times \int_h^{-1}(t) p_n(x_n)\,dx_n
\]

for \(t \geq t_4 \), which is a contradiction to (3.5), and it gives

\[
N_3^+ \cup N_3^+ \cup \cdots \cup N_{n-2}^+ = \emptyset. \tag{3.30}
\]

(III) Let \(y \in N_n^+ \) on \([t_2, \infty)\). In this case we consider for the components of solution \(y(t) \) and for function \(z_1 \)

\[
z_1(t) > 0, \quad y_i(t) > 0, \quad i = 1, 2, \ldots, n, \quad t \geq t_2. \tag{3.31}
\]

Analogically as in the previous part of the proof,

\[
z_1(t) \geq y_n(t) I_{n-1}(t, \alpha(t); p_1, p_2, \ldots, p_{n-1}), \quad t \geq t_3, \tag{3.32}
\]

holds and also (3.28), and for \(t \geq t_3 \)

\[
1 \geq K I_{n-1}(t, \alpha(t); p_1, p_2, \ldots, p_{n-1}) \int_h^{-1}(t) p_n(x_n)\,dx_n, \tag{3.33}
\]

which is a contradiction to (3.6) and \(N_n^+ = \emptyset \).
Theorem 3.2. Suppose that (3.1)–(3.4) are employed and (3.5) holds for \(l = 3, 5, \ldots, n - 1 \) and

\[
\int_s^\infty p_n(x_n) \int_{h(x_n)}^{x_n} p_1(x_1) \int_{h(x_2)}^{x_2} p_2(x_2) \cdots \int_{h(x_{n-1})}^{x_{n-1}} p_{n-1}(x_{n-1}) \, dx_{n-1} \cdots \, dx_2 \, dx_1 \, dx_n = \infty \quad (3.34)
\]

for \(s \) sufficiently large.

If \(n \) is even and \(\sigma = 1 \), then every solution \(y \in W \) to the system (1.1) is either oscillatory, or \(\lim_{t \to \infty} y_i(t) = 0 \), for \(i = 1, 2, \ldots, n \), or \(\lim_{t \to \infty} |y_i(t)| = \infty \), for \(i = 1, 2, \ldots, n \).

Proof. Let \(y \in W \) be a non-oscillatory solution to (1.1). Expression (2.8) holds. Taking into account Remark 2.5,

\[
N = N_1^+ \cup N_3^+ \cup \cdots \cup N_{n-1}^+ \cup N_n^+.
\]

Without loss of generality we may suppose that \(y_1(t) \) is positive for \(t \geq t_2 \).

(I) Let \(y \in N_1^+ \) on \([t_2, \infty)\). In this case, for \(t \geq t_2 \)

\[
y_1(t) > 0, \quad z_1(t) > 0, \quad y_2(t) < 0, \quad y_4(t) > 0, \quad y_2(t) < 0, \quad \ldots, \quad y_n(t) < 0.
\]

(3.36)

We may choose analogical approach as in Theorem 3.1 part (I). Equation (3.9) holds and we replace (3.11) by inequality

\[
-y_n(x_{n-1}) \geq KL_1 \int_{x_{n-1}}^\infty p_n(x_n) \, dx_n, \quad x_{n-1} \geq t_3.
\]

Moreover (3.15) holds and similarly as in the proof of Theorem 3.1 case (I). We prove that \(\lim_{t \to \infty} y_i(t) = 0 \), for \(i = 1, 2, \ldots, n \).

(II) Let \(y \in N_1^+ \) on \([t_2, \infty)\), for some \(l = 3, 5, \ldots, n - 1 \). In this case, for \(t \geq t_2 \),

\[
y_1(t) > 0, \quad z_1(t) > 0, \quad y_2(t) > 0, \quad \ldots, \quad y_{l+1}(t) > 0, y_{l+1}(t) < 0, \quad \ldots, \quad y_n(t) < 0.
\]

(3.38)

The analogical approach as in Theorem 3.1 part (II) follows out.

Instead of inequality (3.27), we get for \(t \geq t_3 \)

\[
z_1(t) \geq -y_n(t) L_{l-2}(t, \alpha(t); p_1, p_2, \ldots, p_{l-2}(*)) \times J_{n-l+1}(\alpha(t); p_{n-1}, p_{n-2}, \ldots, p_{l-1})
\]

(3.39)

and instead of (3.28) for \(t \geq t_4 \)

\[
-y_n(t) \geq K \int_t^\infty p_n(x_n) z_1(h(x_n)) \, dx_n,
\]

(3.40)

and in the end we gain the contradiction to (3.5).
(III) Let \(y \in N_1^* \) on \([t_2, \infty)\). In this case (3.31) holds. Integrating the last equation of the system (1.1) and on the basis of (3.31), (3.2), (e), and (1.2), we have

\[
y_n(t) \geq K \int_s^t p_n(x_n)z_1(h(x_n)) \, dx_n, \quad t \geq s \geq t_3,
\]

(3.41)

where \(t_3 \geq t_2 \) is sufficiently large.

Integrating the first equation of the system (1.1) from \(h(s) \) to \(h(x_n) \) and employing (3.31), we obtain

\[
z_1(h(x_n)) \geq \int_{h(s)}^{h(x_n)} p_1(x_1) y_2(x_1) \, dx_1, \quad s \geq t_3.
\]

(3.42)

Combining (3.41) and (3.42), we have for \(t \geq s \geq t_3 \)

\[
y_n(t) \geq K \int_s^t p_n(x_n) \int_{h(s)}^{h(t)} p_1(x_1) y_2(x_1) \, dx_1 \, dx_n.
\]

(3.43)

Further consequently integrating the 2nd, 3rd, \ldots, \((l-1) \)th equations of the system (1.1) and step by step substituting into (3.43), we get for \(t \geq s \geq t_3 \)

\[
y_n(t) \geq K \int_s^t p_n(x_n) \int_{h(s)}^{h(x_n)} p_1(x_1) \int_{h(s)}^{x_1} p_2(x_2) \int_{h(s)}^{x_2} \cdots \int_{h(s)}^{x_{n-2}} p_{n-1}(x_{n-1}) y_n(x_{n-1}) \, dx_{n-1} \, dx_{n-2} \cdots \, dx_2 \, dx_1 \, dx_n.
\]

(3.44)

On basis of (3.31), for \(x_{n-1} \geq t_3 \)

\[
y_n(x_{n-1}) \geq C, \quad 0 < C = \text{const.}, \quad \text{for } x_{n-1} \geq t_3,
\]

(3.45)

hold.

Combining (3.44) and (3.45) for \(t \geq s \geq t_3 \), we have

\[
y_n(t) \geq KC \int_s^t p_n(x_n) \int_{h(s)}^{h(x_n)} p_1(x_1) \int_{h(s)}^{x_1} p_2(x_2) \int_{h(s)}^{x_2} \cdots \int_{h(s)}^{x_{n-2}} p_{n-1}(x_{n-1}) \, dx_{n-1} \, dx_{n-2} \cdots \, dx_2 \, dx_1 \, dx_n.
\]

(3.46)

From the inequality above and relation (3.34), we obtain \(\lim_{t \to \infty} y_n(t) = \infty \). Lemma 2.4 implies \(\lim_{t \to \infty} z_1(t) = \infty \) and \(\lim_{t \to \infty} y_i(t) = \infty, i = 2, 3, \ldots, n-1 \). Since \(z_1(t) < y_1(t) \) for \(t \geq t_2 \), so \(\lim_{t \to \infty} y_1(t) = \infty \) and the final conclusion is \(\lim_{t \to \infty} |y_i(t)| = \infty, i = 1, 2, \ldots, n. \)
Theorem 3.3. Suppose that (3.3) holds and

\[1 < \lambda^* \leq a(t) \quad \text{for some constant } \lambda^*, \quad t \geq t_0, \quad (3.47) \]

\[t < g(t) < h(t) \quad \text{for } t \geq t_0, \quad (3.48) \]

\[\int_1^\infty p_1(x_1) \int_{x_1}^\infty p_2(x_2) \int_{x_2}^\infty p_3(x_3) \cdots \int_{x_{n-2}}^\infty p_{n-1}(x_{n-1}) \]

\[\times \int_{x_{n-1}}^\infty \frac{p_n(x_n)dx_ndx_{n-1} \cdots dx_1}{a(g^{-1}(h(x_n)))} = \infty, \quad (3.49) \]

\[\limsup_{t \to \infty} K_{t-2}(t, \alpha(t); p_1, p_2, \ldots, p_{l-2}(\ast) \times \int_{J_{t-1}}(\ast), \alpha(t); p_{n-1}, p_{n-2}, \ldots, p_{l-1})) \]

\[\times \int_t^\infty \frac{p_n(x_n)dx_n}{a(g^{-1}(h(x_n)))} > 1, \quad (3.50) \]

for \(l = 3, 5, \ldots, n - 2, \)

\[\limsup_{t \to \infty} K_{n-1}(t, \alpha(t); p_1, p_2, \ldots, p_{n-1}) \int_t^\infty \frac{p_n(x_n)dx_n}{a(g^{-1}(h(x_n)))} > 1. \quad (3.51) \]

If \(n \) is odd and \(\sigma = 1 \) then every solution \(y \in W \) to (1.1) is either oscillatory, or \(\lim_{t \to \infty} y_i(t) = 0 \), \(i = 1, 2, \ldots, n. \)

Proof. Let \(y \in W \) be a non-oscillatory solution to (1.1). Expression (2.6) holds. Without loss of generality we may suppose that \(y_1(t) \) is positive for \(t \geq t_2. \)

(I) Let \(y \in N^+_1 \cup N^+_2 \cup \cdots \cup N^+_{n-1} \cup N^+_n \) on \([t_2, \infty)\). Lemma 2.6 implies \(\lim_{t \to \infty} y_1(t) = 0 \). In this case, for \(t \geq t_2, \)

\[0 < z_1(t) < y_1(t), \quad (3.52) \]

and so \(\lim_{t \to \infty} z_1(t) = 0 \) which is a contradiction to the fact that the \(z_1(t) \) is positive and a nondecreasing function on the interval \([t_2, \infty)\) and

\[N^+_2 \cup N^+_3 \cup \cdots \cup N^+_{n-1} \cup N^+_n = \emptyset. \quad (3.53) \]

(II) Let \(y \in N^-_1 \) on \([t_2, \infty)\). In this case, we can write for \(t \geq t_2 \)

\[y_1(t) > 0, z_1(t) < 0, \quad y_2(t) > 0, \quad y_3(t) < 0, \ldots, \quad y_n(t) < 0. \quad (3.54) \]

We indirectly prove \(\lim_{t \to \infty} z_1(t) = 0. \)

Since \(z_1(t) \) is nondecreasing \(\lim_{t \to \infty} z_1(t) = -L_1, \quad L_1 > 0, \quad L_1 = \text{const.} \), and

\[z_1(t) \leq -L_1 \quad \text{for } t \geq t_2. \quad (3.55) \]
Because \(z_1(t) > -a(t)y_1(g(t)) \),

\[
z_1\left(g^{-1}(h(t))\right) > -a\left(g^{-1}(h(t))\right)y_1(h(t)),
\]

(3.56)

\[
-y_1(h(t)) < \frac{z_1\left(g^{-1}(h(t))\right)}{a\left(g^{-1}(h(t))\right)}, \quad t \geq t_2
\]

(3.57)

follows.

From (3.55) and (3.57), we get

\[
-L_1 \geq z_1\left(g^{-1}(h(x_n))\right) \geq -a\left(g^{-1}(h(x_n))\right)y_1(h(x_n)), \quad x_n > t_2.
\]

(3.58)

By (c), (e), the last equation of (1.1), and (3.58), we get for \(x_n > t_2 \)

\[
\frac{KL_1p_n(x_n)}{a\left(g^{-1}(h(x_n))\right)} \leq Kp_n(x_n)y_1(h(x_n)) \leq p_n(x_n)f\left(y_1(h(x_n))\right) = y'_n(x_n).
\]

(3.59)

Integrating (3.59) from \(x_{n-1} \) to \(x^*_n \to \infty \), we get

\[
KL_1 \int_{x_{n-1}}^{\infty} \frac{p_n(x_n)dx_n}{a\left(g^{-1}(h(x_n))\right)} \leq -y_n(x_{n-1}) \quad \text{for } x_{n-1} \geq t_2.
\]

(3.60)

Multiplying (3.60) by \(p_{n-1}(x_{n-1}) \) and then using the \((n-1)\)th equation of system (1.1), we get for \(x_{n-1} \geq t_2 \)

\[
KL_1p_{n-1}(x_{n-1}) \int_{x_{n-1}}^{\infty} \frac{p_n(x_n)dx_n}{a\left(g^{-1}(h(x_n))\right)} \leq -y_{n-1}(x_{n-1}).
\]

(3.61)

Integrating (3.61) from \(x_{n-2} \) to \(x^*_n \to \infty \), we get for \(x_{n-2} \geq t_2 \)

\[
KL_1 \int_{x_{n-2}}^{\infty} p_{n-1}(x_{n-1}) \int_{x_{n-1}}^{\infty} \frac{p_n(x_n)dx_ndx_{n-1}}{a\left(g^{-1}(h(x_n))\right)} \leq y_{n-1}(x_{n-2}).
\]

(3.62)

Similarly we continue by the same way until we derive for \(x_1 \geq t_2 \)

\[
KL_1p_1(x_1) \int_{x_1}^{\infty} p_2(x_2) \int_{x_2}^{\infty} p_3(x_3) \cdots \int_{x_{n-2}}^{\infty} p_{n-1}(x_{n-1}) \int_{x_{n-1}}^{\infty} \frac{p_n(x_n)dx_ndx_{n-1}\cdots dx_2}{a\left(g^{-1}(h(x_n))\right)} \leq z_1(x_1).
\]

(3.63)
Integrating (3.63) from T to $T^* \to \infty$, we get for $T \geq t_2$

$$KL_1 \int_T^\infty p_1(x_1) \int_{x_1}^\infty p_2(x_2) \int_{x_2}^\infty p_3(x_3) \cdots \int_{x_{n-1}}^\infty p_{n-1}(x_{n-1}) \times \int_{x_{n-1}}^\infty p_n(x_n)dx_n dx_{n-1} \cdots dx_1 \frac{a(g^{-1}(h(x_n)))}{a^n} \leq -z_1(T).$$ (3.64)

That contradicts (3.49), and consequently $\lim_{t \to \infty} z_1(t) = 0$ holds.

We prove that $y_1(t)$ is bounded and $\lim_{t \to \infty} y_1(t) = 0$. There is some positive constant $B > 0, z_1(t) \geq -B$ for $t \geq t_2$, and by (1.2) and (3.47), one has for $t \geq t_2$

$$y_1(t) = a(t)y_1(g(t)) + z_1(t) \geq a(t)y_1(g(t)) - B \geq \lambda^* y_1(g(t)) - B.$$ (3.65)

We prove indirectly that $y_1(t)$ is bounded. Let us suppose that $y_1(t)$ is unbounded. Then $y_1(g(t))$ is unbounded, and there is a sequence

$$\left\{ \tilde{t}_n \right\}_{n=1}^\infty, \quad \tilde{t}_n \geq t_2, \quad n = 1, 2, \ldots, \quad \tilde{t}_n \to \infty \quad \text{as} \quad n \to \infty,$$

$$\lim_{n \to \infty} y_1(\tilde{t}_n) = \infty, \quad y_1(g(\tilde{t}_n)) = \max_{t_2 \leq s \leq g(\tilde{t}_n)} y_1(s).$$ (3.66)

By (3.65)

$$\lambda^* y_1(g(\tilde{t}_n)) \leq y_1(\tilde{t}_n) + B \leq y_1(g(\tilde{t}_n)) + B,$$

$$y_1(g(\tilde{t}_n)) \leq \frac{B}{\lambda^* - 1}, \quad n = 1, 2, \ldots.$$ (3.67)

That is a contradiction to $\lim_{n \to \infty} y_1(g(\tilde{t}_n)) = \infty$, and the function $y_1(t)$ is bounded. We claim that $\lim_{t \to \infty} y_1(t) = 0$, and we will prove it indirectly.

Let $\lim \sup_{t \to \infty} y_1(g(t)) = s, \quad 0 < s, \quad s = \text{const}$. Then $\lim \sup_{t \to \infty} y_1(t) = s$.

Let $\left\{ t^*_n \right\}_{n=1}^\infty, \quad t^*_n \geq t_2, \quad n = 1, 2, \ldots$, be such a kind of sequence that $\lim_{n \to \infty} t^*_n = \infty$ and $\lim \sup_{n \to \infty} y_1(g(t^*_n)) = s$.

Then, $\lim \sup_{n \to \infty} y_1(t^*_n) \leq s$.

By (1.2) and (3.47),

$$z_1(t^*_n) \leq y_1(t^*_n) - \lambda^* y_1(g(t^*_n)), \quad n = 1, 2, \ldots,$$

$$y_1(g(t^*_n)) \leq \frac{y_1(t^*_n) - z_1(t^*_n)}{\lambda^*}, \quad n = 1, 2, \ldots.$$ (3.68)

follows.

By the last inequality, we have

$$s = \lim \sup_{t \to \infty} y_1(g(t^*_n)) \leq \frac{\lim \sup_{t \to \infty} y_1(t^*_n)}{\lambda^*} \leq \frac{s}{\lambda^*}.\quad (3.69)$$
Abstract and Applied Analysis

1 ≥ λ∗ holds. That is a contradiction to (3.47). It means lim sup_{t \to \infty} y_1(t) = 0 and also lim sup_{t \to \infty} y_1(t) = 0. Moreover, y_1(t) > 0 holds, so lim inf_{t \to \infty} y_1(t) = 0 and this leads to lim_{t \to \infty} y_1(t) = 0.

By Lemma 2.4 it follows that

$$\lim_{t \to \infty} y_i(t) = 0, \quad i = 2, 3, \ldots, n.$$ \hfill (3.70)

(III) Let \(y \in N_1^−, l = 3, 5, \ldots, n−2, \) on \([t_2, \infty).\) In this case for, \(t \geq t_2,\)

$$y_l(t) > 0, \quad z_1(t) < 0, \quad y_2(t) < 0, \ldots, \quad y_l(t) < 0, \quad y_{l+1}(t) > 0, \ldots, \quad y_n(t) < 0.$$ \hfill (3.71)

Integrating the first equation of (1.1) from \(a(t) \) to \(t \) and using (3.71), we get

$$z_1(t) \geq \int_{a(t)}^{t} p_1(x_1) y_2(x_1) dx_1, \quad t \geq t_3,$$ \hfill (3.72)

where \(t_3 \geq t_2 \) is sufficiently large.

Integrating the 2nd, 3rd, \ldots, \((l − 1)\)th equations of the system (1.1), and substituting into (3.72), we get for \(t \geq t_3\)

$$z_1(t) \leq \int_{a(t)}^{t} p_1(x_1) \int_{a(t)}^{x_1} p_2(x_2) \cdots \int_{a(t)}^{x_{l-2}} p_{l-1}(x_{l-1}) y_l(x_{l-1}) dx_{l-1} dx_{l-2} \cdots dx_1.$$ \hfill (3.73)

Integrating \((l)\)th, \((l + 1)\)th, \ldots, \((n − 1)\)th equations of the system (1.1) we gain the syste

$$y_l(x_{l−1}) \leq −\int_{x_{l−1}}^{x_l} p_l(x_l) y_{l+1}(x_l) dx_l,$$

$$−y_{l+1}(x_1) \leq \int_{x_1}^{x_{l−2}} p_{l+1}(x_{l+1}) y_{l+2}(x_{l+1}) dx_{l+1},$$

$$y_{l+2}(x_{l+1}) \leq −\int_{x_{l+1}}^{x_{l−2}} p_{l+2}(x_{l+2}) y_{l+3}(x_{l+2}) dx_{l+2},$$

$$\vdots$$

$$−y_{n−1}(x_{n−2}) \leq \int_{x_{n−2}}^{x_{n−1}} p_{n−1}(x_{n−1}) y_n(x_{n−1}) dx_{n−1}.$$ \hfill (3.74)
We combine the formulae (3.73) and (3.74), and with regard to (3.71), we get for \(t \geq t_3 \)

\[
\begin{align*}
z_1(t) &\leq y_n(t) \int_{a(t)}^{t} p_1(x_1) \int_{a(t)}^{x_1} p_2(x_2) \cdots \int_{a(t)}^{x_{i-1}} p_{i-1}(x_{i-1}) \int_{a(t)}^{x_{i-2}} p_i(x_i) \\
& \quad \times \int_{a(t)}^{x_{i-2}} p_{i+1}(x_{i+1}) \cdots \int_{a(t)}^{x_n} p_{n-1}(x_{n-1}) dx_{n-1} dx_{n-2} \cdots dx_1.
\end{align*}
\] (3.75)

Employing (1.5) and (1.6) the equation above may be rewritten to

\[
z_1(t) \leq y_n(t) I_{i-2}(t, a(t); p_1, p_2, \ldots, p_{i-2}(*)) \times J_{n-i+1}((*), a(t); p_{n-1}, \ldots, p_1))
\] (3.76)

for \(t \geq t_3 \).

Integrating the last equation of (1.1) from \(t \) to \(t^* \rightarrow \infty \) and using (e) and (3.71),

\[
y_n(t) \leq -K \int_{t}^{\infty} p_n(x_n) y_1(h(x_n)) dx_n, \quad t \geq t_3.
\] (3.77)

From (3.2), (3.57) in regard to (3.76), (3.77) and monotonicity of \(z_1(g^{-1}(h)) \), we get for \(t \geq t_3 \)

\[
\begin{align*}
z_1(t) &\leq K I_{i-2}(t, a(t); p_1, p_2, \ldots, p_{i-2}(*)) \times J_{n-i+1}((*), a(t); p_{n-1}, \ldots, p_1)) \\
& \quad \times \int_{t}^{\infty} \frac{p_n(x_n) z_1(g^{-1}(h(x_n))) dx_n}{a(g^{-1}(h(x_n)))} \\
& \leq z_1(t) K I_{i-2}(t, a(t); p_1, p_2, \ldots, p_{i-2}(*)) \times J_{n-i+1}((*), a(t); p_{n-1}, \ldots, p_1)) \\
& \quad \times \int_{t}^{\infty} \frac{p_n(x_n) dx_n}{a(g^{-1}(h(x_n)))},
\end{align*}
\] (3.78)

which means for \(t \geq t_3 \)

\[
1 \geq K I_{i-2}(t, a(t); p_1, p_2, \ldots, p_{i-2}(*)) \times J_{n-i+1}((*), a(t); p_{n-1}, \ldots, p_1)) \\
\quad \times \int_{t}^{\infty} \frac{p_n(x_n) dx_n}{a(g^{-1}(h(x_n)))}.
\] (3.79)

This is a contradiction to (3.50) and

\[
N_3^- \cup N_5^- \cup \cdots \cup N_{n-2}^- = \emptyset.
\] (3.80)

(IV) Let \(y \in N_{r}^- \), on \([t_2, \infty) \).

In this case, we can write for \(t \geq t_2 \)

\[
y_1(t) > 0, \quad z_1(t) < 0, \quad y_i(t) < 0, \quad i = 2, 3, \ldots, n.
\] (3.81)
Abstract and Applied Analysis

We may lead the proof analogically as in the previous part of the proof and we will prove that (3.77), (3.57), and

\[z_1(t) \leq y_n(t) I_{n-1}(t, a(t); p_1, p_2, \ldots, p_{n-1}) \]

(3.82)

hold and also

\[1 \geq K I_{n-1}(t, a(t); p_1, p_2, \ldots, p_{n-1}) \int_t^\infty \frac{p_n(x_n)dx_n}{a(g^{-1}(h(x_n)))}, \quad t \geq t_3 \]

(3.83)

which is a contradiction to (3.51) and \(N_n = \emptyset \). \(\Box \)

Theorem 3.4. Suppose that (3.3), (3.47)--(3.49) hold and condition (3.50) is fulfilled for \(l = 3, 5, \ldots, n - 1 \), and

\[\int_s^\infty \frac{p_n(x_n)}{a(g^{-1}(h(x_n)))} \int_{g^{-1}(h(s))}^{x_1} p_1(x_1) \int_{g^{-1}(h(s))}^{x_2} p_2(x_2) \]

\[\cdots \int_{g^{-1}(h(s))}^{x_{n-2}} p_{n-1}(x_{n-1})dx_{n-1}dx_{n-2} \cdots dx_1dx_n = \infty \]

(3.84)

for \(s \geq t_0 \).

If \(n \) is even and \(\sigma = -1 \), then every solution \(y \in W \) to (1.1) is either oscillatory, or \(\lim_{t \to \infty} y_i(t) = 0, i = 1, 2, \ldots, n \), or \(\lim_{t \to \infty} |z_i(t)| = \infty \) and \(\lim_{t \to \infty} |y_i(t)| = \infty, i = 2, \ldots, n \).

Proof. Let \(y \in W \) be a non-oscillatory solution to (1.1), Expression (2.9) holds.

(I) Let \(y \in N_2^+ \cup N_4^+ \cup \cdots \cup N_n^+ \). Analogically as in the proof of Theorem 3.3 (I), we prove that

\[N_2^+ \cup N_4^+ \cup \cdots \cup N_n^+ = \emptyset. \]

(3.85)

(II) Let \(y \in N_i^+ \) on \([t_2, \infty)\). Similarly to the proof of Theorem 3.3 (II), we prove \(\lim_{t \to \infty} y_i(t) = 0, i = 1, 2, \ldots, n \).

(III) Let \(y \in N_i^- \), for some \(l = 3, 5, \ldots, n - 1 \), for \(t \in [t_2, \infty) \). Likewise as proof of Theorem 3.3 (III), for sets \(N_i^- \) we prove that \(N_3^- \cup N_5^- \cup \cdots \cup N_{n-1}^- = \emptyset \).

(IV) Let \(y \in N_n^- \) for \(t \in [t_2, \infty) \). Analogically to the proof of case (III) of Theorem 3.2, we claim \(\lim_{t \to \infty} |z_1(t)| = \infty, \lim_{t \to \infty} |y_i(t)| = \infty, i = 2, \ldots, n \). \(\Box \)
Abstract and Applied Analysis

Example 3.5. We consider system (1.1) as follows:

\[\left(y_1(t) - \frac{1}{2} y_1 \left(\frac{t}{4} \right) \right)' = \frac{t}{2} y_2(t), \]
\[y_2'(t) = \frac{1}{2} e^{\frac{t}{4}} y_3(t), \]
\[y_3'(t) = \frac{1}{2} e^{\frac{t}{8}} y_4(t), \]
\[y_4'(t) = \frac{1}{16} \left(e^{-\frac{3t}{8}} + \frac{5}{8} e^{-\frac{9t}{8}} \right) y_1 \left(\frac{t}{2} \right), \quad t \geq 1. \]

All assumptions of Theorem 3.2 are satisfied, and every solution \(y \in W \) to (3.86) is either oscillatory or

\[\lim_{t \to \infty} y_i(t) = 0, \quad i = 1, 2, 3, 4, \quad \text{or} \quad \lim_{t \to \infty} |y_i(t)| = \infty, \quad i = 1, 2, 3, 4. \]

One of the solutions has particular components as follows:

\[y_1(t) = e^{t}, \quad y_2(t) = e^{\frac{t}{2}} - \frac{1}{8} e^{-\frac{t}{4}}, \]
\[y_3(t) = e^{\frac{t}{4}} + \frac{1}{16} e^{-\frac{t}{2}}, \quad y_4(t) = \frac{1}{2} \left(e^{\frac{t}{8}} - \frac{1}{8} e^{-\frac{5t}{8}} \right), \quad t \geq 1, \]

and in this case

\[\lim_{t \to \infty} y_i(t) = \infty, \quad i = 1, 2, 3, 4. \]

Acknowledgments

The authors gratefully acknowledge the Scientific Grant Agency (VEGA) of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences for supporting this work under Grant no. 2/0215/09.

References

